
A Simple Low Cost Color Vision System∗

Anthony Rowe Charles Rosenberg Illah Nourbakhsh

Electrical and Computer Engineering Computer Science Department Robotics Institute
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

agr+@andrew.cmu.edu chuck+@cs.cmu.edu illah+@ri.cmu.edu

Abstract

In this paper we describe a functioning prototype of a sim-
ple low cost system which we have constructed and can per-
form a simple color blob tracking task at 16.7 frames per
second. This system utilizes a low cost CMOS color cam-
era module which eliminates the need for a separate frame
grabber and all processing is performed by a high speed,
low cost microcontroller. The resulting system makes it pos-
sible to utilize simple color vision algorithms in applica-
tions, like small mobile robotics, where a traditional vision
system consisting of a separate camera, frame grabber, and
high speed computer would be prohibitive.

1 Introduction

There are many examples in the literature of simple com-
puter vision algorithms proving to be extremely useful in
a variety of applications [2], [4], [6], [8], [9]. However
the usefulness of these algorithms is often limited by the
cost and complexity of the hardware needed to implement
them. Such systems traditionally consist of a camera, a
frame grabber, and an associated computer to interface to
the frame grabber and run the algorithm. Recent hardware
developments now make it possible to greatly simplify and
reduce the cost of these systems. The two developments
which we take advantage of are low cost CMOS color cam-
era modules and high speed, low cost microcontrollers. A
major advantage of CMOS versus CCD camera technology
is the ability to integrate additional circuitry on the same
chip as the sensor itself. This makes it possible to integrate
the analog to digital converters and associated pixel grab-
bing circuitry so a separate frame grabber is not needed. As
microcontrollers have become more prevalent their cost has

∗This is a revised version of the tech sketch paper accepted to CVPR
2001. A small number of revisions were made in October 2001 to re-
flect the improved system performance achieved in the month following
the original paper submission and correct minor technical errors.

decreased and their abilities have increased. This makes it
possible to perform simple pixel processing “on the fly” as
the pixel values are scanned out of the camera and so a full
frame buffer is not necessary. This suggests that it should
be possible to team a CMOS camera chip with a low cost
microcontroller and implement a simple vision system. We
have constructed a functioning prototype system based on
this idea which we describe in the remainder of this paper.

2 System Details

Our vision system is designed to provide high-level infor-
mation extracted from the camera image to an external pro-
cessor that may, for example, control a mobile robot. An ex-
ternal processor first configures the vision system’s stream-
ing data mode, for instance specifying the tracking mode
for a particular bounded set of RGB values. Then, the vi-
sion system processes the data in real time and outputs high-
level information to the external consumer. The following
sections describe the details of the prototype system which
we have implemented.

2.1 Hardware System

Our prototype system is a three chip design. The first two
chips are the OV6620 CMOS camera and the SX28 mi-
crocontroller. The third chip is simply a level shifter for
the RS232 serial data. To keep the design simple, the data
bus, synchronization pins and configuration bus are directly
connected from the OV6620 to the SX28 without the aid
of any glue logic. The SX28 waits for incoming data to
stream from the camera and processes it in real time. It
then relays the extracted high level information through a
Maxim MAX232CPE chip to the outside world via a 115.2
kilobaud serial port implemented in software. We currently
have a working stuffed PC board prototype that is 1.75”×
2.25” and less than 2” deep with the camera module and

1



Figure 1: The microcontroller board mated with the CMOS camera module. A standard size hobby servo is shown for scale.

lens attached, see Figures 1 and 2. The system operates at 5
volts and draws about 200 milliamperes of current.

The image input to the system relies on an Omnivision
OV6620 CMOS camera on a chip. This is mounted on a car-
rier board which includes the CMOS camera chip, a 4.9 mm
F2.8 lens and a few supporting passive components such as
a 17 MHz clock crystal. By itself, the board is free running
and will output a stream of 8 bit RGB or YUV color pixels
along a 8 or 16 bit wide data bus. Synchronization signals
(including a pixel clock) are then used to read out data and
indicate new frames and horizontal lines. The CMOS im-
age array contains 101,376 pixels and supports resolutions
up to 352× 288 with a maximum refresh rate of 60 frames
per second. CMOS camera parameters such as color satu-
ration, brightness, contrast, white balance, exposure time,
gain and output modes are programmable using a standard
serial I2C interface. To utilize video data from the OV6620
one must properly initialize the camera and then must be
able to remain synchronized with each of its output signals.

The microcontroller that we use to process the video
data is a Ubicom SX28 operating at 75 MHz, model num-
ber SX28AC75/DP. It is housed in an easy to solder stan-
dard 28 pin narrow DIP package. The SX28 operates at 75
MIPS, has a 2048 word flash programmable EPROM, and
136 bytes of SRAM. Although it has few hardware periph-
erals, it has fast and deterministic interrupts as well as three
flexible multi-bit I/O ports that allow software to emulate
“virtual” peripherals.

2.2 Software System

The main challenge that we had to overcome in develop-
ing the software for this system was the small amount of
RAM available in most microcontrollers. In our case, with
only 136 bytes of RAM it is impossible to buffer an en-
tire image. In fact, we had to selectively buffer only part

of each image row that is streamed from the camera. We
chose to buffer 80 bytes of image data and use the remain-
ing 56 bytes of RAM for processing and other operations.
With this mixture we could evenly sample a row of data
and had just enough memory left to handle all other opera-
tions. Each time the camera sends a row, the 80 byte buffer
gets filled with a selection of 20 RGBG pixel packets from
the CMOS sensor pixel array. By carefully selecting which
bytes of data we buffer and reusing the less important red
and blue data, we can effectively get 80 different pixels of
horizontal resolution. Since all of the processing is done
on a per row basis, the vertical resolution is limited to 143
pixels only by the camera sensor itself. Potentially many
different operations could be performed on each 80 pixel
group of data. In this first prototype we decided to imple-
ment a simple color blob tracking function.

The color blob tracking algorithm allows the user to en-
ter a minimum and maximum bound for each of either the
three RGB or YUV channel values, depending on how the
camera is configured. Each pixel in the buffer is compared
against the user defined bounds. The coordinates of the pix-
els that fall within the color bounds are compared against
previously stored coordinates to generate a bounding box.
This simple method only requires that the SX28 store the
upper left x1, y1 Cartesian coordinate and the lower right
x2, y2 coordinate that enclose pixels which satisfy the color
bounds. A running count stores how many pixels actually
fell within the color boundaries. Once the entire frame has
been processed, some additional post processing operations
are done. In particular, a scaled ratio between the total sum
of pixels within the color boundaries and the actual area cal-
culated by the bounding box is computed. This value can
then be used as a confidence measure related to whether
there is only one compact object being tracked or multiple
small objects. The system finally returns the x1, y1, x2, y2,
size and confidence values to the user over the serial port.

2



Figure 2: Detail of the assembled microcontroller board, 1.75”× 2.25”. Visible are the microcontroller, the RS232 level
shifter, and the clock oscillator.

In this vision system, we also include a mean color func-
tion. When used in conjunction with the other features such
as windowing, described below, the mean can be used as a
building block for a motion detection algorithm or for de-
termining the color of an object at a specific location in the
field of view.

The vision system uses a human readable ASCII com-
munication protocol that allows the user to communicate to
it interactively from a serial terminal program. A less ver-
bose mode can be enabled to reduce serial port traffic when
communicating directly to a computer or another microcon-
troller. When communicating to a computer, the system can
also dump an entire raw image via the serial port. This can
be used for diagnostic purposes or higher resolution pro-
cessing. Due to the high data rate required for such a dump
this can not occur in real time. Instead, the board will send
two columns of image data per frame that the camera trans-
mits. At the current default frame rate and maximum win-
dow size of 80× 143 this takes about 5 seconds for a full
frame dump. Another useful feature of the system is the
ability to do arbitrary windowing in software. This window
can be set and changed at any time and applies to all of the
image processing functions. The final three built in features
include: a noise filter mode, a one shot polling mode, and
a modify camera settings command. The noise filter mode
makes the color tracking algorithm more robust by requir-
ing two adjacent pixels to be in the specified color range in
order to change the bounding box. This added robustness
however could cause small objects to be lost. The one shot
polling mode, when enabled, causes each function to only
return one packet of data instead of streaming packets as the
board processes them. This can be used to help less pow-
erful microcontrollers keep synchronization with the data
or it could facilitate changing camera parameters between
frames. The camera settings control command allows the
user to change the frame rate, toggle white balance, toggle
gain, switch between RGB and YUV modes or set any other

of the OV6620’s internal register values.
By default, all communication with the board is fixed

at 115.2 kilobaud, but 38.4 kilobaud can be selected via a
jumper setting. The code was all written in C and compiled
on ByteCraft’s SXC v2.0 compiler. When compiled the cur-
rent firmware requires 2035 words of ROM and at some
points utilizes all but 1 byte of the SX28’s RAM. Needless
to say the firmware had to be coded very carefully.

2.3 Performance

We have not yet performed any extensive quantitative eval-
uation, but we do have some preliminary ad hoc empirical
data. Our final vision system operates at a maximum rate
of 16.7 frames per second with a maximum resolution of 80
× 143. Using a Java graphical user interface to display the
data, we where able to dump a frame and pick an object to
track. In one case this object was a blue 14”× 15” × 10”
recycling bin. Once the object’s color bounds where sent to
the vision system, it confidently tracked the bin up to 35 feet
away. We have also successfully tracked objects as small as
2”× 2” at a distance of 10 feet.

3 Related Work

The many hardware and software systems that have been
constructed by the computer vision community are too nu-
merous to list here. However, some well known systems
have had similar goals to the work described here. The
Cognachrome vision system [7] which consists of custom
frame grabber and processing hardware has functionality
most similar to the system we describe here. This system
is definitely more capable than the system described here,
it can track 25 objects at 60 Hz. However the system de-
scribed here is significantly less complex and physically
smaller making it more attractive for applications like on

3



board vision for small mobile robots. The MIT Cheap Vi-
sion Machine [1] has a similar overall architecture to the
Cognachrome system and is similarly more capable than the
system described here, but is also significantly more com-
plex. A number of systems [2], [3], [5] consist of highly
optimized software systems which rely on standard desktop
computer systems to process image data. The system here is
unique in that it hopes to target applications where includ-
ing the capabilities of a standard desktop machine would be
prohibitive because of size, cost, or power requirements. In
general, although the system described here is not as capa-
ble as other systems described in the literature, our goal was
to construct as minimal system which was capable enough
to be useful in a variety of simple applications.

4 Conclusions and Future Work

The goal of this work was to evaluate the feasibility of con-
structing a minimal vision system consisting solely of a mi-
crocontroller and a CMOS camera chip which can imple-
ment simple vision algorithms at a useful frame rate. We
believe we have demonstrated this feasibility by construct-
ing a functioning prototype system which can successfully
find blobs of a specified color in an image at 16.7 frames per
second. We plan to further evaluate this system by using it
as a sensor to guide a small mobile robot.

There is a lot of other functionality that we would like to
add to this system, such as the ability to compute color his-
tograms of selected image regions and the ability to do sim-
ple frame differencing. However, this was not possible with
our current system due to the limited program and working
memory space of the microcontroller we used. In the fu-
ture we plan to evaluate a more powerful microcontroller in
the same family, the SX52, which has approximately twice
the RAM and ROM space and is 33% faster than the SX28
model we are currently using. We chose not to use it in this
version because it is only available in a hard to mount sur-
face mount package. With this new processor we hope to
enhance the functionality of this system.

Acknowledgements

NASA-Ames provided ongoing funding for this research.
Thanks also go to Jon Daley, Shane Keil and Jason Slater
who contributed to earlier versions of the vision system.

References

[1] C. Barnhart, The MIT Cheap Vision Machine,
http://www.ai.mit.edu/people/ceb/cvm.html

[2] J. Bruce and T. Balch and M. Veloso, “Fast and In-
expensive Color Image Segmentation for Interactive
Robots,”Proceedings of IROS 2000, 2000.

[3] G. D. Hager and K. Toyama, “The XVision system: A
general purpose substrate for real-time vision applica-
tions,”Computer Vision and Image Understanding, vol.
69, no. 1, pp. 23-27, January 1998.

[4] I. Horswill, “Polly: A vision-based artificial agent,”
The Proceedings of the Eleventh National Conference
on Artificial Intelligence, 1993.

[5] K. Konolige, The SRI Small Vision System,
http://www.ai.sri.com/˜konolige/svs/

[6] L.M. Lorigo and R.A. Brooks and W.E.L. Grimson,
“Visually Guided Obstacle Avoidance in Unstructured
Environments,”Proceedings of IROS 97, pp. 373-379,
1997.

[7] R. Sargent and A. Wright, “The
Cognachrome Color Vision System,”
http://www.newtonlabs.com/cognachrome/

[8] R. Sargent and B. Bailey and C. Witty and A. Wright,
“Dynamic Object Capture Using Fast Vision Tracking”,
AI Magazine, vol. 18, no. 1, 1997.

[9] I. Ulrich and I. Nourbakhsh, ”Appearance-Based Ob-
stacle Detection with Monocular Color Vision”,Pro-
ceedings of AAAI Conference, pp. 866-871, 2000.

4


