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Agenda

• Random Forests

• Bootstrap SE estimates, Confidence intervals
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Example: bagging
Example (from ESL 8.7.1): n = 30 training data points, p = 5 features,
and K = 2 classes. No pruning used in growing trees:
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How could this possibly work?

• You may have heard of the Wisdom of crowds phenomenon

• It's a concept popularized outside of statistics to describe the idea
that the collection of knowledge of a group of independent people
can exceed the knowledge of any one person individually.

• Interesting example (from ESL page 287): Academy award
predictions
◦ 50 people are asked to predict academy award winners for 10 categories
◦ Each category has 4 nominees
◦ For each category, just 15 of the 50 voters are at all informed (the

remaining 35 voters are guessing randomly)
◦ The 15 informed voters have probability P ≥ 0.25 of correctly guessing

the winner
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There are 10 award categories and 4 nominees in each. For each of the 10
categories, there are 15 (of 50) voters who are informed. Their probability of
guessing correctly is P ≥ 0.25. Everyone else guesses randomly.
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Example: Breiman's bagging

Example from the original Breiman paper on bagging: comparing the
misclassification error of the CART tree (pruning performed by
cross-validation) and of the bagging classifier (with B = 50):

6 / 38



.

Voting probabilities are not estimated class probabilities
• Suppose that we wanted probability estimates p̂k(x) out of our bagging

procedure.

• What if we tried using:

p̂vote
k (x) = 1

B

B∑
b=1

(
f̂ tree,b(x) = k

)
This is the proportion of bootstrapped trees that voted for class k.

• This can be a bad idea

• Suppose we have two classes, and the true probability that y0 = 1
when X = x0 is 0.75.

• Suppose each of the bagged trees f̂ tree,b(x) correctly classifies x0 to
class 1

• Then p̂vote
1 (x) = 1... that's wrong

• What if we used each tree's estimated probabilities instead?
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Alternative form: Probability Bagging

• Instead of just looking at the class predicted by each tree, look at the
predicted class probabilities p̂tree,b

k (x)
• Define the bagging estimate of class probabilities:

p̂bag
k (x) = 1

B

B∑
b=1

p̂tree,b
k (x) k = 1, . . . K

• We can use p̂bag
k (x) itself as an alternative to plurality voting of the

trees.
• Given an input vector x0, we can classify it according to

ŷbag
0 = argmax

k=1,...K
p̂bag

k (x)

• This form of bagging is preferred if we want to estimate class
probabilities, and it may improve overclass classification accuracy

8 / 38



.

Comparison of the two bagging approaches
The probability form of bagging produces misclassification errors shown
in green. The Consensus version is what we first introduced. It's not as
well behaved.

The Test error eventually stops decreasing past a certain value of B
because we hit the limit in the variance reduction bagging can provide

9 / 38



.

Out-of-Bag (OOB) Error Estimation
• Recall, each bootstrap sample contains roughly 2/3 (≈ 63.2%) of the

of the training observations

• The remaining observations not used to fit a given bagged tree are
called the out-of-bag (OOB) observations

• Another way of thinking about it: Each observation is OOB for
roughly B/3 of the trees. We can treat observation i as a test point
each time it is OOB.

• To form the OOB estimate of test error:
◦ Predict the response for the ith observation using each of the trees for

which i was OOB. This gives us roughly B/3 predictions for each
observation.

◦ Calculate the error of each OOB prediction
◦ Average all of the errors
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Random Forests

• Random forests provide an improvement over bagged trees by
incorporating a small tweak that decorrelates the individual trees
◦ This further reduces variance when we average the trees

• We still build each tree on a bootstrapped training sample

• But now, each time a split in a tree is considered, the tree may only
split on a predictor from a randomly selected subset of m predictors

• A fresh selection of m randomly selected predictors is presented at
each split... not for each tree, but for each split of each tree

• m ≈ √p turns out to be a good choice
◦ E.g., if we have 100 predictors, each split will be allowed to choose from

among 10 randomly selected predictors
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Bagging vs. Random Forests
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A big data example: Gene expression data

• p = 4,718 genetic measurements from just 349 patients

• Each patient has a qualitative label. K = 15 possible labels
◦ Either normal, or one of 14 types of cancer

• Split data into training and testing, fit Random forest to training set
for 3 different choices of number of splitting variables, m.

• First, filter down to the 500 genes that have the highest overall
variance in the training set
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Test error: Gene expression data
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• Curves show Test misclassification rates for a 15-class problem with
p = 500 predictors and under 200 observations used for training

• x-axis gives number of trees (number of bootstrap samples used)

• m = p corresponds to bagging.

• A single classification tree has an error rate of 45.7%.
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Summary: Random forests
• Random forests have two tuning parameters:
◦ m = the number of predictors considered at each split
◦ B = the number of trees (number of bootstrapped samples)

• Increasing B helps decrease the overall variance of our estimator

• m ≈ √p is a popular choice

• Cross-validation can be used across a grid of (m, B) values to find
the choice that gives the lowest CV estimate of test error

• Out-of-bag (OOB) error rates are commonly reported
◦ Each observation is OOB for around B/3 of the trees
◦ Can get a test error estimate for each observation each time it is OOB
◦ Average over all the OOB errors to estimate overall test error

• RF's are parallelizable: You can distribute the computations across
multiple processors and build all the trees in parallel
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Random forests vs. Trees
• We liked trees because the model fit was very easy to understand
◦ Large trees wind up hard to interpret, but small trees are highly

interpretable

• With random forests, we're averaging over a bunch of bagged trees,
and each tree is built by considering a small random subset of
predictor variables at each split.

• This leads to a model that's essentially uninterpretable

• The Good: Random forests are very flexible and have a somewhat
justifiable reputation for not overfitting
◦ Clearly RF's can overfit: If we have 1 tree and consider all the variables

at each split, m = p, we just have a single tree

◦ If m≪ p and the number of trees is large, RF's tend not to overfit

◦ You should still use CV to get error estimates and for model tuning!
Don't simply rely on the reputation RF's have for not overfitting.
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Boosting
• We talked about Bagging in the context of bagged trees, but we can

bag any predictor or classifier we want

• Boosting is yet another general approach that can be applied to any
based learning method

• Here we'll briefly discuss Boosting decision trees

• Boosting is another way of taking a base learner (a model) and
building up a more complex ensemble

• In bagging, we bootstrap multiple versions of the training data, fit a
model to each sample, and then combine all of the estimates
◦ The base learners used in bagging tend to have high variance, low bias

• Boosting builds up the ensemble sequentially: E.g., To boost trees, we
grow small trees, one at a time, at each step trying to improve the
model fit in places we've done poorly so far
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Boosting algorithm: Regression trees

...1 Set f̂(x) = 0 and residuals ri = yi for all i in the training set

...2 For b = 1, 2, . . . , B, repeat:
...1 Fit tree f̂ b with d splits to the training data (X, r)1

...2 Update f̂ by adding shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x)

...3 Update the residuals
ri ← ri − λf̂ b(xi)

...3 Output the boosted model,

f̂(x) =
B∑

b=1
λf̂ b(x)

• λ is called the shrinkage parameter. Typically, λ≪ 1
1We're treating the residual vector r as our outcome at each step.
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What's boosting trying to do?

• Boosting works best if d (the size of each tree) is small

• Given the current model, we fit a decision tree to the residuals from
the model

• This new tree helps us perform just a little bit better in places where
the current model wasn't doing well

• Unlike bagging, where each tree is large and tries to model the entire
(bootstrapped) data well, each tree in boosting tries to incrementally
improve the existing model

• Think of boosting as learning slowly: We use small trees, try to make
incremental improvements, and further slow down the learning
process by incorporating the shrinkage parameter λ
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Boosting for classification

• The basic idea is the same: Use weak base learners, update
incrementally, shrink at each step

• Details are more complicated…too complicated to present here

• The R package gbm (gradient boosted models) handles both
prediction (regression) and classification problems

• If you're interested in the details, see Chapter 10 of Elements of
Statistical Learning
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Gene expression example: RF vs Boosted trees
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Fig 8.10 Random forests with different choices of m (K = 15 classes)
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Gene expression example: RF vs Boosted trees
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• K = 2 class problem: cancer vs non-cancer

• Boosting with Depth-1 trees outperforms Depth-2 trees, and both
outperform random forests…but standard errors are actually around 0.02,
so differences aren't really statistically significant

• Boosting uses λ = 0.01
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Tuning parameters for boosting

• Number of trees, B: Boosting can overfit if B is too large, though
overfitting happens slowly. Use cross-validation to select

• shrinkage parameter, λ: 0 < λ≪ 1. This is sometimes called the
learning rate. Common choices are λ = 0.01 or λ = 0.001. Small λ
requires very large B to achieve good performance.

• Number of splits, d: d = 1, called stumps, often works well. This
amounts to an additive model.
◦ Often refer to d as the interaction depth: d splits can involve at most d

variables
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Email spam data (seen on Homework 4)

15.2 Definition of Random Forests 589

Typically values for m are
√
p or even as low as 1.

After B such trees {T (x;Θb)}B1 are grown, the random forest (regression)
predictor is

f̂B
rf (x) =

1

B

B∑

b=1

T (x;Θb). (15.2)

As in Section 10.9 (page 356), Θb characterizes the bth random forest tree in
terms of split variables, cutpoints at each node, and terminal-node values.
Intuitively, reducing m will reduce the correlation between any pair of trees
in the ensemble, and hence by (15.1) reduce the variance of the average.
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FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the
spam data. For boosting, 5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each “step” in the figure corre-
sponds to a change in a single misclassification (in a test set of 1536).

Not all estimators can be improved by shaking up the data like this.
It seems that highly nonlinear estimators, such as trees, benefit the most.
For bootstrapped trees, ρ is typically small (0.05 or lower is typical; see
Figure 15.9), while σ2 is not much larger than the variance for the original
tree. On the other hand, bagging does not change linear estimates, such
as the sample mean (hence its variance either); the pairwise correlation
between bootstrapped means is about 50% (Exercise 15.4).
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Bagging, Boosting, Interactions
• Ensemble methods feel like black boxes: they make predictions by

combining the results of hundreds of separate models

• Such models are able to capture complex interactions between
predictors, which additive models are unable to do

• E.g., Suppose that your most profitable customers are young women
and older men. A linear model would say:

profit ≈ β0 + β1I(female) + β2age

• This doesn't capture the interaction between age and gender

• Trees (and ensembles of trees) do a great job of capturing
interactions

• Indeed, a tree with d splits can capture up to d-way interactions
25 / 38
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Variable Importance
• While RF's and Boosted trees aren't interpretable in any meaningful

sense, we can still extract some insight from them

• For instance, we can use variable importance plots to help answer
the question: Which inputs have the biggest effect on model fit?

• There are two popular ways of measuring variable importance.

• Approach 1: For regression (resp. classification) record the total
amount that the RSS (resp. Gini index) is decreased due to splits
over a given predictor. Average this over all B trees.
◦ A large value indicates an important predictor

• Approach 2: Randomly permute the values of the jth predictor, and
measure how much this reduces the performance of your model
(e.g., how much it increases MSE or accuracy)
◦ A large drop in performance indicates an important predictor

• The varImpPlot() function in R calculates these quantities for you 26 / 38
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354 10. Boosting and Additive Trees
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FIGURE 10.6. Predictor variable importance spectrum for the spam data. The
variable names are written on the vertical axis.

• This helps us to see which variables are the most important…but it
doesn't tell us how they affect the model. E.g., the frequency of ! is
very important, but are emails with lots of !'s more likely to be spam
or not spam?
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10.9 Boosting Trees 355
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FIGURE 10.7. Partial dependence of log-odds of spam on four important pre-
dictors. The red ticks at the base of the plots are deciles of the input variable.
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• You can get partial dependence plots by using the partialPlot
command 28 / 38
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Bootstrap for SE estimation

• We introduced the Bootstrap for the purpose of bagging

• There's a more common use of bootstrapping: standard error
estimation for complicated parameter estimates

• Commonly used to estimate the standard error of a coefficient, or to
build confidence intervals

• Can be used to estimate uncertainty for very complex parameters,
and in very complex sampling settings
◦ We know how to do these things for Normal data, or when the Central

limit theorem holds
◦ Bootstrapping provides a way of estimating standard errors and building

CI's even when the data generating distribution is non-Normal and the
CLT cannot be expected to hold
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A Toy Example: Asset Allocation

• Let X and Y denote the (log) returns of two financial assets

• We want to invest α of our money in asset X and 1− α of our
money in asset Y

• We want to minimize the risk (variance) of our investment returns:

Var(αX + (1− α)Y )

• We're given 100 observations of daily returns
(x1, y1), . . . , (x100, y100)

• In addition to estimating the best allocation (getting an estimate α̂),
we also want to know the standard error of α̂

• If the SE of α̂ is large, this would mean that our investment strategy
may be quite far from optimal
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A Toy Example: Asset Allocation

• With some work, one can show that Var(αX + (1− α)Y ) is
minimized by

αopt = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY

where σ2
X = Var(X), σ2

Y = Var(Y ), σXY = Cov(X, Y )

• We can use the data to calculate the sample variances of X and Y ,
along with a sample covariance.

• Thus we can estimate the optimal allocation strategy with

α̂ = σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY

• Now the tricky part: What is the standard error of α̂?
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A Toy Example: Asset Allocation
Here's our estimate of the optimal asset allocation:

α̂ = σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY

• Suppose that we knew the data generating process for (X, Y ) exactly

• We could then:
1. Simulate a bunch of new data sets of 100 observations (say, do this 1000

times)
2. Calculate new estimates α̂1, α̂2, . . . , α̂1000
3. Estimate the standard error of α̂ by calculating the standard deviation of

the estimates {α̂r}1000
r=1 from our simulated data:

ŜE(α̂) =

√√√√ 1
1000− 1

1000∑
r=1

(α̂r − ᾱ)

where ᾱ = 1
1000

∑1000
r=1 α̂r

33 / 38



.

A Toy Example: Bootstrap Solution

• Great! There's just one major problem…we do not know the
distribution of X and Y exactly, so we can't simulate new batches of
data

• Bootstrap approach: Let's try generating new data sets by resampling
from the data itself…Sounds crazy, right?
1. Get B new data sets Z∗1, . . . , Z∗B , each by sampling 100 observations

with replacement from our observed data (do this, say, B = 1000 times)
2. Calculate new estimates α̂∗1, α̂∗2, . . . , α̂∗B

3. Estimate the standard error of α̂ by calculating the standard deviation of
the estimates from our simulated data:

ŜEB(α̂) =

√√√√ 1
B − 1

B∑
r=1

(α̂∗r − ᾱ∗)

where ᾱ∗ = 1
B

∑B
r=1 α̂∗r
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A Bootstrap Picture
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Figure 5.11 from ISL. A graphical illustration of the bootstrap approach
on a small sample containing n = 3 observations. Each bootstrap data
set contains n observations, sampled with replacement from the original
data set. Each bootstrap data set is used to obtain an estimate of α
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How well did we do?

• When we know the data generating process (see p.188 of ISL),
simulating 1000 data sets and calculating the standard errors of the
corresponding α̂ estimates gives

ŜE(α̂) = 0.083

• Starting with a single data set of n = 100 observations and running
the bootstrap procedure to resample B = 1000 data sets gives

ŜEB(α̂) = 0.087

• Amazing!

• Say we get α̂ = 0.576. The estimated SE is non-negligible, so we
know that there's still a fair bit of uncertainty in what allocation to
choose. But the SE is small enough that choosing an allocation close
to α̂ = 0.576 seems like a reasonable thing to do.
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Bootstrap Confidence Intervals
• The bootstrap procedure gives us B estimates α̂∗1, α̂∗2, . . . , α̂∗B
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• To form a (1− γ) · 100% CI for α, we can use the γ/2 and 1− γ/2
percentiles of the bootstrapped estimates

• In this simulation, we would get a 95% CI of [0.39, 0.76]
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