
Sensor Andrew: Large-Scale Campus-Wide
Sensing and Actuation

Anthony Rowe† Mario Berges‡ Gaurav Bhatia† Ethan Goldman‡
Ragunathan (Raj) Rajkumar† Lucio Soibelman‡ James Garrett‡ Jośe M. F. Moura†

† Electrical and Computer Engineering Department
‡ Civil and Environmental Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

{agr,mberges,gnb,ejgoldman,rajkumar,lucio,garrett,jm5u}@andrew.cmu.edu

Abstract—We present Sensor Andrew, a multi-disciplinary
campus-wide scalable sensor network that is designed to host
a wide range of sensor, actuator and low-power applications.
The goals of Sensor Andrew are to support ubiquitous large-scale
monitoring, operation and control of infrastructure in a way that
is extensible, easy to use, and secure while maintaining privacy.
Target applications currently being developed as part of Sensor
Andrew include builing emergency, first-responder support, qual-
ity of life for the disabled, monitoring and optimization of water
distribution systems, building power monitoring and control,
social networking, and biometric sensors for campus security.
Sensing devices that are used range from cameras and battery-
operated sensor nodes to energy-monitoring devices wired into
building power supplies. Some of these sensing devices may also
be mobile and require hand-off between different networked
regions. Supporting multiple applications and heterogeneous
devices requires a standardized communication medium capable
of scaling to tens of thousands of sources.

In this technical report, we present the architecture underlying
Sensor Andrew for managing sensor data collection as well
as server-side application interactions. Sensors and actuators
are modeled as event nodes in a push-based publish-subscribe
architecture. A data handler provides registration, discovery and
data logging facilities for each device. The major elements of
this architecture have been deployed in five buildings at Carnegie
Mellon University, and are comprised of over 1000 sensing points
reporting data from multiple communication interfaces. Finally,
we describe two different case study applications currently using
the infrastructure that benefit from shared information. Design
choices, limitations and enhancements across various layers and
protocols are also discussed.

I. I NTRODUCTION

Sensor Andrew is a large-scale effort to widely deploy sens-
ing devices across Carnegie Mellon University. We envision
a broad set of applications ranging from: infrastructure moni-
toring, first-responder support, quality of life for the disabled,
water distribution monitoring, building power monitoringand
control, social networking and biometric systems for campus
security. Researchers of other institutions have already suc-
cessfully built other sensor networking applications, butthey
are typically isolated, small-scale and short-lived experiments.
One of the primary goals of Sensor Andrew is to have a

permanent living laboratory where applications can be rapidly
prototyped at scale. Our architecture focuses on supporting
practical deployments with direct community uses. Imaginean
infrastructure monitoring system that could immediately alert
the campus facilities personnel in the event of broken water
pipes or power outages. We see great potential in development
not only at the sensor networking level, but also with applica-
tions operating at a higher level of abstraction. Application
developers should be able to directly utilize physical data
from the environment without having to re-invent lower-level
interfaces. A variety of social networking applications are
possible given support for mobility. Students can carry low-
powered mobile devices that communicate seamlessly with the
the infrastructure and one another.

The target applications of Sensor Andrew will require nu-
merous heterogeneous sensors, actuators and communication
networks in order to interoperate. During the onset of this
project we found that multiple groups across campus were
either deploying redundant sensing systems or were unaware
of existing systems that could benefit their applications. By
combining resources from different applications, the system
can become greater than the sum of its parts. In order to
support this mixing of components, there needs to be a
unifying architecture capable of facilitating communication
between components while maintaining security and privacy.

In this paper we introduce the goals and requirements of
an architecture that meets the needs of such a large-scale
sensing and actuation system. We propose a three-tiered archi-
tecture that utilizes a distributed communication and address-
ing service capable of scaling to Internet class proportions.
The communication component of the architecture provides
a standard messaging interface with extensible packet types
incorporating encryption and user access control. We propose
an extensible schema for both communication as well as a
database for historical information. We leverage the XMPP
Internet messaging protocol to provide both point-to-point as
well as publish-subscribe communication.

We evaluate the flexibility of this architecture by showcasing

two early applications. The first application attempts to reduce
building energy consumption through non-intrusive electrical
load monitoring. Its goal is to understand if better decisions
can be made towards saving energy given the operational
schedule of major appliances. The second applications is a
campus-wide wireless sensor network used for environmental
monitoring and tracking mobile tags. Tags can be used to
track targets ranging from technical equipment like portable
projectors or to students themselves participating in a social
networking project. In both cases, we show how easy access
to information streamlines application development, and how
multiple existing sensor systems can be used in collaboration.

A. Related Work

Multiple complete sensing applications have been deployed
showing the technical feasibility of sensor networks [1][2].
These applications are successful at their specific tasks, but
tend to be relatively small-scale and somewhat narrowly
defined systems, usually with environmental concerns or with
a military purpose. Also, many of these deployments tend
to be short-lived, and although they show great potential as
components for other applications, the technology is often
not reused. Each application in Sensor Andrew is designed
from the start with components that promote integration. In
order for this to be successful, it must be easy to interface
new components or subsystem with the existing infrastructure
while at the same time provide a benefit to the application.

In [3], the authors outline that much of the work done
in sensor networking has resulted in vertically built designs
where individual components are only compatible with each
other and not with other systems. The authors put forth the
challenge of making a protocol for sensor networks that can
unify communication in the same way that IP was able to
support the Internet. Due to the resource-constrained and hence
the tightly coupled and highly optimized nature of sensor
networks, this problem continues to exist. Our objective in
this work is not to standardize low-level sensor networking
communication, but instead to enable unified tools and inter-
operability across multiple deployments. Work has also been
done trying to integrate sensor networks with IPv6 [4][5].
IPv6 solves many of the problem of addressing and sending /
receiving data packets to and from individual sensor devices.
It allows standard tools such astraceroute and ping to be
used for network diagnostics. However, it does not solve many
of the higher-level challenges associated with managing and
providing applications with the data. In this paper we provide a
framework that would run on top of existing network protocols
like IPv6 and IPv4 that addresses access control, registration,
discovery, event logging and management of transducer de-
vices beyond a single subnet.

Multiple research groups have worked on collaborative sens-
ing services like SenseWeb [6] from Microsoft research and
SensorWeb [7]. These systems are targeted towards visualizing
and sharing data with end-users. They currently show little
support for managing actuators. Sensor Andrew aims not only
to collect sensor data, but to support control of environments

and to enable interaction between software agents. These
projects complement Sensor Andrew and could be integrated
to aid in navigation and visualizing events.

There have been several research efforts in the field of
pervasive computing and social networking [8][9][10]. These
projects could greatly benefit from a low-power ubiqui-
tous sensing and communication infrastructure. Solutionslike
TinyDB [11] exist that allow for querying and collection
of data. MoteTrack [2] demonstrates a system capable of
indoor tracking. Unfortunately, the operation of these systems
typically requires an application domain expert and ends up
making it nearly impossible for further system integration.

The building industry has been working for a number of
years towards standard communication protocols and data
formats to simplify the exchange of information between mon-
itoring and control equipment in commercial and residential
buildings [12][13]. Multiple attempts [14][15] have been made
to translate communications between different systems in order
to facilitate cross-domain interactions. These systems are nar-
rowly focus on supporting control and automation interactions
and were never intended to operate with the number of users
or scale of Sensor Andrew.

The IRISnet [16] project shares many of the same goals
as Sensor Andrew by enabling transducer reuse and collab-
orative Internet-scale sensing. It uses a distributed database-
centric architecture that facilitates the storage, processing and
retrieval of transducer information. The IRISnet architecture
was intended primarily for Internet connected desktop PCs
and inexpensive commodity off-the-shelf sensors such as We-
bcams. In contrast, Sensor Andrew focuses on management
of a wide range of devices including resource-constrained
transducers which may not have direct Internet connectivity.
It also provides presence notification essential for supporting
mobile devices.

B. Paper Organization

The rest of this paper is organized as follows. Section
II describes the architecture requirements, design goals and
trade-offs associated with Sensor Andrew. Section III describes
the architecture we chose for Sensor Andrew and where it is
located in the design trade-off space. Section IV discusses
the implementation of various system components. Section
V presents early experiences with Sensor Andrew illustrated
through two different case studies. Finally, Section VI sum-
marizes our contributions and discusses our future plans.

II. D ESIGN GOALS AND TRADEOFFS

We adopt the following design goals for Sensor Andrew.

1) Ubiquitous Large-Scale Monitoring and Control: The
sensing infrastructure should exist at a significantly large
scale to entice the development of new and innova-
tive applications. The infrastructure should support both
sensing and actuation.

2) Ease of Management, Configuration and Use:The
system’s ease of use needs to be considered both for
managing the infrastructure as well as providing simple

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 2

ways for application developers to interface with their
own and other subsystems. This should also include
a process for registering and discovering transducers
relevant to the user’s project.

3) Scalability and Extensibility: The ability to support
a large number of devices and users is of paramount
importance. Extensions made by a particular project to
satisfy a new requirement should ideally benefit the
whole community.

4) Built-In Security and Privacy: The system should
support security and privacy considerations including
encryption, key management, access control and account
/ user management. Social aspects of privacy should be
governed through policy.

5) True Infrastructure Sharing: One of the most unique
contributions of Sensor Andrew is the notion of multiple
heterogeneous applications and devices that can utilize
each other’s services. The architecture must easily in-
tegrate information from multiple applications, creating
additional value to all as new types of applications are
envisioned.

6) Evolvability: The architecture must be capable of eval-
uating different computation paradigms. It must also
allow for rapid prototyping at scale to demonstrate prac-
tical usage and utility. It also needs to be able to change
over time. Being able to evolve with and support these
changes will be important for incorporating unforeseen
and innovative applications in the future.

7) Robustness:The system should be robust and be able
to reconfigure itself.

While each of the design goals may be worthy by itself,
collectively they may conflict with one another and many
design trade offs must therefore be considered. For example,
the system could be push-oriented or pull-oriented when it
comes to accessing sensors. Devices could broadcast data
whenever they are ready, but this could waste energy if
no agent is available to consume the data. If devices only
respond to polling requests this would no longer be a problem
except when many devices request the same data. Queues of
requests could build-up for redundant data that would have
been better handled by the push-based broadcast approach.
We also need to address how these architectures will support
actuators. A pull approach might simply send the actuator a
message to enable it. For requirements like this, there needs
to be mechanisms in place for resource management. In these
examples, each scheme has an inherent bias and will likely
better suit a certain set of applications.

In a system like Sensor Andrew, there will be different kinds
of users: (a) end-users who only want to avail themselves of
the features supported by various applications in the system
(b) application developers who want to test and deploy appli-
cations quickly, and (c) system developers who may want to
change the underlying protocols and node system software.
We strive to create a secure backbone that takes care of
authentication, encryption and access control. Thus, we have

at least strived to provide a good base for applications to build
upon. Scalability and extensibility need to be addressed ina
way that balances system modularity with size and complexity.
Self-healing mechanisms should aid in robustness, but without
an unacceptable loss of performance. Since many aspects of
Sensor Andrew are still open research topics, we wanted to
design an architecture that would aid in fusing pieces together
yet require as little intervention as possible.

A. Challenges and Approach

Given these lofty goals, it would be infeasible to design
every component of Sensor Andrew from scratch. We utilize
existing technologies whenever possible and innovate when-
ever necessary. There are five core challenges required to
meet our goals: (1) uniform access to heterogeneous devices;
(2) sharing of transducers across applications; (3) scaling to
many devices; (4) integration of subsystems and (5) security
and privacy. Uniform access to devices is achieved using self-
describing data objects. In our implementation, this takesthe
form of a transducer schema. Sharing transducer information
across applications is achieved through a publish-subscribe
mechanism. Scalability is achieved through use of encapsu-
lated addressing. Each devices in the system is addressed with
a unique name, server address and namespace attribute. Inte-
gration of subsystems is possible because of standardized com-
munication mechanism with adapters providing the last-link of
translation. Finally, security and privacy are achieved through
encryption, key management, access control and policy. Our
overall contributions are defining an architecture for Sensor
Andrew, selecting the best currently available technologies to
meet our requirements, and building the required tools to make
the system cohesive.

III. SENSORANDREW ARCHITECTURE

In this section, we present the first version of our architec-
ture designed to satisfy the goals of Sensor Andrew. Figure 1
illustrates the classical three-tiered architecture we adopted
with a front-end server layer, a gateway layer and a transducer
layer. The servers and gateways operate as part of the campus
network, while the transducer layer may communicate over
a variety of different bus or network protocols. Elements of
the transducer layer are end-point sensors or actuator devices
with little or no processing power. For example, a light
sensor or energy meter that provides a voltage output or
serial data would be considered part of the transducer layer.
The gateway layer is comprised of medium to desktop-class
computing devices that have Internet access. As described later
in this section, gateways are responsible for runningadapters
that properly format the transducer layer information for the
server layer. At its core, the server layer has a set of high-
performance systems with extensive storage capabilities.This
layer acts as the administrative front-end to the entire system
for configuration, control, data aggregation and storage. The
server layer also consists ofagents which can subscribe to
sensor data to provide high-level services or newmeta-sensors.

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 3

Gateway Gateway IP Camera

PC

RFID RX

802.11Ethernet

Ethernet /

802.11

Server

Ethernet
Campus

Network

Campus

Network

Sensor

Device

Sensor

Device

RS-232RS-232

Mobile Node

Agents
End-User

End-User

Sensor

802.15.4

Bluetooth

Actuator

Fig. 1. The three-tiered Sensor Andrew Architecture.

A. Communication Requirements

We now outline the requirements of a communication
protocol that could achieve the goals outlined in Section II.

1) Standard messaging format:Applications frequently
contain roll-your-own solutions for communicating be-
tween components. These solutions are often difficult
to interface with one another either due to architectural
incompatibility or even simple lack of documentation.
Even if the body of a message is unique to each
application, a standard messaging protocol will simplify
data payload delivery.

2) Extensible Message Types:Different applications can
be expected to require dramatically different message
types. These could range from simple differences like
one type of sensor over another or more significant
changes such as streaming versus packetized data.

3) Point-to-Point and Multicast Messaging: The com-
munication protocol should be able to provide point-to-
point as well as, broadcast support in order to interface
with multiple applications. Multicasts should ideally be
implicit and not require any changes to the original
application if more or fewer listeners exist in the system.

4) Support for Data Tracking and/or Event Logging:
For maintenance purposes, the system must have the
ability to track where data are being moved and the
volume of data that different applications are generating.
This can be later used for reconfiguration, fault analysis
and/or to optimize system parameters. There also needs
to be a mechanism for storing information about trans-
ducers, such as part number, units, location, etc.

5) Security, Privacy, Access Control:Providing security
and access control at an applications communication
interface is essential for protecting sensitive informa-

tion. The communication layer should allow for access
control and the ability to share privileges without always
having to go back to a single administrator.

6) Internet-Scale Performance:The communication pro-
tocol needs to be able to support a large number of
devices ideally without unduly impacting applications.

B. Communication

In order to provide communication between gateways and
user applications we chose to leverage the eXtensible Mes-
saging and Presence Protocol (XMPP)[17]. XMPP is an open
XML-inspired Internet protocol traditionally used for online
chat communications. Originally based on the Jabber protocol,
XMPP has evolved to incorporate features well beyond simple
instant messaging such as: event publishing, voice streaming,
file transfer and profile information management. The notion
of presence, which is central to its operation, refers to the
ability for groups of clients to detect other clients connecting
and disconnecting from the system. This is critical both to
identify when a service becomes available and to direct client-
to-client communication given potentially new locations in
the network. Figure 3 shows how XMPP uses decentralized
addressing making it highly scalable. Much in the same way
a domain can run its own email server, addressing in XMPP is
defined first with a client identification (referred to as a JID)
followed by a domain name and then a namespace. Entities
using XMPP are classified as clients and servers. For example
gw_x@sensor.andrew.cmu.edu/water-pipes identifies a
particular gateway node’s address,gw_x , at an XMPP server
address,sensor.andrew.cmu.edu with its ”namespace”
specified aswater-pipes. An XMPP server with the correct
access permissions can pass a local client’s requests to another
XMPP server which, in turn, can pass the request to the

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 4

Adapter SOX lib

Gateway

Event Nodes

Database

Registry

Web Services

Domain Data

Handler

Agent 5Agent 4

Agent 2

Agent 3

Sensor

Meta-Sensor

Publish

Historical

Data

Discovery

Subscribe

Adapter SOX lib

Gateway
Actuator Subscribe

/ Publish

Historical

Data

Agent 1

Fig. 2. XMPP Publish-Subscribe transactions to support collection of sensor networking data.

destination client. The addition of namespaces appended to
the addresses allows for the creation of multiple views.

XMPP supports publish-subscribe messaging where JIDs
can send and receive messages through what are calledevent
nodes. Event nodes are addressable data channels that allow
clients to publish and/or subscribe to event feeds. Nodes may
also maintain a history of events, provide meta-information
about the event feed as well as contain access control lists.This
push model of communication provides a powerful mechanism
for distributing sensor data to any interested applicationor
user.

XMPP satisfies our initial requirements in the following
ways:

1) XMPP provides a standard, scalable messaging and pres-
ence protocol with security features such as user/group
authorization, authentication, and access control. Since
XMPP is already an Internet standard, we can leverage
commercially available servers that are maintained by
the community.

2) XMPP’s addressing and messaging scheme is optimized
for short messages with point-to-point as well as broad-
cast capabilities. The addressing scheme is not bound to
a physical network location making it ideal for mobile
devices.

3) XMPP provides a publish-subscribe functionality for
pushing sensor data. This is an ideal model for mass
distribution of data.

4) XMPP provides organized event messages with an in-
ternal database for storing transaction records.

5) XMPP can utilize clustering or replication to meet
scale demands as well as provide primary backup fault-
tolerance.

XMPP has its limitations in our context. Some examples
of these limitations are:the need for data schemas to structure
transducer data, adapters to interface hardware devices with
XMPP, data services to support applications and software
agents that can be easily developed and deployed to analyze
and respond to the messages.However with the addition of
our tools and supporting agents, which will be addressed in
Section IV, it enables large-scale sensing and addresses all
these issues.

C. Transducer Layer

The transducer layer consists of end-devices that typically
have the ability to measure or change some physical char-
acteristic of the environment. This might be as simple as a
temperature sensor, or could include a sensor like a cellular
phone that is detected using Bluetooth while moving past a
gateway. The collection nodes in a classical wireless sensor
network would be considered part of the sensor layer. In cases
like that of an energy measurement device connected to a
linux host, the energy device would be considered a transducer,
while the linux host would be a gateway typically running an
adapter (described in Section IV-B).

Each transducer in Sensor Andrew exists as an XMPP
event node that has information published by an adapter
on its behalf. Figure 2 shows an overview of the XMPP
publish-subscribe system. Each event node contains an XML
specification describing the transducer’s capabilities. Event
nodes can be hierarchically organized so that subscribers can
be notified when particular related groups of nodes produce
data. Figure 5 shows a typical sensor message from a FireFly
wireless sensor node.

Many of the Sensor Andrew applications require support
for mobility. XMPP inherently supports mobility with its

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 5

addressing scheme and presence protocol. As gateway devices
enter and leave the network, their presence is detected and
logged. Mobile devices are specially tagged and published as
event nodes in a separate pool. In cases where mobile nodes
are not as resource-constrained as infrastructure nodes (for
example, a cellular phone), they are given full JID addresses
so that they can generate and receive XMPP messages with
Internet clients.

The heterogeneous nature of Sensor Andrew requires sup-
porting vastly different types of transducer devices. To this
point, we have focused largely on resource-constrained or low
datarate devices like wireless sensor nodes. Sensor Andrew
must also support high datarate devices such as video stream-
ing systems. For devices with high bandwidth requirements,
XMPP offers a hand-off mechanism for establishing a secure
link between two clients. Even though the datarate would be
prohibitively high for the XMPP server to store all of the data,
this handoff approach enables the server to catalog the typeof
data and which clients were involved in the transaction. This
can be utilized later for searching purposes or for correlating
other sensing events with the high bandwidth streams.

D. Gateway Layer

The gateway layer consists of devices that typically have
access to the Internet. As described in the next section, these
devices run a full XMPP client with associated adapters for
any attached transducers. Gateway devices have the abilityto
create and manage nodes for which they publish data. Devices
at the server layer can subscribe to these event nodes, or they
can directly address messages to the gateway. For example, a
gateway in a classical wireless sensor network would publish
sensor values for each sensor node in the system each of
which is represented by a corresponding event node and accept
configuration messages from Internet agents.

Server

Server

Server

Mobile Device

Gateway

Gateway

Agent

Agent

Agent

Web Services

Domain

Data

Handler

Notification

Agent
Data Viewing

Map

Server

Registration

Agent

Sensors

Sensors

Fig. 3. Sensor Andrew services provided by multiple servers.

E. Server Layer

The server layer consists of the XMPP servers along with
various client applications calledagents. The purpose of the
server layer is to provide a simple means for applications
running on desktop class machines to communicate with each
other. Applications can not only subscribe to event nodes,
but they can also publish their ownmeta-events. These meta-
events can then be consumed and used by others.

F. Actuation Support

Actuation in Sensor Andrew must deal with security and
resource sharing. Actuation takes place as a split-phase opera-
tion with an action signal followed by a completion callback.
First, gateway devices that support actuators are requiredto
subscribe to their respective actuator event nodes. An agent
can publish an actuation request to the event node which is
then translated by the gateway’s adapter into a native command
for the actuator. Once the actuator operation has completedits
transaction, a new state value is published back to its event
node. An interested agent could subscribe to this event node
to confirm the requested transaction.

IV. SYSTEM COMPONENTS

We now describe the detailed implementation of the various
components described in the previous section.

A. Sensors Over XMPP (SOX)

We have built a Sensor Over XMPP (SOX) library as a layer
on top of XMPP that provides a set of common tools as well as
a uniform interface for all Sensor Andrew applications. Table I
shows the current SOX command-line tools that wrap various
API calls for simple use on any Unix-based computer. In
order to support a variety of hardware platforms and operating
systems, we have implemented the SOX library in C, .NET,
LabVIEW, Java and Python. Figure 5 shows an example of
a SOX message generated by a FireFly node, is a low-cost
wireless sensor network platform capable of data acquisition,
processing and multi-hop mesh communication.

B. SOX Adapters

Adapters are pieces of software that convert transducer data
into SOX compatible messages. These interfaces run on the
gateway layer collecting and formatting information from the
transducer layer. The following list outlines a subset of our
current Sensor Andrew adapters and what host devices they
operate on:

• A Leech is an agent that polls existing legacy databases
searching for new entries for specified devices and pub-
lishes these to an event node. For many legacy systems
with proprietary communication protocols, pulling in-
formation from a database is one of the few practical
solutions for accessing the information. Currently, the
Leech extracts data from Enersure [18] devices, from
Trendpoint Systems, as well as various BACnet devices
on campus.

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 6

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Various Sensor Andrew transducer devices: (a) BacNET CO2 sensor as part of a buildings HVAC system (b) Hobo temperatureand humidity sensor
(c) FireFly sensor node (d) FireFly gateway (e) Enesure circuit breaker power metering system (f) FireFly power outlet sensing and control node (g) Watts-Up?
Pro outlet energy monitor (h) The Energy Detective home energymonitoring system. Note in (d) the Sensor Andrew privacy policy sticker required on any
devices placed in public locations.

SOX command Function
sox_create_event_node Create an event node for future

data publishing
sox_delete_event_node Remove an event node
sox_add_publisher Add access for a user or group

to publish
sox_add_subscriber Add access for a user or group

to subscribe
sox_authenticate Check if user/group has access

to a node
sox_admin_create_user Create a user account
sox_admin_delete_user Delete a user account
sox_admin_create_group Create a group
sox_admin_delete_group Delete a group
sox_add_member Add user to a group
sox_remove_member Remove a user from a group
sox_get_last_data_from_node Return last data from an event

node
sox_publish Publish data to node
sox_subscribe_example Subscribe to node dumping its

data to the console
sox_send_msg_to_user Send a message directly to a

a user without pub-sub

TABLE I
SOX COMMAND LINE TOOLS. THESE ARE WRAPPERS AROUND THE MAIN

SOX API FUNCTIONS.

• The FireFly Sensor Network is comprised of wireless
802.15.4 devices [19] shown in Figure 4(c). Gateways,
as shown in Figure 4(d), have adapters that execute on
a Gumstix embedded linux board which bridges to the
sensor network using RS232 serial communications. The
adapter running on the FireFly node’s gateway must
facilitate bi-directional communication. Commands from
SOX agents configure the network while outgoing sensor
values are published.

• The Energy Detective (TED)produced by Energy Inc,
shown in Figure 4(h) is a device used for monitor-
ing home electrical consumption at the main household
breaker. The adapter either runs on a PC or an embedded
linux device wired directly to the TED.

• Watts-Up? PRO is a socket-level energy measurement
device with a serial port for exporting data. This adapter
runs on an embedded linux host or nearby PC.

• HOBO by Onset Computers, shown in Figure 4(b), is
a low-cost USB or serial device that typically connects
directly to a desktop computer. It is ideal for capturing
environmental data near office computers around cam-
pus. The adapter is a Java daemon that executes in the
background of Windows and Linux computers.

• Other devices such as mobile inertial sensors, desktop
notification devices and IR transducers have been used
in past experiments. Many short-term applications simply
pass data to the SOX command line tools as an easy and
effective way to get devices online.

1) XMPP Server:Sensor Andrew is designed to operate
using a standard XMPP server that supports messaging as
well as event publishing. For this reason, there are multiple
viable enterprise class servers that can support our architecture.
In our current deployment, we are using theOpenfire [20]
server from Ignite Real-Time Software. Openfire is an open-
source server that provides a web interface for configuration
and management. This interface allows us to quickly view
gateways that are currently active and manage users. Access
control for users is provided through access control lists

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 7

<DeviceInstallation id="0x000003A2" type="FIREFLY"

 timestamp="2008-05-10T10:23:00">

 <TransducerInstallation name="Light" id="0001" >

 <TransducerValue value="100"/>

 <TransducerDescription

 Manufacturer="Advanced Photonics Inc"

 PartNumber="PDV-P9003"

 MinValue="0.00" MaxValue="1024.0"/>

 </TranducerInstallation>

 <TransducerInstallation name="Temperature" id="0002" >

 <TransducerValue value="57.6"

 timestamp="2008-05-10T10:23:00"/>

 <TransducerValue value="58.1"

 timestamp="2008-05-10T10:21:30"/>

 </TranducerInstallation>

 <TransducerInstallation name="Voltage" id="0004" >

Fig. 5. SOX message for a FireFly node publishing data.

(ACLs) associated with users, groups and event nodes. XMPP
supports methods allowing one client to determine and modify
the permissions of another client. Security is managed as
whitelists and blacklists associated with users and individual
event nodes. Entries into each list are in full JID format (event
nodes can have JID formatted addresses) allowing access
control across multiple trusted servers. The details of how
the server manages access control are outside the scope of
this paper, but the interested reader can find more information
about access control in the XEP-0074 extension of XMPP.

C. Data Handler

The Data Handler is a web application that oversees all
read/write activity on the transducer registry and transducer
value archive. At the core, the Data Handler contains the
registry and archive schema, business rules, and read/write
functions. It was implemented in an object-relational mapping
(ORM) framework in order to meld an object-oriented model-
view-controller (MVC) library with a relational database.We
chose to use the Python web application framework Django
because of the many free components available and the ease of
deploying the entire application–from database tables to URL
re-writing rules–on several platforms, including the Google
App Engine. Using this library, several tools were created to
support the core interactions with the registry and archive.

1) Schema:The transducer registry and data value archive
schema defines the relationships among the numerous kinds of
metadata that Sensor Andrew supports. As shown (at a high
level) in Figure 6, the schema describes how a transducer is
installed on a device at a location in order to measure one or
more data values. The transducer installation (or TI) consists
of a particular instance of a transducer, which is of a type
that senses a particular physical phenomenon. The transducer
is installed on a device (which typically performs the analog-
to-digital conversion and communicates with the gateway or
acts as a gateway itself). The transducer and device can
be situated within arbitrary-depth location hierarchies,which
can support building-floor-room schemes as well as more
complex space divisions, and are also referenced to a common
longitude/latitude/altitude coordinate system. Transducers can

also be ”tagged” as relating to one or more physical ”systems”,
denoting what different users consider the transducer to be
measuring or controlling, such as a zone within a heating
system or a circuit in a lighting system. Finally, one or more
data values are linked to a device timestamp. Storing this
transducer metadata in a structured fashion is important, as
different users might need to query the system in different
ways, such as finding temperature sensors in a particular
building, investigating which device is currently hostinga
particular actuator, or checking to see which of the user’s
sensors have not reported values recently.

2) Registry interface:Most users will not find it practical
to build their own interface to the registry and archive, so
a web interface was constructed to allow browsing, editing,
and creating transducer and device metadata records in the
registry. It is intended to help users to understand how to
map metadata values that they must gather from various
specification sheets and configuration files onto the schema.
The registry interface will guide them through the data entry
process in order to lower the barrier to participation in the
Sensor Andrew network. It also allows users to browse and
search existing transducers and archived data.

3) Web services API:For users wishing to build custom
applications that need to read or write transducer metadatain
the registry, a web services API exposes the Data Handler’s
functionality to HTTP and XMPP requests. This API supports
transducer discovery queries, requests for detailed transducer
metadata, and registry record creation and updating, as well as
serving transducer data values from the archive. Results can be
formatted in XML, CSV, or human-readable HTML, as well
as graphic charts for time-series data. A version of the web
service’s HTTP URI-based commands is mapped to an XMPP
API, allowing XMPP clients to interact with the registry and
archive without needing an HTTP library.

4) Historical data logging: While some users will use
their own XMPP clients to log transducer data for historical
analysis, this is considered such a core feature that it is
offered as part of the Data Handler. If this option is selected
when registering the transducer installation, the Data Handler
subscribes to the XMPP event node for that transducer and
archives all data values published to the event node. The
historical data is then available via the web interface or API
to only those users whose JIDs are authorized to subscribe to
the event node from which the data originally came.

5) XMPP server integration:The Data Handler inherits the
XMPP server’s permissions model by requiring users to log
in with a valid JID, which it then uses to authenticate them
with the XMPP server. This also allows the Data Handler to
send requests to the XMPP server on the user’s behalf, such as
creating event nodes of which the user, not the Data Handler,is
the owner. The Data Handler can also publish ”node creation”
events on the administrative event node, as well as sending
and receiving other XMPP messages and commands.

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 8

Device

Manufacturer

Device

Specs

Physical

System

Location

Reference

Point

Area

Transducer

Transducer

Type

Physical

Phenomenon

Transducer

Scaling

Device

Connection
ProtocolTransducer

Specs

DeviceTransducer Location

Transducer

Installation

Transducer

Instance

Data Value
Data

Timestamp

Device

Installation

Device

Instance

Data

Location

Coordinates

Fig. 6. Sensor Andrew Transducer Registry Schema.

Fig. 7. SenseViewscreenshot displaying sensor values for a node on campus.

D. Server Layer Agents

We next describe example applications that run as SOX
agents subscribed to various event streams. While ongoing,
these are two early applications.

1) SenseView: SenseViewis a tool that enables hierarchical
and visual browsing of physical location information and
sensor values. Visual maps can be created by composing
polygons, each with the ability to link to a different view.
Access to real-time data is provided by directly subscribing
to event nodes captured as links in the map. The event nodes
also provide attribute information describing the sensors. Map
information is fetched from a dedicated map server with its
own access control lists based on SOX authentication. Much
like a web browser with hyperlinks,SenseViewallows a user to
traverse through different views by clicking on different parts
of the map. The user can select and subscribe to available
event nodes given the correct permissions. Once subscribed
to a data source,SenseViewgraphically displays data as it is
being published to the XMPP server.

Figure 7 shows a screenshot ofSenseViewwith the top-level
campus map displayed. Maps can be customized based on
address and namespace providing application specific views.
It is also worth noting that event nodes are not required to be
literally sensors. They could also be higher level meta-events
as described in the next section.

2) Event Notification System:The event notification system
is an application that allows events to be combined in order
to form more complex events. For example, afloor-fire
event could be defined as the combination of multiple tem-
perature sensors located throughout the floor raising above
a particular threshold. Users can interact with the system
to combine primitive event values together using Boolean
operators to develop meta-events. These meta-events can then
be published back to the XMPP server where they are eligible
to be combined with additional events forming an event
hierarchy. Our current implementation of this event system
has an additional client that is responsible for monitoringa
subset of events and notifying users via email, text message
or a webpage when selected conditions change.

E. Security and Privacy

Given the physical nature of the information collected and
exchanged throughout Sensor Andrew, one has to be naturally
concerned about security and privacy. Our privacy mechanisms
range from technological solutions, such as encryption, to
informal policies such as proper information distributionto
the social community and labeling of devices. The Principal
Investigator of each project that is part of Sensor Andrew
is required to sign our privacy policy and go through a
checklist to ensure that they are compliant with the privacy
policy as well as the university’s Interanl Review Board (IRB)
requirements. Devices placed in public areas must clearly
display what information they are capturing and where further
information about the project can be located.

Furthermore, built-in security measures in the architecture
are extremely important. All server-layer communication takes
place over XMPP using SSL connections. All client applica-
tions are also required to authenticate with a user-name and
password. Any guest access to the network is automatically
restricted by the access control lists to anonymous data that
could not be used to identify individuals. Whenever possible,
security is used within individual subnets. For example, our
example wireless sensor networking deployment uses encryp-
tion for all infrastructure communications.

F. SOX Specific Enhancements

Anytime a system leverages existing components there are
bound to be technical as well as design incompatibilities. So

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 9

far in this section, we have described many of the technolo-
gies selected for each layer. Now we summarize some of
the enhancements to these technologies required for Sensor
Andrew. We developed the SOX library and data schema
required to use XMPP for sensor data. This included an
extensive set of adapters required for interfacing with trans-
ducers. Modification of the XMPP server was required to add
group permissions to publish-subscribe event nodes since by
default access control only applies to users. We are suggesting
this ACL addition along with our schema as part of a SOX
extension protocol to the XMPP community. As described in
Section V-B, we built a lightweight XMPP message protocol
for compatibility with highly resource-constrained devices like
wireless sensor nodes. We developed an extensive set of core
SOX agents for registration, discovery, logging and viewing of
sensor data. We also provide application agents for tracking
mobile devices and alerting users of events. The Sensor
Andrew infrastructure allows the addition of new transducers
to seamlessly work with existing applications.

G. Limitations

This subsection addresses some of the limitations in the
Sensor Andrew architecture. Our requirement of transaction
logging forces all messages to go through a server even if the
action could be completed with a point-to-point transaction.
To help alleviate bottlenecks, a unique server can be used
for a single domain of interest. For high-speed sensor data,
there is currently no database logging capability. A transaction
record exists, but the bandwidth of streaming data would be
too much burden on the main message server. Our current
permissions model does not support fine grained access control
over individual record elements; it only provides access control
at the event node level.

V. EARLY EXPERIENCES

In this section, we evaluate various aspects of the Sen-
sor Andrew architecture. The goals identified in Section II
have been largely satisfied by the various components in
the architecture. We have provided a communication layer
which can support a large number of clients and continue
to scale through distributed server addressing. Leveraging
existing enterprise servers makes deployment and management
of this infrastructure highly configurable and easy to manage.
The generic nature of our XML-based messages allows for
extensibility making it simple to extend our schemata for new
devices. The architecture supports privacy and security through
the use of encrypted connections and access control for users
and groups.

Given these solutions, we now discuss where our architec-
ture fits into the full design trade-off space. Our design tends
to be more push-oriented and hence slightly more centralized
compared to a fully distributed configuration. A push archi-
tecture has advantages when large volumes of requests are
made to resource-constrained devices. These devices could
have large latencies and restrictions on how often they can be
sampled over any particular time period. A pull architecture

0 20 40 60 80 100
0

20

40

samples

(w
at

ts
)

0 20 40 60 80 100
0

20

40

0 20 40 60 80 100
0

100

200

(lu
x)

Power (Watts)
Light Intensity (lux)

Fig. 8. Power values from a circuit breaker that is feeding lights to a
conference room, accompanied by light intensity measurements of the same
space.

that polls devices on demand would be ideal if few and/or
sporadic requests are made to devices. This could potentially
be more energy-efficient if, for example, the push architecture
was transmitting data without any active subscribers. If re-
quired, XMPP does have functionality to initiate out-of-band
communication and can be used to support pull operations.

A. Building Energy Monitoring

The first application we present focuses on accomplishing
energy savings through non-intrusive electrical load monitor-
ing of a building and user feedback. The premise here is that
better decisions can be made towards saving energy if the
operational schedule of most of the appliances in a buildingis
known. One way of determining this schedule is to install elec-
trical meters on each of the appliances and then have them all
networked together and reporting to a central location. Another
approach is to install a single electrical meter at the main feed
of the building, and by making use of signal processing and
statistical pattern recognition techniques, decompose this total
load into the individual appliances composing it. The project
we describe follows the latter path, with the rationale thatthe
approach reduces hardware and labor costs, while possibly
providing the same results, as shown in [21].

For this application a number of different commercial and
research-grade sensing devices are used: (1) Two electrical
panels located in the Porter Hall building on the campus
were retrofitted with EnerSure [18] electric circuit monitors,
shown in Figure 4(e). These devices acquire different power
metrics from all the individual circuits in the panel, and can be
polled via TCP/IP or RS-232 using Modbus. (2) A number of
FireFly power sensing nodes, shown in Figure 4(f), are used
to measure the consumption of separate appliances throughout
the building, as a way to obtain ground truth data. (3) Other
power meters are used intermittently to obtain load profiles
for certain appliances and/or as ground truth sources. (4)
Lastly, there are a few light intensity and temperature sensors
scattered across different rooms in the building, which can
provide useful information that will help the disaggregation
task (e.g. if a light is turned on, it will manifest itself as both
a power draw and as a light intensity change).

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 10

2

1

0

Gateway

Agent

m

m

Location Agent

Neighbor

List Msg.

Mobile

Proxy

Gateway-2

1

2

0

3

m

Mobile

Proxy

Neighbor

List Msg.

Location

Location

Pub/Sub

Server

Fig. 9. Mobile node communicating with Sensor Andrew locationagent
using a wireless sensor network.

Load disaggregation is a difficult task, and the non-intrusive
approach requires efficient use of the hardware and data that
is already available in the building. Sensor Andrew provided
valuable resources to help achieve the goals of this project
mainly by allowing easy access to the different sensors located
throughout the building which were put in place by other
researchers for other projects. Additionally, Sensor Andrew
acted as a central data and metadata repository for all the
metering records which the project generates. Data from the
EnerSure devices were being acquired by a Perl polling-agent
[22] and logged in a MySQL database. The Leech adapter
was used to make data from these devices available to the
Sensor Andrew network. Similarly, XMPP adapters were used
to publish data from the other power meters (FireFly, Watts
Up? PRO, The Energy Detective), as well as the environmental
sensors (HOBO, FireFly).

The graph presented in Figure 8 shows power measurements
obtained from an electrical circuit in the building that is
feeding the lights of a room, overlapped with the readings
obtained from a light intensity sensor placed in the same space.

B. Wireless Sensor Networking

In this section, we describe an effort that both senses
the environment and provides a pervasive communication
infrastructure for mobile devices. One promising application of
the network is the ability to track the location of mobile sensor
nodes. These nodes could either be carried by students as part
of a social network or tags attached to valuable equipment for
asset tracking.

Multiple buildings across campus have been outfitted with
FireFly wireless sensor networking nodes. Each node operates
from two D-cell batteries and communicates over multiple
hops to a powered gateway that has access to the campus
network. FireFly nodes are primarily used to collect and
publish light, temperature, acceleration, noise level, battery
voltage and network topology values once every four minutes
using the SAMPL [23] networking protocol. SAMPL also
provides a generic communication interface allowing nodes
to directly query the infrastructure nodes as well as send

abbreviated SOX messages to and from Sensor Andrew via the
gateway. Each gateway manages between 20 and 32 nodes that
form a subnet. As a mobile node moves through campus, it
can sendpingmessages to identify nearby infrastructure nodes.
SAMPL’s lightweight SOX message type allows a mobile node
to securely send its password, an arbitrary 100 byte payload
and a destination JID to the gateway. As shown in Figure 9,
the gateway can login on behalf of the mobile node and
forward this data to its destination. The message includes a
disconnect timeout so that reply messages can be forwarded
back to the mobile device. As is depicted in Figure 9, if
the mobile node is between two subnets, then both gateways
will login on the device’s behalf and arbitrate messages. This
provides an effective handoff mechanism. Also, since XMPP
provides presence information when a user logs in, agents can
be notified when a mobile node becomes connected to the
network.

Based on motion activity levels derived from an accelerom-
eter, mobile nodes can aggregate neighbors and transmit a
message through the sensor network to a Sensor Andrew
location agent. This location agent will then use the neighbor
list and receive signal strength information from the mobile
node to provide a coarse-grained location of the mobile device
which it can publish back to the mobile devices’ event node. In
turn, other interested agents can subscribe to this information
to identify the location of any number of mobile devices.

VI. CONCLUSIONS ANDFUTURE WORK

In this report, we presented a multi-disciplinary campus-
wide scalable sensor network called Sensor Andrew that is
designed to host a heterogeneous mix of sensing and low-
power applications. We presented the requirements, goals
and design tradeoffs associated with such large-scale het-
erogeneous sensing and actuation systems. Specifically, the
goals of Sensor Andrew are to support ubiquitous large-scale
monitoring, operation and control of infrastructure in a way
that is extensible, easy to use, and provides security while
maintaining privacy. Our architecture provides a complete
communication framework allowing new projects to easily
be integrated with existing projects so as to extend overall
capabilities. A three-tiered architecture allows for easeof man-
agement, and facilitates security and privacy controls. Open-
source software customized and integrated with our extensions
enables seamless and scalable communications across layers.

As future work, we plan to enhance this architecture by pro-
viding support for end-to-end real-time applications to better
support industrial automation. This would include resource-
reservations on various communication and computational
components along with prioritized message scheduling. Efforts
are already underway to streamline the interface for register-
ing, configuring and querying sensors through web services.
We plan to continue development of tools and applications as
we continue to explore real-world sensing and actuation appli-
cations making datasets publically available for the research
community.

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 11

VII. A CKNOWLEDGMENTS

This work would not be possible without the help and
support of many Sensor Andrew project members. In particular
we would like to thank Burcu Akinci, H. Scott Matthews,
Bruno Sinopoli, Priya Narasimhan, Matthew Sanfilippo, Anu
Pradhan, Pine Liu, Karthik Lakshmanan, and Saurabh Taneja.
This work was funded in part by the Pennsylvania Infras-
tructure Technology Alliance. Sensor Andrew is a project
of CENSCIR, the Center for Sensed Critical Infrastructure
Research at the Institute for Complex Engineering Systems
(ICES) at Carnegie Mellon University. We would also like to
thank Bosch Research and Technology Center for their support
for the electricity monitoring project.

REFERENCES

[1] Mainwaring A., Polastre J., Szewczyk R., Culler D., Anderson J.
Wireless Sensor Networks for Habitate Monitoring.ACM International
Workshop on Wireless Sensor Networks and Applications, 2002.

[2] K. Lorincz ,M. Welsh. A robust, decentralized approach to rf-based
location tracking. Technical Report TR-04-04, Harvard University, 2004.

[3] Culler D., Dutta P., Tien Ee C., Fonseca R., Hui J., Levis P., Polastre J.,
Shenker S., Stoica I., Tolle G., Zhao J. Towards a Sensor Network Ar-
chitecture: Lowering the Waistline.Proceedings of the Tenth Workshop
on Hot Topics in Operating Systems (HotOS X), 2005.

[4] Heidemann J., Silva F., Intanagonwiwat C., Govindan R., Estrin D.,
Ganesan D. Building Efficient Wireless Sensor Networks withLow-
Level Naming.SOSP, 2001.

[5] Montenegro G., Kushalnagar N., Hui J., Culler D. Transmission of IPv6
Packets over IEEE 802.15.4 Networks.Internet Engineering Task Force
RFC 4944, 2007.

[6] Santanche A., Nath S., Liu J., Priyantha B., Zhao F. . SenseWeb:
Browsing the Physical World in Real Time.Demo Abstract, IPSN, 2006.

[7] Sheth, A. Henson, C. Sahoo, S.S. Semantic Sensor Web.IEEE Internet
Computing, 2008.

[8] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.Project Aura:
Toward Distraction-Free Pervasive Computing.IEEE Pervasive Com-
puting, 2002.

[9] Laibowitz M., Gips J., Aylward R., Pentland A., ParadisoJ. A Sensor
Network for Social Dynamics.International Conference on Information
Processing in Sensor Networks (IPSN), 2006.

[10] Want, A., Jones, A., Hopper, A. A New Location Techniquefor the
Active Office. IEEE Personal Comm., 1997.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong.TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks.Operating Systems
Design and Implementation (OSDI), 2002.

[12] http://www.bacnet.org/ (viewed 10/21/2008).
[13] http://www.obix.org/ (viewed 10/21/2008).
[14] Woo Suk Lee, Seung Ho Hong. KNX-ZigBee gateway for home

automation.IEEE International Conference on Automation Science and
Engineering, 2008.

[15] Neugschwandtner M., Neugschwandtner G., Kastner W. Web Services in
Building Automation: Mapping KNX to oBIX.5th IEEE International
Conference on Industrial Informatics, 2007.

[16] Gibbons, P. B., Karp, B., Ke Y.,Nath, S., Seshan, S. . IrisNet: An
Architecture for a Worldwide Sensor Web.IEEE Pervasive, 2003.

[17] http://www.xmpp.org/ (viewed 4/12/2008).
[18] http://www.trendpoint.com/EnerSure.html (viewed 10/21/2008).
[19] Rowe A., Mangharam R., Rajkumar R. FireFly: A Time Synchronized

Real-Time Sensor Networking Platform.Wireless Ad Hoc Networking:
Personal-Area, Local-Area, and the Sensory-Area Networks, CRC Press
Book Chapter, 2006.

[20] http://www.igniterealtime.org/projects/openfire/ (viewed 4/12/2008).
[21] Shaw S., Leeb S., Norford L., Cox R. Nonintrusive Load Monitoring and

Diagnostics in Power Systems.IEEE Transactions on Instrumentation
and Measurement, 57(7):1445–1454, 2008.

[22] http://www.klein.com/thermd (viewed 10/21/2008).
[23] Rowe A., Lakshmanan K., Rajkumar R. . SAMPL: A Simple Aggre-

gation and Message Passing Layer for Sensor Networks.International
Wireless Internet Conference, WICON, 2008.

CMU-ECE-TR-08-11 Copyrightc© 2008 Carnegie Mellon University 12

	Introduction
	Related Work
	Paper Organization

	Design Goals and Tradeoffs
	Challenges and Approach

	Sensor Andrew Architecture
	Communication Requirements
	Communication
	Transducer Layer
	Gateway Layer
	Server Layer
	Actuation Support

	System Components
	Sensors Over XMPP (SOX)
	SOX Adapters
	XMPP Server

	Data Handler
	Schema
	Registry interface
	Web services API
	Historical data logging
	XMPP server integration

	Server Layer Agents
	SenseView
	Event Notification System

	Security and Privacy
	SOX Specific Enhancements
	Limitations

	Early Experiences
	Building Energy Monitoring
	Wireless Sensor Networking

	Conclusions and Future Work
	Acknowledgments
	References

