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Abstract
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supply and being homogeneous of degree zero.
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1 Introduction

We prove that supply correspondences are characterized by two simple properties: the law of

supply and being homogeneous of degree zero. These two properties are both basic properties of

profit maximization behavior: The first one captures the intuition that the supply decisions should

change in the same direction as prices change. The second property states that if all prices of

inputs and outputs are proportionally changed, then the firm supply decision should not change

(see Section 5.C in Mas-Colell, Whinston, and Green, 1995).

To address the question of when a given supply correspondence is consistent with profit max-

imization behavior, we consider two concepts of rationalizability. A supply correspondence is

rationalizable if there exists a convex closed production set such that for every price vector each

supply decision is profit maximizing. A supply correspondence is strongly rationalizable if it con-

sists of all possible maximizers. Our first result shows that if a supply correspondence satisfies the

law of supply and is homogeneous of degree zero, then it is rationalizable. To obtain the strong

form of rationalizability, we strengthen the law of supply property. The law of supply is equivalent
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Mellon University, Tepper School of Business, Pittsburgh, USA; akushnir@andrew.cmu.edu. We are very thankful

to Paul Milgrom for sharing lecture notes on producer choice theory by Levin, Migrom, and Segal (2016). They

inspired us on this project.
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to a supply correspondence being monotone. Consider the set of all monotone correspondences

together with their graphs. A maximal monotone correspondence is a monotone correspondence

with the graph that cannot be a strict subset of the graph of any other monotone correspondence;

that is, its graph is maximal by set inclusion. This is an important and well-known concept in

mathematical literature, where it has been extensively studied (see, e.g., Phelps, 1997; Rockafellar,

1970a; Simons, 2006). We show that for a supply correspondence to be strongly rationalizable, it

is necessary and sufficient for it to be maximal monotone and homogeneous of degree zero.

The previous literature has provided several characterizations of rationalizable supply func-

tions.1 Most of these characterizations make strong assumptions about the differentiability of

supply function. For example, Proposition 8 in Levin, Migrom, and Segal (2016) states that a

continuously differentiable supply function y is rationalizable if and only if it satisfies Dy(p)p = 0

and its Jacobian Dy(p) is symmetric, positive semidefinite.2 The condition Dy(p)p = 0 is noth-

ing but Euler’s law applied to a homogeneous of degree zero supply function. The condition

on Jacobian is an analog of the cyclical monotonicity condition. Our characterization applies to

supply correspondences. When supply correspondence satisfies the law of supply, we show that

the cyclical monotonicity condition could be dropped or reduced to the maximal monotonicity

condition, depending on what rationalizability concept one is interested in.3 Both conditions are

easy to verify. Also, our characterizations does not require any assumptions of differentiablity on

the supply function.

Our characterization of supply correspondences is also closely related to the characterization

of combinatorial demand correspondences in the recent paper by Chambers and Echenique (2018).

However, we note several important differences. First, our characterization does not require the

image of supply correspondence to be finite (combinatorial). Second, we have different properties:

we characterize supply correspondences in terms of the law of supply and homogeneity of degree

zero, whereas Chambers and Echenique (2018) characterize combinatorial demand correspondences

in terms of the law of demand and upper hemicontinuity. While both the law of demand and the

law of supply are two versions of the monotonicity condition with opposite signs, the homogeneity

of degree zero condition is absent in consumer choice theory, as the maximization objective is not

linear. We also illustrate in Section 4 why the maximal monotonicity condition cannot be replaced

1See Samuelson (1948), Hanoch and Rothschild (1972), Varian (1984) for earlier important contributions to
production analysis.

2For a similar statement, see Proposition 7.9 in Kreps (2013). Jehle and Reny (2011) in Chapter 3 reference this
result as integrability theorem for supply functions, which is parallel to a similar result in consumer choice theory.
See also Mas-Colell, Whinston, and Green (1995) and Varian (1992).

3An important result in convex analysis is that if a correspondence is maximal cyclically monotone, then it is the
subdifferential of some proper convex lower semicontinuous function (i.e., the profit function) (Rockafellar, 1970a).
In relation to this result, we show that maximal cyclical monotonicity condition could be reduced to maximal
monotonicity condition if the function is homogeneous of degree zero. Homogeneous of degree zero is a strong
condition, but it is natural in the context of production theory. See Section 4 for a more detailed discussion.
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with the upper hemicontinuity condition when the image of supply correspondence is not finite.

2 Notation

Let us consider an economy with N ≥ 2 commodities. A typical production plan is a vector

z = (z1, ..., zN) ∈ RN , where an output has zn > 0 and an input has zn < 0. The vector of prices

is denoted as p ∈ RN . We say that for p, p′ ∈ RN , p ≤ p′ if each coordinate of p is smaller than

the corresponding coordinate of p′.

A supply correspondence is a mapping y : P ⇒ RN , giving for each price vector p a set of

possible production plans. Here, P ⊆ RN is any nonempty convex cone containing the origin, i.e.,

a nonempty convex subset of RN such that x ∈ P ⇒ λx ∈ P for all λ > 0. A typical economically

relevant example for P is the set of non-negative prices RN
+ . If y is single-valued, we refer to it

as a supply function. Let Im(y) = {z ∈ Rn | ∃p ∈ P s.t. z ∈ y(p)}. We consider two concepts of

rationalizability.

Definition 1. Supply correspondence y : P ⇒ RN is rationalizable if there exists a convex and

closed production set Y such that for all p ∈ P , y(p) ⊆ {z ∈ Y | p · z = supz′∈Y p · z′}.

We note that the requirement for production set Y to be convex and closed is innocuous, because

if we find some production set Y to satisfy the maximization condition, the closure of its convex

hull will rationalize supply correspondence y as well.

Definition 2. Supply correspondence y : P ⇒ RN is strongly rationalizable if there exists a convex

and closed production set Y such that for all p ∈ P , y(p) = {z ∈ Y | p · z = supz′∈Y p · z′}.

The first concept requires a supply correspondence to be a subset of all optimal production plans.

The second concept demands that the supply correspondence cover all optimal production plans.

The requirement for production set to be convex and closed is no longer innocuous in this case (as

we discuss in Section 4). We also consider three relevant properties for supply correspondences.

Definition 3 (law of Supply; Monotone). A correspondence y : P ⇒ RN satisfies the law of

supply (is monotone) if for all p, p′ ∈ P , and all z ∈ y(p), z′ ∈ y(p′), we have (p− p′) · (z− z′) ≥ 0.

The law of supply is a basic property of the profit maximization behavior corresponding to the

intuition that the quantities should change in the same direction as prices change (see Mas-Colell,

Whinston, and Green, 1995). At the same time, correspondences that satisfy the law of supply are

called simply monotone correspondences in the mathematical literature (see Phelps, 1997). One

could clearly see a justification for this in an application to functions in one-dimensional settings.
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For one-dimensional settings, the law of supply applied to a single-valued function requires it to

be non-decreasing. One could consider the set of all possible monotone correspondences defined

on P . It is possible to provide a partial order on these correspondences using their graphs and

define their maximal elements.

Definition 4 (Maximal Monotone). A subset G of RN × P is said to be monotone provided

(z − z′) · (p − p′) ≥ 0 whenever (z, p), (z′, p′) ∈ G. A correspondence y : P ⇒ RN is monotone if

and only if its graph

G(y) = {(z, p) : z ∈ y(p))}

is a monotone set. A monotone set is said to be maximal monotone if it is maximal in the family

of monotone subsets of RN ×P , ordered by inclusion. We say that a correspondence y is maximal

monotone provided its graph is a maximal monotone set.

Finally, we state one more standard property.

Definition 5 (Homogeneity of degree 0). Supply correspondence y is homogenous of degree

0 if and only if for all p ∈ P , λ > 0, we have y(λp) = y(p). Note that p ∈ P implies λp ∈ P since

P is a cone.

We use the above properties in the next section to characterize supply correspondences.

3 Results

In this section, we present our main results. First, we show that the law of demand and homogene-

ity of degree zero are sufficient for rationalizability of supply correspondences. Second, we show

that the extension of the law of supply to the maximal monotone condition, and to homogeneity

of degree zero are necessary and sufficient for strong rationalizability supply correspondences.

Theorem 1. A correspondence y : P ⇒ RN is rationalizable if it satisfies the law of supply and

is homogeneous of degree zero.4

Proof. We establish that if y satisfies the law of supply and is homogeneous of degree zero, it must

satisfy the weak axiom of profit maximization; that is, for any p, p′ ∈ P , z ∈ y(p) and z′ ∈ y(p′),

we must have p · z ≥ p · z′ (see Varian, 1984). The law of supply and homogeneity of degree zero

imply that (p− λp′) · (z − z′) ≥ 0 for any λ > 0 or

p · (z − z′) ≥ λp′ · (z − z′) for any λ > 0. (1)

4Note that a version of this result for supply functions with a finite image was first established in the working
paper by Kushnir and Lokutsievskiy (2019).
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For the sake of contradiction, assume that p ·(z−z′) < 0. Then, we must also have λp′ ·(z−z′) < 0

for any λ > 0. We arrive at a contradiction, as we can then find a sufficiently small λ such that

(1) is violated. Therefore, p · (z− z′) ≥ 0 or p · z ≥ p · z′ for any p, p′ ∈ RN , z ∈ y(p) and z′ ∈ y(p′).

In particular, p · z must be constant over all z ∈ y(p).

Set production set Y to be the closure of convex hull of Im(y). Since linear inequalities are

preserved under linear combination and under the operation of taking closure, we obtain that for

z ∈ y(p) and z′ ∈ Y , p · z ≥ p · z′. Finally, as product p · z is constant over all z ∈ y(p), we obtain

y(p) ⊆ {z ∈ Y | p · z = supz′∈Y p · z′}.

Note that the law of supply is also a necessary condition for rationalizability (see, e.g., Mas-

Colell, Whinston, and Green, 1995).5 To see this, note that rationalizability implies that for any

p, p′ ∈ P, z ∈ y(p), z′ ∈ y(p′), p′ · z ≤ p · z. Similarly, p · z′ ≤ p′ · z′. Adding these two inequalities

together yields p′ ·z+p ·z′ ≤ p ·z+p′ ·z′, which is equivalent to the statement of the law of supply.

Unfortunately, rationalizable supply correspondences might not satisfy the homogeneity of

degree zero, as one could pick maximizers in set {z ∈ Y : p · z = supz′∈Y p · z′}. Hence, it might be

the case that y(p) 6= y(λp) for λ > 0. Such a situation is not possible for strongly rationalizable

supply correspondences.

We now show our main result that the properties of being maximal monotone and homogeneous

of degree zero fully characterize strongly rationalizable supply correspondences.

Theorem 2. A correspondence y : P ⇒ RN is strongly rationalizable if and only if it is maximal

monotone and homogeneous of degree zero.

Proof. To prove sufficiency, consider y : P ⇒ RN that is maximal monotone and homogeneous

of degree zero. As any maximal monotone correspondence satisfies the law of supply, Theorem 1

implies that y is rationalizable by some convex and closed set Y ; that is, y(p) ⊆ {z ∈ Y | p · z =

supz′∈Y p · z′}. We consider production set Y constructed in the proof of Theorem 1 as being the

closure of the convex hull of Im(y). It remains to establish that y(p) = {z ∈ Y | p·z = supz′∈Y p·z′}
for any p ∈ RN .

Assume there exists (p∗, z∗) such that p∗ · z∗ = supz′∈Y p · z′, z∗ ∈ Y , and z∗ /∈ y(p∗). Hence,

for any p′ ∈ P and z′ ∈ y(p′), we must have both p∗ · (z∗− z′) ≥ 0 and p′ · (z′− z∗) ≥ 0. Therefore,

(z∗− z′) · (p∗− p′) ≥ 0. Hence, we can construct a new correspondence y′ that coincides with y for

all p 6= p∗ and y′(p∗) = y(p∗) ∪ z∗. Correspondence y′ is monotone and its graph strictly includes

the graph of y. This contradicts to y being maximal monotone.

5An alternative statement of Theorem 1 is that any homogeneous of degree one correspondence y : P ⇒ RN is
rationalizable if and only if it satisfies the law of supply.
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To prove necessity, we consider some strongly rationalizable supply correspondence, y : P ⇒

RN . Hence, there exists a convex and closed set Y ⊂ RN such that y(p) = {z ∈ Y | p · z =

supz′∈Y p · z′} for any p ∈ P . Let us denote profit function

π(p) = sup
z′∈Y

p · z′ for any p ∈ P.

Therefore, y is the subdifferential of profit function y = ∂π (see Theorem 23.5 in Rockafellar,

1970a). Note that π is a proper lower semi-continuous convex function as the support function

of set Y (see p. 206 in Phelps, 1997). Hence, y is maximal monotone as its subdifferential (see

Theorem 2.15 in Phelps, 1997).6

Finally, for any scalar λ > 0, we have

y(p) = {z ∈ Y : p · z = sup
z′∈Y

p · z′} = {z ∈ Y : λp · z = sup
z′∈Y

λp · z′} = y(λp),

which shows that any strongly rationalizable supply function y is homogeneous of degree zero.

Note that it is rather intuitive that the mathematical property of “maximality” is needed to

characterize the property of strong rationalizability. Strong rationalizability aims to capture the

idea that a given supply function contains all the maximization points of the production set.

Similarly, the property of maximality ensures that one cannot properly extend a given monotone

correspondence in the space of all monotone correspondences.

4 Discussion

In this section, we connect our results with mathematical literature on monotone operators and

relate the results more closely to the recent contribution by Chambers and Echenique (2018).

The main contribution of this paper is to provide a simple characterization of rationalizable

supply correspondences. When the classical characterizations in economics employ the properties

of the Jacobian of supply functions, our characterization does not use any assumptions of differ-

entiability. Instead, our characterization relies on the concept of maximal monotonicity, which a

well-known and well-studied concept in mathematics. Monotone and maximal monotone operators

play an important role in convex analysis, partial differential equations, optimization, and calculus

of variations (see Phelps, 1997; Rockafellar and Wets, 2009; Simons, 2006; Zălinescu, 2002; Zei-

dler, 2013). The mathematical literature provides several characterizations of maximal monotone

operators including the one using saddle functions (Krauss, 1985) and the one using Fitzpatrick

6An alternative proof that any strongly rationalizable support function y is maximal monotone can done using
the Bishop-Phelps theorem (see p. 31 in Simons, 2006).
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functions (Fitzpatrick, 1988).7 The Fitzpatrick functions have become instrumental in providing

simpler proofs of many deep results on maximal monotone operators (see, e.g., Borwein and Zhu,

2010; Burachik and Svaiter, 2003; Martinez-Legaz and Svaiter, 2005; Simons and Zălinescu, 2004)

and cyclically monotone operators (see Bartz, Bauschke, Borwein, Reich, and Wang, 2007). For

the modern treatment of the theory of monotone operators see Burachik and Iusem (2008) and

Simons (2008).

An important class of maximal monotone operators are subdifferentials of convex functions.

In fact, Rockafellar (1970b) proved a seminal result that a given operator is a subdifferential of

a proper convex lower semicontinuous function if and only if it is maximal cyclically monotone.

In one dimension, any monotone operator is also cyclically monotone. This is no longer the case

in multi-dimensional spaces, where some skew linear operators (see, e.g., Simons, 2006) and some

rotations (Bartz, Bauschke, Borwein, Reich, and Wang, 2007; Archer and Kleinberg, 2014) are

monotone, but not cyclically monotone. In the finite-dimensional Euclidean spaces, however, any

monotone function is cyclically monotone if it is defined on a convex domain and it has a finite

range (Saks and Yu, 2005; Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen, 2006). This

result has become important in economics literature as a way to characterize incentive compatible

allocation rules in the fields of auctions and mechanism design. Some subsequent studies extend

this result to non-convex domains (see, e.g., Kushnir and Lokutsievskiy, 2021; Mishra, Pramanik,

and Roy, 2014) and to functions with infinite range (Müller, Perea, and Wolf, 2007; Carbajal and

Müller, 2015, 2017). The main result of this paper (Theorem 2) contributes to this literature by

showing that any correspondence that is maximal monotone and homogeneous of degree zero is

also maximal cyclically monotone.

Also, we want to relate our characterization of suppply correspondences to the characterization

of combinatorial demand correspondences by Chambers and Echenique (2018). Both character-

izations have different properties: we characterize supply correspondences in terms of maximal

monotonicity and homogeneity of degree zero, whereas Chambers and Echenique (2018) charac-

terize combinatorial demand correspondences in terms of the law of demand and upper hemicon-

tinuity. The homogeneity of the degree zero condition is absent in consumer choice theory, as the

maximization objective is not linear in prices. The maximal monotonicity condition is a stronger

form of the law of supply. Both the law of supply and the law of demand are monotonicity condi-

tions, with the opposite signs reflecting that the supply function should increase in output prices

and the demand function should decrease in good prices. At the same time, maximal monotonic-

ity is stronger than uppper hemicontinuity, as any maximal monotone correspondence is upper

hemicontinuous, but the reverse direction is generally not true (p. 203 in Phelps, 1997).

We cannot replace maximal monotonicity with a weaker condition of upper semicontinuity in

7See Penot (2004) for an alternative characterization.
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Figure 1. The graph of supply correspondence (2) that satisfies the law of supply, is homogeneous of

degree zero, and is upper hemicontinuous, but that cannot be strongly rationalized with a convex or a

closed set.

Theorem 2, as we can then no longer guarantee that the supply correspondence can be strongly

rationalized with a convex closed set or even just a closed set (even if it satisfies the law of supply).

To illustrate, let us consider supply correspondence y : R2 ⇒ R2, defined as

y(p) =


(1, 0) if p1 ≥ p2

S if p1 = p2

(0, 1) if p2 ≥ p1

, (2)

where S is a subset of Z = {z | z = α(0, 1)+(1−α)(1, 0), α ∈ [0, 1]} and we require (0, 1), (1, 0) ∈
S. Set S is depicted in red in Figure 1. It is straightforward to see that y satisfies the law of supply

and is homogeneous of degree zero. Hence, y is rationalizable. For example, set Z rationalizes y.

As (0, 1), (1, 0) ∈ S supply correspondence is also upper hemicontinuous. If S is a strict subset of

Z, then y cannot be strongly rationalized with a convex production set, because such a set has to

coincide with Z. Moreover, if S is not closed, y cannot be strongly rationalized with a closed set,

as such a set has to coincide with S. Overall, the above example illustrates that we cannot weaken

the maximal monotonicity condition with the upper hemicontinuity condition in the settings when

the image of supply correspondence is not finite.

Finally, we want to point out that the convexity and closedness requirements on a production

set disciplines our strong rationalizability concept (Definition 2). If we drop these requirements

on the production set then the proofs of Theorems 1 and 2 imply that any homogeneous of degree

zero correspondence is strongly rationalizable by any set if and only if it satisfies the law of supply.

8



References

Archer, A., and R. Kleinberg (2014): “Truthful Germs are Contagious: A Local-to-global

Characterization of Truthfulness,” Games and Economic Behavior, 86, 340–366.

Bartz, S., H. H. Bauschke, J. M. Borwein, S. Reich, and X. Wang (2007): “Fitzpatrick

Functions, Cyclic Monotonicity and Rockafellar’s Antiderivative,” Nonlinear Analysis: Theory,

Methods & Applications, 66(5), 1198–1223.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen (2006):

“Weak Monotonicity Characterizes Deterministic Dominant-Strategy Implementation,” Econo-

metrica, 74(4), 1109–1132.

Borwein, J. M., and Q. J. Zhu (2010): Techniques of Variational Analysis. CMS Books in

Mathematics. Springer New York.

Burachik, R. S., and A. N. Iusem (2008): Set-valued Mappings and Enlargements of Monotone

Operators. Springer New York, NY.

Burachik, R. S., and B. Svaiter (2003): “Maximal Monotonicity, Conjugation and the Duality

Product,” Proceedings of the American Mathematical Society, 131(8), 2379–2383.

Carbajal, J. C., and R. Müller (2015): “Implementability under Monotonic Transformations

in Differences,” Journal of Economic Theory, 160, 114–131.

(2017): “Monotonicity and Revenue Equivalence Domains by Monotonic Transformations

in Differences,” Journal of Mathematical Economics, 70, 29–35.

Chambers, C. P., and F. Echenique (2018): “A Characterization of Combinatorial Demand,”

Mathematics of Operations Research, 43(1), 222–227.

Fitzpatrick, S. (1988): “Representing Monotone Operators by Convex Functions,” in Work-

shop/Miniconference on Functional Analysis and Optimization, vol. 20, pp. 59–66. Australian

National University, Mathematical Sciences Institute.

Hanoch, G., and M. Rothschild (1972): “Testing the Assumptions of Production Theory: a

Nonparametric Approach,” Journal of Political Economy, 80(2), 256–275.

Jehle, G. A., and P. J. Reny (2011): Advanced Microeconomic Theory, The Addison-Wesley

Series in Economics. Financial Times/Prentice Hall.

9



Krauss, E. (1985): “A Representation of Arbitrary Maximal Monotone Operators via Subgra-

dients of Skew-symmetric Saddle Functions,” Nonlinear Analysis: Theory, Methods & Applica-

tions, 9(12), 1381–1399.

Kreps, D. M. (2013): Microeconomic Foundations I: Choice and Competitive Markets, Microe-

conomic Foundations. Princeton University Press.

Kushnir, A., and L. Lokutsievskiy (2019): “On the Equivalence of Weak- and Cyclic-

monotonicity,” Discussion paper, Carnegie Mellon University and Steklov Mathematical In-

stitute of Russian Academy of Sciences, Working Paper.

(2021): “When is a Monotone Function Cyclically Monotone?,” Theoretical Economics,

16(3), 853–879.

Levin, J., P. Migrom, and I. Segal (2016): “Lectures on Producer Theory,” Private Com-

munication.

Martinez-Legaz, J.-E., and B. F. Svaiter (2005): “Monotone Operators Representable by

LSC Convex Functions,” Set-Valued Analysis, 13(1), 21–46.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995): Microeconomic Theory, vol. 1.

Oxford University Press.

Mishra, D., A. Pramanik, and S. Roy (2014): “Multidimensional Mechanism Design in

Single Peaked Type Spaces,” Journal of Economic Theory, 153, 103–116.

Müller, R., A. Perea, and S. Wolf (2007): “Weak Monotonicity and Bayes–Nash Incentive

Compatibility,” Games and Economic Behavior, 61, 344–358.

Penot, J.-P. (2004): “The Relevance of Convex Analysis for the Study of Monotonicity,” Non-

linear Analysis: Theory, Methods & Applications, 58(7-8), 855–871.

Phelps, R. R. (1997): “Lectures on Maximal Monotone Operators,” Extracta Mathematicae,

12(3), 193–230.

Rockafellar, R. T. (1970a): Convex Analysis. Princeton University Press.

(1970b): “On the Maximal Monotonicity of Subdifferential Mappings,” Pacific Journal

of Mathematics, 33(1), 209–216.

Rockafellar, R. T., and R. J.-B. Wets (2009): Variational Analysis, vol. 317. Springer

Science & Business Media.

10



Saks, M., and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex Domains,”

in Proceedings of 6th ACM Conference on Electronic Commerce, pp. 286–293. ACM Press.

Samuelson, P. A. (1948): “Foundations of Economic Analysis,” Science and Society, 13(1).

Simons, S. (2006): Minimax and Monotonicity. Springer.

(2008): From Hahn-Banach to Monotonicity. Springer.
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