
Fair prediction with disparate impact:

A study of bias in recidivism prediction instruments

Alexandra Chouldechova ∗

Last revised: February 8, 2017

Abstract

Recidivism prediction instruments (RPI’s) provide decision makers with an assessment of the
likelihood that a criminal defendant will reoffend at a future point in time. While such instru-
ments are gaining increasing popularity across the country, their use is attracting tremendous
controversy. Much of the controversy concerns potential discriminatory bias in the risk assess-
ments that are produced. This paper discusses several fairness criteria that have recently been
applied to assess the fairness of recidivism prediction instruments. We demonstrate that the
criteria cannot all be simultaneously satisfied when recidivism prevalence differs across groups.
We then show how disparate impact can arise when a recidivism prediction instrument fails to
satisfy the criterion of error rate balance.

Keywords: disparate impact; bias; recidivism prediction; risk assessment; fair machine learn-
ing

1 Introduction

Risk assessment instruments are gaining increasing popularity within the criminal justice system,
with versions of such instruments being used or considered for use in pre-trial decision-making,
parole decisions, and in some states even sentencing1,2,3. In each of these cases, a high-risk
classification—particularly a high-risk misclassification—may have a direct adverse impact on a
criminal defendant’s outcome. If the use of RPI’s is to become commonplace, it is especially im-
portant to ensure that the instruments are free from discriminatory biases that could result in
unethical practices and inequitable outcomes for different groups.

In a recent widely popularized investigation conducted by a team at ProPublica, Angwin et al. 4

studied an RPI called COMPASa, concluding that it is biased against black defendants. The authors

∗Heinz College, Carnegie Mellon University

aCOMPAS5 is a risk assessment instrument developed by Northpointe Inc.. Of the 22 scales that COMPAS
provides, the Recidivism risk and Violent Recidivism risk scales are the most widely used. The empirical results in
this paper are based on decile scores coming from the COMPAS Recidivism risk scale.
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found that the likelihood of a non-recidivating black defendant being assessed as high risk is nearly
twice that of white defendants. Similarly, the likelihood of a recidivating black defendant being
assessed as low risk is nearly half that of white defendants. In technical terms, these findings
indicate that the COMPAS instrument has considerably higher false positive rates and lower false
negative rates for black defendants than for white defendants.

ProPublica’s analysis has met with much criticism from both the academic community and
from the Northpointe corporation. Much of the criticism has focussed on the particular choice of
fairness criteria selected for the investigation. Flores et al. 6 argue that the correct approach for
assessing RPI bias is instead to check for calibration, a fairness criterion that they show COMPAS
satisfies. Northpointe in their response7 argue for a still different approach that checks for a
fairness criterion termed predictive parity, which they demonstrate COMPAS also satisfies. We
provide precise definitions and a more in-depth discussion of these and other fairness criteria in
Section 2.1.

In this paper we show that the differences in false positive and false negative rates cited as
evidence of racial bias by Angwin et al. 4 are a direct consequence of applying an RPI that that
satisfies predictive parity to a population in which recidivism prevalencea differs across groups.
Our main contribution is twofold. (1) First, we make precise the connection between the predictive
parity criterion and error rates in classification. (2) Next, we demonstrate how using an RPI that
has different false postive and false negative rates between groups can lead to disparate impact when
individuals assessed as high risk receive stricter penalties. Throughout our discussion we use the
term disparate impact to refer to settings where a penalty policy has unintended disproportionate
adverse impact on a particular group.

It is important to bear in mind that fairness itself—along with the notion of disparate impact—
is a social and ethical concept, not a statistical one. A risk prediction instrument that is fair with
respect to particular fairness criteria may nevertheless result in disparate impact depending on how
and where it is used. In this paper we consider hypothetical use cases in which we are able to
directly connect particular fairness properties of an RPI to a measure of disparate impact. We
present both theoretical and empirical results to illustrate how disparate impact can arise.

1.1 Outline of paper

We begin in Section 2 by providing some background on several of the different fairness criteria
that have appeared in recent literature. We then proceed to demonstrate that an instrument that
satisfies predictive parity cannot have equal false positive and negative rates across groups when the
recidivism prevalence differs across those groups. In Section 3 we analyse a simple risk assessment-
based sentencing policy and show how differences in false positive and false negative rates can
result in disparate impact under this policy. In Section 3.3 we back up our theoretical analysis by
presenting some empirical results based on the data made available by the ProPublica investigators.
We conclude with a discussion of the issues that biased data presents for the arguments put forth
in this paper.

aPrevalence, also termed the base rate, is the proportion of individuals who recidivate in a given population.
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1.2 Data description and setup

The empirical results in this paper are based on the Broward County data made publicly available
by ProPublica8. This data set contains COMPAS recidivism risk decile scores, 2-year recidivism
outcomes, and a number of demographic and crime-related variables on individuals who were scored
in 2013 and 2014. We restrict our attention to the subset of defendants whose race is recorded as
African-American (b) or Caucasian (w).a After applying the same data pre-processing and filtering
as reported in the ProPublica analysis, we are left with a data set on n = 6150 individuals, of
whom nb = 3696 are African-American and nc = 2454 are Caucasian.

2 Assessing fairness

2.1 Background

We begin by with some notation. Let S = S(x) denote the risk score based on covariates
X = x ∈ Rp, with higher values of S corresponding to higher levels of assessed risk. We will
interchangeably refer to S as a score or an instrument. For simplicity, our discussion of fairness
criteria will focus on a setting where there exist just two groups. We let R ∈ {b, w} denote the
group to which an individual belongs, and do not preclude R from being one of the elements of
X. We denote the outcome indicator by Y ∈ {0, 1}, with Y = 1 indicating that the given indi-
vidual goes on to recidivate. Lastly, we introduce the quantity sHR, which denotes the high-risk
score threshold. Defendants whose score S exceeds sHR will be referred to as high-risk, while the
remaining defendants will be referred to as low-risk.

With this notation in hand, we now proceed to define and discuss several fairness criteria
that commonly appear in the literature, beginning with those mentioned in the introduction. We
indicate cases where a given criterion is known to us to also commonly appear under some other
name. All of the criteria presented below can also be assessed conditionally by further conditioning
on some covariates in X. We discuss this point in greater detail in Section 3.1.

Definition 1 (Calibration). A score S = S(x) is said to be well-calibrated if it reflects the same
likelihood of recidivism irrespective of the individuals’ group membership. That is, if for all values
of s,

P(Y = 1 | S = s,R = b) = P(Y = 1 | S = s,R = w). (2.1)

Within the educational and psychological testing and assessment literature, the notion of calibra-
tion features among the widely accepted and adopted standards for empirical fairness assessment.
In this literature, an instrument that is well-calibrated is referred to as being free from predic-
tive bias. This criterion has recently been applied to the PCRAb instrument, with initial findings
suggesting that calibration is satisfied with respect race10,11, but not with respect to gender12. In

aThere are 6 racial groups represented in the data. 85% of individuals are either African-American or Caucasian.

bThe Post Conviction Risk Assessment (PCRA) tool was developed by the Administrative Office of the United
States Courts for the purpose of improving “the effectiveness and efficiency of post-conviction supervision”9
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their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
value (PPV) of the classifier Ŷ = 1S>sHR

be the same across groups. While predictive parity
and calibration look like very similar criteria, well-calibrated scores can fail to satisfy predictive
parity at a given threshold. This is because the relationship between (2.2) and (2.1) depends on
the conditional distribution of S | R = r, which can differ across groups in ways that result in
PPV imbalance. In the simple case where S itself is binary, a score that is well-calibrated will also
satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
satisfies predictive parity for threshold choices of interest.

Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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2.2 Further related work

Though the study of discrimination in decision making and predictive modeling is rapidly evolving,
it also has a long and rich multidisciplinary history. Romei and Ruggieri 18 provide an excellent
overview of some of the work in this broad subject area. The recent work of Barocas and Selbst 19

offers a broad examination of algorithmic fairness framed within the context of anti-discrimination
laws governing employment practices. Hannah-Moffat 20 , Skeem 21 , and Monahan and Skeem 22

examine legal and ethical issues relating specifically to the use of risk assessment instruments in
sentencing, citing the potential for race and gender discrimination as a major concern.

In work concurrent with our own, several other researchers have also investigated the compat-
ibility of different notions of fairness. Kleinberg et al. 23 show that calibration cannot be satisfied
simultaneously with the fairness criteria of balance for the negative class and balance for the positive
class. Translated into the present context, the latter criteria require that the average score assigned
to non-recidivists (the negative class) should be the same for both groups, and that the same should
hold among recidivists (the positive class). The work of Corbett-Davies et al. 24 closely parallels the
results that we present in Section 2.3, reaching the same conclusion regarding the incompatibility
of predictive parity and error rate balance in the setting of unequal prevalence.

2.3 Predictive parity, false positive rates, and false negative rates

In this section we present our first main result, which establishes that predictive parity is incompati-
ble with error rate balance when prevalence differs across groups. To better motivate the discussion,
we begin by presenting an empirical fairness assessment of the COMPAS RPI. Figure 1 shows plots
of the observed recidivism rates and error rates corresponding to the fairness notions of calibra-
tion, predictive parity, and error rate balance. We see that the COMPAS RPI is (approximately)
well-calibrated, and also satisfies predictive parity provided that the high-risk cutoff sHR is 4 or
greater. However, COMPAS fails on both false positive and false negative error rate balance across
the range of high-risk cutoffs.

Angwin et al. 4 focussed on a high-risk cutoff of sHR = 4 for their analysis, which some critics
have argued is too low, suggesting that sHR = 7 is more suitable. As can be seen from Figures 1c
and 1d, significant error rate imbalance persists at this cut-off as well. Moreover, the error rates
achieved at so high a cutoff are at odds with evidence suggesting that the use of RPI’s is of interest
in settings where false negatives have a higher cost than false positives, with relative cost estimates
ranging from 2.6 to upwards of 15.25,26

As we now proceed to show, the error rate imbalance exhibited by COMPAS is not a coincidence,
nor can it be remedied in the present context. When the recidivism prevalence–i.e., the base rate
P(Y = 1 | R = r)—differs across groups, any instrument that satisfies predictive parity at a given
threshold sHR must have imbalanced false positive or false negative errors rates at that threshold.
To understand why predictive parity and error rate balance are mutually exclusive in the setting
of unequal recidivism prevalence, it is instructive to think of how these quantities are all related.

Given a particular choice of sHR, we can summarize an instrument’s performance in terms of a
confusion matrix, as shown in Table 1 below.
All of the fairness metrics presented in Section 2.1 can be thought of as imposing constraints on
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the values (or the distribution of values) in this table. Another constraint—one that we have no
direct control over—is imposed by the recidivism prevalence within groups. It is not difficult to
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(a) Bars represent empirical estimates of the expres-
sions in (2.1): P(Y = 1 | S = s,R = r) for decile
scores s ∈ {1, . . . , 10}.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9
High−risk cutoff sHR

O
bs

er
ve

d 
pr

ob
ab

ili
ty

 o
f r

ec
id

iv
is

m

Predictive parity assessment

(b) Bars represent empirical estimates of the expres-
sions in (2.2): P(Y = 1 | S > sHR, R = r) for values
of the high-risk cutoff sHR ∈ {0, . . . , 9}
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(c) Bars represent observed false positive rates,
which are empirical estimates of the expressions in
(2.3): P(S > sHR | Y = 0, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}
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(d) Bars represent observed false negative rates,
which are empirical estimates of the expressions in
(2.4): P(S ≤ sHR | Y = 1, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}

Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.
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Low-Risk High-Risk

Y = 0 TN FP
Y = 1 FN TP

Table 1: T/F denote True/False and N/P denote Negative/Positive. For instance, FP is the number
of false positives: individuals who are classified as high-risk but who do not reoffend.

show that the prevalence (p), positive predictive value (PPV), and false positive and negative error
rates (FPR, FNR) are related via the equation

FPR =
p

1− p

1− PPV

PPV
(1− FNR). (2.6)

From this simple expression we can see that if an instrument satisfies predictive parity—that is,
if the PPV is the same across groups—but the prevalence differs between groups, the instrument
cannot achieve equal false positive and false negative rates across those groups.

This observation enables us to better understand why we observe such large discrepancies in
FPR and FNR between black and white defendants in Figure 1. The recidivism rate among black
defendants in the data is 51%, compared to 39% for White defendants. Thus at any threshold
sHR where the COMPAS RPI satisfies predictive parity, equation (2.6) tells us that some level of
imbalance in the error rates must exist. Since not all of the fairness criteria can be satisfied at the
same time, it becomes important to understand the potential impact of failing to satisfy particular
criteria. This question is explored in the context of a hypothetical risk-based sentencing framework
in the next section.

3 Assessing impact

In this section we show how differences in false positive and false negative rates can result in
disparate impact under policies where a high-risk assessment results in a stricter penalty for the
defendant. Such situations may arise when risk assessments are used to inform bail, parole, or
sentencing decisions. In Pennsylvania and Virginia, for instance, statutes permit the use of RPI’s
in sentencing, provided that the sentence ultimately falls within accepted guidelines1. We use the
term “penalty” somewhat loosely in this discussion to refer to outcomes both in the pre-trial and
post-conviction phase of legal proceedings. For instance, even though pre-trial outcomes such as
the amount at which bail is set are not punitive in a legal sense, we nevertheless refer to bail amount
as a “penalty” for the purpose of our discussion.

There are notable cases where RPI’s are used for the express purpose of informing risk reduction
efforts. In such settings, individuals assessed as high risk receive what may be viewed as a benefit
rather than a penalty. The PCRA score, for instance, is intended to support precisely this type of
decision-making at the federal courts level11. Our analysis in this section specifically addresses use
cases where high-risk individuals receive stricter penalties.

To begin, consider a setting in which guidelines indicate that a defendant is to receive a penalty
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tmin ≤ T ≤ tmax. A very simple risk-based approach, which we will refer to as the MinMaxa policy,
would be to assign penalties as follows:

TMinMax(s) =

{
tmin if s > sHR

tmax if s < sHR

. (3.1)

In this simple setting, we can precisely characterize the extent of disparate impact in terms of
recognizable quantities. Our analysis will focus on the quantity

∆ = ∆(y1, y2) ≡ E(T | R = b, Y = y1)− E(T | R = w, Y = y2),

which is the expected difference in sentence duration between defendants in different groups, with
potentially different outcomes y1, y2 ∈ {0, 1}. ∆ is taken to serve as our the measure of disparate
impact.

Proposition 3.1. The expected difference in penalty under the MinMax policy is given by

∆ ≡ E(T | R = b, Y = y1)− E(T | R = w, Y = y2)

= (tmax − tmin)
(
P(S > sHR | R = b, Y = y1)− P(S > sHR | R = w, Y = y2)

)
A proof can be found in Appendix A. We will discuss two immediate Corollaries of this result.

Corollary 3.1 (Non-Recidivists). Among individuals who do not recidivate, the difference in av-
erage penalty under the MinMax policy is

∆ = (tmax − tmin)(FPRb − FPRw), (3.2)

where FPRr denotes the false positive rate among individuals in group R = r.

Corollary 3.2 (Recidivists). Among individuals who recidivate, the difference in average penalty
under the MinMax policy is

∆ = (tmax − tmin)(FNRw − FNRb), (3.3)

where FNRr denotes the false negative rate among individuals in group R = r.

When using an RPI that satisfies predictive parity in populations where recidivism prevalence
differs across groups, it will generally be the case that the higher recidivism prevalence group will
have a higher FPR and lower FNR. From equations (3.2) and (3.3), we can see that this would
on average result in greater penalties for defendants in the higher prevalence group, both among
recidivists and non-recidivists.

An interesting special case to consider is one where tmin = 0. This could arise in sentencing
decisions for offenders convicted of low-severity crimes who have good prior records. In such cases,
so-called restorative sanctions may be imposed as an alternative to a period of incarceration. If

aThe term MinMax as used throughout this paper has no intended connection the decision-theoretic notion of
minimax decision rules. Min and Max in this context refer to the minimum and maximum allowable sentences as
stipulated by sentencing guidelines.
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we further take tmax = 1, then ET = P(T ̸= 0), which can be interpreted as the probability that a
defendant receives a sentence imposing some period of incarceration.

It is easy to see that in such settings a non-recidivist in group b is FPRb/FPRw times more
likely to be incarcerated compared to a non-recidivist in group w.a This naturally raises the
question of whether overall differences in error rates are observed to persist across more granular
subpopulations, such as the subset of individuals eligible for restorative sanctions. We explore this
question in the section below.

3.1 Conditioning on other covariates

One might expect that differences in false positive rates are largely attributable to the subset
of defendants who are charged with more serious offenses and who have a larger number of prior
arrests/convictions. While it is true that the false positive rates within both racial groups are higher
for defendants with worse criminal histories, considerable between-group differences in these error
rates persist across low prior count subgroups. Figure 2 shows plots of false positive rates across
different ranges of prior count for all defendants and also for the subset charged with a misdemeanor
offense, which is the lowest severity criminal offense category. As one can see, differences in false
positive rates between Black defendants andWhite defendants persist across prior record subgroups.

In general, all of the theoretical results presented in this section extend to the setting where we
further condition on the covariates X. The main difference is that all classification metrics would
need to be evaluated conditional on X. For instance, assuming that tmin and tmax are constant on
a set X , Corollary 3.1 would say that the difference in average penalty under the MinMax policy
among non-recidivists for whom X ∈ X is given by

∆ = (tmax − tmin) (FPRb(X )− FPRw(X )) (3.4)

≡ (tmax − tmin) (P(S > sHR | R = b, Y = 0, X ∈ X )− P(S > sHR | R = w, Y = 0, X ∈ X )) .
(3.5)

The false positive rates shown in Figure 2(a) correspond precisely to the quantities FPRr(X )
for choices of X given by different prior record count bins. The leftmost bars correspond to taking
X = {#priors = 0}. Similarly the leftmost bars in Figure 2(a) correspond to taking X = {#priors =
0, charge degree = M}. In Appendix B we present a logistic regression analysis showing that
significant differences in false positive rates persist even after adjusting for a number of other
recidivism-related covariates.

3.2 Connections to measures of differences in distribution

In their analysis of the PCRA instrument, Skeem and Lowenkamp 11 remark that some applications
of the risk score could create disparate impact due to differences in the score distributions between
black and white offenders. To summarize the distributional difference in scores between the two
groups, the authors report a Cohen’s d of 0.34, with a corresponding non-overlap of 13.5%. A

aWe are overloading notation in this expression: Here, FPRr = P(HR | R = r, tL = 0), similarly for FNRr.
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(b) Defendants charged with a Misdemeanor offense.

Figure 2: False positive rates across prior record count. Plot is based on assessing a defendant
as “high-risk” if their COMPAS decile score is > sHR = 4. Error bars represent 95% confidence
intervals.

natural question to ask is whether the level of disparity in sentence duration, ∆, is in some sense
closely related to such measures of distributional difference. With a small generalization of the %
non-overlap measure, we can answer this question in the affirmative.

The % non-overlap of two distributions is generally calculated assuming both distributions are
normal, and thus has a one-to-one correspondence to Cohen’s d27.a However, as we can see from
Figure 3, the COMPAS decile score is far from being normally distributed in either group. A more
reasonable way to calculate % non-overlap in such cases is to note that in the Gaussian case % non-
overlap is equivalent to the total variation distance. Letting fr,y(s) denote the score distribution
among individuals in group r with recidivism outcome y, one can establish the following sharp
bound on ∆.

Proposition 3.2 (Percent overlap bound). Under the MinMax policy,

∆(y1, y2) ≤ (tmax − tmin)dTV(fb,y1 , fw,y2).

This result is simple to understand. When there is some non-overlap between the score distribu-
tions for two groups, the worst case scenario is that the non-overlap is entirely due to mass shifting
from scores below sHR to those above sHR. In such cases, the inequality becomes an equality.

3.3 Empirical results

In this section we present some empirical results based on two hypothetical sentencing rules: the
MinMax rule introduced in the previous section, and the Interpolation rule, which we will introduce
below. Though the offenders in our data set come from Broward County, Florida, our empirical
analysis is modelled on the sentencing guidelines of the State of Pennsylvania.

ad = S̄b−S̄w

SD
, where SD is a pooled estimate of standard deviation.
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Figure 3: COMPAS decile score histograms for Black and White defendants. Cohen’s d = 0.60, non-overlap
dTV(fb, fw) = 24.5%.

The penalty ranges tmin and tmax are selected by approximately matching each offender’s charge
degree (M2 - F1) to a sentence range in Pennsylvania’s Basic Sentencing Matrix (PA Code §303.16).
This matrix provides sentence ranges based on the charge degree for the current offense and the
defendant’s prior record score (0 - 5+). We do not have enough information in the Broward County
data to reliably assign a prior record score for each individual. Our results are based on using the
sentencing range corresponding to a prior record score of 1 for all defendants in the data.

Figure 4 shows the expected sentences for black and white defendants broken down by observed
recidivism outcome. The x-axis in these figures is taken to be the offense gravity score, which for
the purpose of this analysis is mapped to charge degree as indicated in Table 2.

Offense gravity score 2 3 5 7 8
Charge Degree (M2) (M1) (F3) (F2) (F1)

Table 2: Mapping between offense gravity score and charge degree used in the empirical analysis.

Results are shown for both the MinMax policy introduced earlier in this section, and the Inter-
polation policy, which is given by

TInt(s) = tmin +
s− 1

9
(tmax − tmin). (3.6)

Unlike the MinMax policy, which is based on the coarsened score, the Interpolation policy assigns
sentences by linearly interpolating between tmin and tmax based on the assigned decile score. We
see that under both policies there are consistent trends in the expected sentences. Black defendants
are observed to receive higher sentences than white defendants both within the non-recidivating
subgroup and the recidivating subgroup (except in the F1 charge degree category, where sample
sizes are small and results are non-significant). Since white defendants have higher false negative
rates and lower false positive rates than black defendants, the empirical results are consistent with
the theoretical results presented earlier in this section.
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Figure 4: Average sentences under the hypothetical sentencing policies described in Section 3.3.
The mapping between the x-axis variable and the offender’s charge degree is given in Table 2. For
all OGS levels except 8, observed differences in average sentence are statistically significant at the
0.01 level.

4 Revisiting predictive parity

In this final section we revisit the notion of predictive parity and further discuss its implications
for general classifiers. We know from equation (2.6) that when the positive predictive values are
constrained to be equal but the prevalences differ across groups, the false positive and false negative
rates cannot both be equal across those groups. While we have no direct control over recidivism
prevalence, we do have some control over the PPV and error rates of our classifiers. At least in
principle, we are free to tune our classifiers in any of the following ways:

(i) Allow unequal false negative rates to retain equal PPV’s and achieve equal false positive rates

(ii) Allow unequal false positive rates to retain equal PPV’s and achieve equal false negative rates

(iii) Allow unequal PPV’s to achieve equal false positive and false negative rates

Figure 5 helps to put these trade-offs into perspective. From (2.6), we can see that FPR is a
linear function of FNR under constraints on PPV and p. This means that, if PPV is fixed at a given
value, tuning strategy (i) may require a very large increase in FNR in order to balance FPR. The
black line shows feasible combinations of (FNRb,FPRb) when PPVb is forced to equal the observed
value PPVw = 0.591. We can see that to get FPRb to match FPRw, we would need to increase
FNRb to around 0.7, which would be a substantial drop in accuracy. In view of Corollaries 3.1 and
3.2 Strategies (i) and (ii) may generally be undesirable because while they reduce disparate impact
for one subgroup (e.g., among non-recidivists), they may increase it in the other.
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Figure 5: The two points represent the observed values of (FNR, FPR) for Black and White
defendants. The orange line represents feasible values of (FNR, FPR) for White defendants when
the prevalence pw and PPVw are both held fixed at their observed values in Table 1. The dark
grey line represents feasible values of (FNRb,FPRb) when the prevalence pb is held fixed at the
observed value and PPVb is set equal to the observed value of PPVw = 0.591. Nested shaded
regions correspond to feasible values of (FNRb,FPRb) if we allow PPVb to vary under the constraint
|PPVb − 0.591| < δ, with δ ∈ {0.05, 0.1, 0.125}. The smaller δ, the smaller the feasible region.

The preferred approach, at least in some cases, may be to pursue strategy (iii). This amounts
to using a score S that does not satisfy predictive parity in the first place, but can also be achieved
by allowing the high-risk cutoff sHR,r to differ across groups. The shaded regions in Figure 5 show
feasible values of (FNRb,FPRb) when we allow PPVb to be within some δ of the observed value of
PPVw. We can see that even at small values of δ the feasible region is quite large.

5 Discussion

The primary contribution of this paper was to show how disparate impact can result from the use
of a recidivism prediction instrument that is known to satisfy the fairness criterion of predictive
parity. Our analysis focussed on the simple setting where a binary risk assessment was used to
inform a binary penalty policy. While all of the formulas have natural analogs in the non-binary
score and penalty setting, we find that many of the salient features are already present in the
analysis of the simpler binary-binary problem.

A key limitation of our analysis stems from potential biases in the observed data that may
affect our ability to draw valid inferences concerning the fairness of an RPI. Throughout this
paper we have implicitly operated under the assumption that the observed recidivism outcome Y
is a suitable outcome measure for the purpose of assessing the fairness properties of a recidivism
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prediction instrument. However, the true outcome of interest in this context is reoffense, which
is not what we observe. In the latest statistics released by the Federal Bureau of Investigation28,
it is reported that 46% of violent crimes and 19.4% of property crimes were successfully cleared
by law enforcement agencies. Many criminal offenders are simply never identified. It is therefore
possible that a non-negligible fraction of the individuals in our data for whom we observed Y = 0
did in truth reoffend. If this is indeed the case, and if there are group differences in the rates
at which offenders are caught, the findings of empirical fairness assessments may be misleading.
Understanding how such forms of data bias affect the ability to assess instruments with respect to
different fairness criteria is a subject of our ongoing research efforts.

6 Conclusion

In closing, we would like to note that there is a large body of literature showing that data-driven risk
assessment instruments tend to be more accurate than professional human judgements29,30, and
investigating whether human-driven decisions are themselves prone to exhibiting racial bias31,32.
We should not abandon the data-driven approach on the basis of negative headlines. Rather, we
need to work to ensure that the instruments we use are demonstrably free from the kinds of biases
that could lead to disparate impact in the specific contexts in which they are to be applied.

A Proofs

Proof of Proposition 3.1. To simplify notation, we let HR denote the event {S > sHR}.

E(∆(y1, y2)) = E(T | R = b, Y = y1)− E(T | R = w, Y = y2)

= tmaxP(HR | R = b, Y = y1) + tmin(1− P(HR | R = b, Y = y1))

− tmaxP(HR | R = w, Y = y2)− tmin(1− P(HR | R = w, Y = y2))

= tmax(P(HR | R = b, Y = y1)− P(HR | R = w, Y = y2))

+ tmin(P(HR | R = w, Y = y2)− P(HR | R = b, Y = y1))

= (tmax − tmin)(P(HR | R = b, Y = y1)− P(HR | R = w, Y = y2))

Proof of Proposition 3.2. By definition of total variation distance, for any event A,

|(P(A | R = b, Y = y1)− P(A | R = w, Y = y2))| ≤ dTV(fb,y1 , fw,y2)

Applying this inequality to Proposition 3.1 with A = {Sc = HR} gives

E(∆(y1, y2)) = (tmax − tmin)(P(HR | R = b, Y = y1)− P(HR | R = w, Y = y2))

≤ (tmax − tmin)dTV(fb,y1 , fw,y2)
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B Covariate-adjusted false positive rates

In this section we present the results of a logistic regression analysis that we conducted in order to
assess whether the observed differences in false positive rates between black and white defendants
can be entirely accounted for by other covariates. We find that adjusting for covariates decreases
the gap, but it nevertheless remains large and statistically significant.

For the purpose of this analysis we consider only the subset of defendants who do not recidivate.
The outcome variable for the logistic regression is taken to be

y =

{
1, S > 4

0, S ≤ 4
,

where S denotes the COMPAS decile score. In this setup, y = 0 denotes a True Negative and
y = 1 denotes a False Positive. Statistically significant positive coefficient estimates correspond to
variables associated with increased likelihood of false positives.

Table 3 shows the results of regressing y on race alone. The coefficient of race in this model is
large, positive, and statistically significant. Without adjusting for other covariates, the odds that a
non-recidivating Black defendant receives a high-risk assessment are e0.976 = 2.6 times higher than
those of a White defendant.

Table 4 shows the results of regressing y on race, age, gender, number of priors, and charge
degree. The coefficient of race is smaller than it was in the un-adjusted model, but it is nevertheless
large and statistically significant. Even after adjusting for these other factors, the odds that a non-
recidivating Black defendant receives a high-risk assessment are e0.547 = 1.72 times higher than
those of a White defendant.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.183 0.061 -19.33 0.0000
raceBlack 0.976 0.077 12.60 0.0000

Table 3: Logistic regression with race alone.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.397 0.176 7.92 0.0000
raceBlack 0.547 0.087 6.30 0.0000

Age -0.079 0.005 -17.48 0.0000
sexMale -0.291 0.098 -2.97 0.0030

Number of Priors 0.283 0.016 17.78 0.0000
chargeMisdemeanor -0.109 0.088 -1.25 0.2123

Table 4: Logistic regression with race and other covariates that may be associated with recidivism
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