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Agenda

• Dimensionality reduction
◦ Principal Components Analysis [incl limitations]
◦ Correspondence analysis
◦ Multidimensional scaling

• Cross-validation pitfalls

• Classification with imbalanced data
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A picture

[source: https://onlinecourses.science.psu.edu/stat857]

• This Figure shows an observation xi = (xi1, xi2) along with zi1, its
projection onto the first principal component direction, and zi2, its
projection onto the second principal component direction
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Example: USArrests Data

• USArrests data: For each of the n = 50 states in the United
States, the data set contains the number of arrests per 100,000
residents for each of three crimes: Assault, Murder, and Rape.

• We also record UrbanPop, the percent of the population in each
state living in urban areas.

• The principal component score vectors have length n = 50, and the
principal component loading vectors (directions) have length p = 4.

• PCA was performed after standardizing each variable to have mean
zero and standard deviation one.
◦ Normalization is very important!
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USArrests biplot
arrests.scaled <- scale(USArrests) # Normalize the data
arrests.pca <- princomp(arrests.scaled) # Perform PCA
biplot(arrests.pca, scale = 0) # Construct biplot
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What happened?
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Our biplot ISL Figure 10.1

• The direction of the arrows and location of the points is now
flipped...

• The PCA solution is non-unique in this sense: Loading vectors ϕ1 and
−ϕ1 will produce the same variance for the scores zi1, but will result
in opposite signs. 6 / 38
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Let's look at the loadings
Here's what ISL reports for the loadings ϕ1, ϕ2:

PCA loadings

PC1 PC2
Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
UrbanPop 0.2781909 0.8728062
Rape 0.5434321 0.1673186

16 / 52

Here's what we got (all 4 loading vectors are shown):

Comp.1 Comp.2 Comp.3 Comp.4
Murder -0.53590 0.41818 -0.34123 0.64923
Assault -0.58318 0.18799 -0.26815 -0.74341

UrbanPop -0.27819 -0.87281 -0.37802 0.13388
Rape -0.54343 -0.16732 0.81778 0.08902

• If we flip the sign of all the values in our table, we'll get the same
answer as ISL.

• We'll want to flip the signs on the loadings ϕj and the scores zj
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Here's our new biplot
arrests.pca$loadings = -arrests.pca$loadings # Flip loadings (phi's)
arrests.pca$scores = -arrests.pca$scores # Flip scores (z's)
biplot(arrests.pca, scale = 0) # Construct biplot
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Loadings

ϕ1 ϕ2
Murder 0.54 -0.42
Assault 0.58 -0.19

UrbanPop 0.28 0.87
Rape 0.54 0.17
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• The word UrbanPop is centered at (0.28, 0.87) (in terms of the top
and right side coordinate axes)
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Let's look at the scores (z's)

Comp.1 Comp.2 Comp.3 Comp.4
Alabama 0.98 -1.12 0.44 -0.15

Alaska 1.93 -1.06 -2.02 0.43
Arizona 1.75 0.74 -0.05 0.83

Arkansas -0.14 -1.11 -0.11 0.18
California 2.50 1.53 -0.59 0.34
Colorado 1.50 0.98 -1.08 -0.00

• Just like we get 4 loading vectors, we get 4 score vectors.
• The table above shows the scores for all 4 principal components
• The biplot is constructed by plotting the points with Comp.1 on the

x-axis and Comp.2 on the y-axis
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Scores

Comp.1 Comp.2
Alabama 0.98 -1.12

Alaska 1.93 -1.06
Arizona 1.75 0.74

Arkansas -0.14 -1.11
California 2.50 1.53
Colorado 1.50 0.98

...
...

...
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• The word California is centered at (2.5, 1.53) (in terms of the
bottom and left side coordinate axes)
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Why does PCA work well on this data?

Murder
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In this pairs plot we can clearly see that the crime rate variables---Murder,
Assault, and Rape---are highly correlated with one another. They provide
redundant information. The first loading vector winds up forming a
combination of these three features, essentially compressing 3 features into 1. 12 / 38
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Proportion Variance Explained

• Dimensionality reduction techniques such as PCA work well when
the data is essentially low dimensional
◦ i.e., when there are many groups of highly correlated features

• i.e., We may have p features, but we might be able to describe the
data with just k ≪ p linear combinations of them
◦ For instance, if we have data on children, height, weight and age will

all be highly correlated

◦ PCA will be able to identify a linear combination of these features that
we we'll roughly be able to interpret as the child's size

• In general, to understand how well PCA is doing, we look at the
proportion of variance explained (PVE) of each principal component.
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Proportion Variance Explained

• Assume as usual that all the variables have been centered to have
mean 0.

• The total variance present in the data is defined as

p∑
j=1

var(Xj) =
p∑

j=1

1
n

n∑
i=1

x2
ij

and the variance explained by the mth principal component is

var(Zm) = 1
n

n∑
i=1

z2
im

• The PVE of the mth component is the ratio of these quantities:

PVE(Zm) = var(Zm)
total variance
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Figure 10.4 from ISL

• Left panel shows PVE(Zm) for all 4 principal components in the
USArrests data

• Right panel shows cumulative PVE: i.e., values of
∑

m≤k PVE(Zm)
for k = 1, 2, 3, 4
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How many principal components should we use?

• There's no simple answer to this question

• Cross-validation is not available for this problem
◦ CV allows us to estimate test error... but we're doing unsupervised

learning here and we don't really have a notion of test error to work with

◦ If we treated our principal components as derived features in a regression
or classification task, we could certainly run Cross-validation in that
setting

• Often, people like to look at so-called scree plots, which is what we
showed on the previous slide
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Finding elbows in scree plots

[source: https://gugginotes.wordpress.com/]

• Eigenvalue y-axis label should be interpreted as PVE
• Rule-of-thumb: Stop at the elbow in the Scree plot. (k = 5 here)
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Principal Components Regression
• Suppose we're back in the supervised learning setting where we have

observations (xi, yi)

• We have a lot of feature (p is large), and we suspect that many of
them may be redundant/highly correlated

• We can perform PCA on the data matrix X, treating this as a feature
engineering step

• This will give us k < p new features z1, . . . , zk, corresponding to the
top k principal components

• Then we can model y on z1, . . . , zk instead of on the xj

• This method is called Principal Components Regression (PCR)
◦ Of course, there's a classification version of PCR as well
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Simple PCR example
• Suppose that we have two features: age and height

• Everyone in our sample is between 10 and 17 years old, so these
features are highly correlated

• Instead of using both features in our models, we could just use the
1st principal component.
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PCR Success case
• Will PCR work? This depends on the outcome, y

• Let's look at a classification setting where y = 1 if the individual is in
high school, and 0 otherwise.
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• Using just the first principal component for classification will work
really well here!
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PCR Success case
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• This is what the data looks like when plotted in terms of the two
principal components

• We can clearly see that a logistic model with y ∼ z1 will classify
really well 21 / 38
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PCR Failure case
• Now what if our outcome was instead y = 1 if the person is tall for

their age, and 0 otherwise.
• Here's a scatterplot of the data, colour-coded by outcome.
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• The first principal component is going to be entirely orthogonal to
the interesting direction for classification!
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PCR Failure case
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• A logistic model with y ∼ z1 will fail completely!

• Take-away: PCR will work well when the leading principal
components define directions that capture variation in the outcome y
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PCA captures linear directions of variation
• PCA works well when the relationships between the features are linear

(e.g., when features are linearly correlated)
• Shown below is an example where the two axes are clearly strongly

associated, but the association is non-linear
• The PCA directions are reasonable... but don't really capture the key trend

in the data
• Principal curves can be applied in such settings: This method generalizes

PCA by fitting 1-dimensional curves instead of lines

PCA Principal curve

[img source: http://what-when-how.com/]24 / 38
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Correspondence Analysis

• PCA is great and widely used

• But it's limited to numeric or ordinal data

• We may want to perform dimensionality reduction with categorical
features

• Correspondence analysis is an extension of PCA that gracefully
handles categorical features

• The figure on the next page shows a biplot obtained by running
Correspondence analysis on a dataset where consumers were asked
to check whether or not they associated particular attributes (blue
points) with various car models (red points)
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[source: http://joelcadwell.blogspot.com/] 26 / 38
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Multidimensional scaling
• Multidimensional scaling (MDS) is a dimensionality reduction methods

for visualizing the level of similarity among individuals in a dataset

• Instead of feeding in the data set X, we feed in a distance matrix
specifying the pairwise distances between all observations
◦ Recall: For hierarchical clustering, we also don't need X. We just

operate on the distance matrix

• Here's MDS output from an analysis of voting similarity between
Republicans and Democrats (blue) in the house of representatives

[source: Wikipedia, Public Domain
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Multidimensional scaling: US cities
• Here's an example of what MDS would do if applied to a matrix

giving pairwise distances between all of the “major” cities in the US

• Awesome! It doesn't get the right rotation, but we can't expect it to.
The reconstruction is otherwise excellent.
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Wrapping up

• To wrap up, we'll look at a couple of challenges that commonly arise
in real world data

• Topics:
◦ Cross-validation: The right way and the wrong way.

◦ Classification with imbalanced data
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Cross-validation: Right and Wrong
• Suppose we're in a classification setting with Y ∈ {0, 1}

• Getting data points is really expensive, so we wind up with only
n = 120 observations

• However, we have a lot of features collected on each observation:
p = 5000

• Fitting a model with n = 120 and p = 5000 is hopeless, so we take
the following approach:
...1 For each of the p = 5000 features, calculate the feature's correlation

with y. Identify the q = 100 predictors that have the highest correlation
with the outcome y.

...2 Apply a classifier using just these 100 predictors

• Question: How do we estimate the test error of our classifier?

• Can we apply Cross-validation to just Step 2?
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Cross-validation: The wrong way

...1 For each of the p = 5000 features, calculate the feature's correlation
with y. Identify the q = 100 predictors that have the highest
correlation with the outcome y.

...2 Apply a classifier using just these 100 predictors

• It is very wrong to estimate test error by applying Cross-validation
just on Step 2

• Doing so would ignore the fact that we used the y values of the training
data in Step 1

• To get valid error estimates, each step of Cross-validation must go
through every part of the model-fitting process that in any way makes
use of the outcome variable y

• If we just Cross-validate Step 2, we can easily wind up with a CV
error estimate of 0% when the true test error is 50%.

31 / 38



.

32 / 38



.

33 / 38



.

Classification with imbalanced data

• Suppose that we're trying to identify fraudulent transactions

• We build a random forest classifier, and find that it gets 97% accuracy

• Looking back at the data, we see that just 3% of our observations
were from fraudulent transactions

• Our random forest got 97% accuracy just by classifying ŷi = not
fraudulent for every observation

• This is an example of imbalanced data

• Most classification problems you'll encounter in the real world are
imbalanced in this way
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Strategies for dealing with imbalanced data
• Stop using classification accuracy as your performance metric

◦ Instead, assess how well your classifier is doing using more task-relevant
metrics: Precision, Recall (Sensitivity), Specificity, PPV, profit

• Artificially improve balance by:
◦ Randomly remove instances of your over-represented class

(under-sample)

◦ Randomly add copies of your under-represented class (over-sample,
sampling with replacement)

◦ Cluster your over-represented observations into a large number of
clusters, and select just one representative observation from each class.

◦ Create synthetic samples from your under-represented class using a
method like SMOTE (Synthetic Minority Over-sampling Technique)

• If using trees or forests: Try growing very deep trees and applying a
cost-sensitive pruning technique
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Where to go from here?
• We have covered a lot of Data mining methods and concepts in this

class
• There is also a lot out there that we didn't get to talk about
• Here's a brief list of things you might be interested in learning more

about in the future:
◦ Anomaly detection (Outlier detection)

• If we just get to observe normally behaved data, how can we figure out if
future observations are anomolous?

• Approaches: One-class classification, PCA-based and Clustering-based
approaches

◦ Reinforcement learning:
• You need to make sequential decisions and learn a good model (a good

policy) as you go along.
• This forces a trade-off between exploration (seeing what happens if you try a

new idea), and exploitation (going with the best decision according to your
current model)

• E.g., For each customer that browses your site, you need to decide which
promos and products to advertise on the landing page. Promos and products
change daily, so you need to learn and update your model on the fly
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More topics

• Text mining
◦ Suppose your data set consists of Yelp reviews, and you're trying to use

reviews to identify restaurants that are starting to get much better or
much worse

◦ Key challenge: How can we turn text into features?
◦ Approaches: Bag-of-words models, TF-IDF representations (term

frequency-inverse document frequency), Topic models (Latent Dirichlet
Allocation)

• Network analyis

• Recommender systems (e.g., Collaborative filtering)

• Other cool methods
◦ Support vector machines (maximum-margin classifiers)
◦ Neural networks (lately: Deep learning)
◦ Graphical models, Bayes networks…
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