
.

Lecture 10: Tree-based methods

Decision Trees, Bagging, Random forests

Prof. Alexandra Chouldechova
95-791: Data Mining

April 14, 2016

1 / 43

.

Course Roadmap

2 / 43

.

Course Roadmap

2 / 43

.

Agenda

• Decision Trees (CART)

• Bagging

• Random Forests

3 / 43

.

[source: Classification and regression tree (CART) model to predict pulmonary

tuberculosis in hospitalized patients, Aguiar et al] 4 / 43

.

interior node

terminal node

5 / 43

.

Overview: Tree-based methods
• Tree-based based methods operate by dividing up the feature space

into rectangles
• Each rectangle is like a neighbourhood in a Nearest-Neighbours

method
• You predict using the average or classify using the most common class

in each rectangle

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Does dividing up the feature space into rectangles look like it would
work here? 6 / 43

.

|x2< 0.111

x1>=0.4028

x2>=0.4993

x1< 0.5998

x2< 0.598
0

60/0

0
148/0

0
39/0

1
0/71

0
101/0

1
0/81

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2
• Trees are built up via a greedy algorithm: Recursive binary

partitioning
• At each step, you pick a new split by finding the input Xj and split

point x̃j that best partitions the data
◦ In prediction, you choose splits to minimize the RSS
◦ In classification, choose splits to maximize node purity (minimize Gini

index)
7 / 43

.

Classification trees vs. Linear models

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

ISL Figure 8.7. Trees are bad when the boundary is linear, but very good
when the boundary is well-described by a simple rectangular partition. 8 / 43

.

Decision trees in Prediction
Here's a Prediction example (Y = Salary in millions)

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

9 / 43

.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

0
50

10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

10 / 43

.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Low salary (blue, Green)
High salary (orange, red)

Within each of the 3 rectangles, we predict Salary using the average
value of Salary in the training data

10 / 43

.

Recursive binary partitioning

11 / 43

.

Recursive binary partitioning

11 / 43

.

Recursive binary partitioning

11 / 43

.

Recursive binary partitioning

11 / 43

.

Recursive binary partitioning

11 / 43

.

Recursive binary partitioning

11 / 43

.

The final product

|x2< 0.111

x1>=0.4028

x2>=0.4993

x1< 0.5998

x2< 0.598
0

60/0

0
148/0

0
39/0

1
0/71

0
101/0

1
0/81

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x1

x2

12 / 43

.

Recursive binary partitioning

• At each step, you pick a new split by finding the input Xj and split
point x̃j that best partitions the data

• In prediction, you choose splits to minimize the RSS

• In classification, choose splits to maximize node purity (minimize Gini
index)

G =
K∑

k=1
p̂mk(1 − p̂mk)

where p̂mk is the proportion of training observations in the mth region
that are from the kth class

• G is small if all the p̂mk are close to 0 or 1

13 / 43

.

Why not minimize the misclassification error?

• Misclassification rate is poor at pushing for really pure nodes

• With Gini: going from p̂mk = 0.8 to p̂mk = 0.9 is better than going
from p̂mk = 0.5 to p̂mk = 0.6

• With Misclassification error, these are considered equal
improvements 14 / 43

.

15 / 43

.

Tree pruning

Why did we stop here? Why not keep partitioning?

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Baseball salary data: how would you stratify it?
Salary is color-coded from low (blue, green) to high (yellow,red)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20
0

50
10
0

15
0

20
0

Years

H
its

4 / 51

Low salary (blue, Green)
High salary (orange, red)

16 / 43

.

We could just keep going...
|

Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

17 / 43

.

Tree pruning

• If we just keep going, we're going to overfit the training data, and get
poor test performance

• We could stop as soon as we can't find a split to reduce RSS or Gini
index by at least some pre-specified amount

• But this strategy is short-sighted: A seemingly worthless split early
on might be followed by a really good split later

• Solution: Grow a very large tree T0, and then prune it back

18 / 43

.

Cost complexity pruning
• Here's the regression tree version of cost complexity pruning aka

weakest link pruning

• For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

where |T | is the number of terminal nodes (leaves) in tree T , and
Rm is the rectangle corresponding ot the mth terminal node. ŷRm is
just the mean of the training observations in Rm

• This is familiar. It has the form:

RSS(T) + α|T |

model error + a penalty on model complexity

19 / 43

.

Cost complexity pruning

For each α, find the subtree T ⊂ T0 that minimizes

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)2 + α|T |

• How do we pick α?

• Use Cross-validation

20 / 43

.

Pruning detailsSummary: tree algorithm

1. Use recursive binary splitting to grow a large tree on the
training data, stopping only when each terminal node has
fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to
obtain a sequence of best subtrees, as a function of ↵.

3. Use K-fold cross-validation to choose ↵. For each
k = 1, . . . ,K:
3.1 Repeat Steps 1 and 2 on the K�1

K th fraction of the training
data, excluding the kth fold.

3.2 Evaluate the mean squared prediction error on the data in
the left-out kth fold, as a function of ↵.

Average the results, and pick ↵ to minimize the average
error.

4. Return the subtree from Step 2 that corresponds to the
chosen value of ↵.

20 / 51
[source: ISL Chapter 8 slides]21 / 43

.

Tree pruning

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

Looks like the small 3-leaf tree has the lowest CV error.
22 / 43

.

Good things about trees

• Trees are the most easily interpretable method we've talked about in
this class
◦ You can explain a decision tree to even your least technical colleague

• Arguably, trees more closely mirror human decision-making
• Trees are easy to display graphically.

◦ You can print off your tree and easily obtain predictions by hand

• Trees can handle qualitative predictors and ordered categorical
predictors without needing to create dummy variables

• Trees handle missing values very nicely, without throwing out
observations
◦ When a value is missing, they split on a surrogate variable: E.g., if a user's

years of job experience is missing, they'll split on an optimally chosen
correlated variable like age.

23 / 43

.

A summary of our methods so far

Method Interpretable Flexible Makes assumptions?

Logistic regression Yes Extensible Yes
k-NN No Highly No
LDA/QDA Sometimes No Yes
Trees Extremely Somewhat No

• Decision trees are perhaps the most Interpretable method we've
seen so far

• Trees don't assume any particular relationship between the response
Y and the inputs Xj , and large trees are quite flexible

• So what's the catch?

• Turns out, Trees tend to be rather poor predictors/classifiers!

• We can fix this, if we're willing to give up Interpretability

24 / 43

.

Why are Decision trees poor predictors?
• Decision trees tend to have high variance. A small change in the

training data can produce big changes in the estimated Tree.

25 / 43

.

How are we going to fix this?

• Let's think back to Cross-Validation, and why it gives much better
results than the Validation Set Approach

• The Validation Set Approach tends to overestimate the error, but it
also gives highly variable estimates
◦ If you pick a different random split, you can get wildly different estimates

of Test error

• The K-fold Cross-validation produces much more stable error
estimates by averaging over K separate estimates of error (one from
each fold).

• The idea of Bagging (Bootstrap AGGregatING) has a similar
motivation: To decrease the variance of a high-variance predictor, we
can average across a bunch of estimates

26 / 43

.

The Bootstrap

• The Bootstrap1 is a fundamental resampling tool in statistics.

• Basic idea: We're going to create resampled data sets of size n by
sampling from our observed data with replacement

• More formally this idea says: We're going to use the empirical
distribution of our data to estimate the true unknown
data-generating distribution

1Efron (1979), “Bootstrap Methods: Another Look at the Jackknife”
27 / 43

.

−5 0 5

0.
00

0.
06

0.
12

True Distribution Draw from sample instead

−5 0 5

0
4

8

• We'd love to be able to generate more data from the true
distribution. This would solve all of our problems.

• But we can't do that. We only get to see a sample of size n

• So we'll approximate sampling from the true distribution by
re-sampling from our observed data instead.
◦ A bootstrap sample of size n is a data set (x∗

i , y∗
i) i = 1, . . . , n where

each (x∗
i , y∗

i) are sampled uniformly at random with replacement from
our observed data (x1, y1), . . . , (xn, yn)

◦ We're (re-)sampling rows of our data, with replacement. 28 / 43

.

−5 0 5

0.
00

0.
04

0.
08

0.
12

True Distribution Sample 1

−5 0 5

0
2

4
6

8
10

Sample 2

−5 0 5

0
2

4
6

8
10

Bootstrap from sample 1

−5 0 5

0
2

4
6

8
10

29 / 43

.

What shows up?

• Not all of the training points will appear in each sample

• Each bootstrap sample contains roughly 63.2% of the observed data
points
◦ The points that randomly get left out points feel like a validation

set…we'll return to this later

• If we bootstrap sample B times, we get B data sets of size n, and we
can estimate whatever we want on each dataset

30 / 43

.

Bagging: Classification trees

• Given a training data (xi, yi), i = 1, . . . n, bagging2 averages the
predictions from classification trees over a collection of bootstrap
samples.

• Here we'll describe how to apply Bagging to Classification Trees
...1 For b = 1, . . . , B, get a bootstrap sample of size n from the training

data: (x∗b
i , y∗b

i), i = 1, . . . n
...2 Fit a classification tree f̂ tree,b on each sample
...3 Classify a new point x0 by taking the plurality vote across all B

bootstrapped trees:

ŷbag
0 = argmax

k=1,...,K

B∑
b=1

I
(

f̂ tree,b(x0) = k
)

• Step (3) amounts to letting each of the B trees vote, and then
choosing whichever class has the most votes

• Typically, in Step (2) the trees are grown very large, with no pruning.
Why are we less worried about tuning each tree?
2Breiman (1996), “Bagging Predictors”

31 / 43

.

Example: bagging
Example (from ESL 8.7.1): n = 30 training data points, p = 5 features,
and K = 2 classes. No pruning used in growing trees:

32 / 43

.

How could this possibly work?
• You may have heard of the Wisdom of crowds phenomenon
• It's a concept popularized outside of statistics to describe the idea

that the collection of knowledge of a group of independent people
can exceed the knowledge of any one person individually.

• Interesting example (from ESL page 287):

33 / 43

.

Example: Breiman's bagging

Example from the original Breiman paper on bagging: comparing the
misclassification error of the CART tree (pruning performed by
cross-validation) and of the bagging classifier (with B = 50):

34 / 43

.

Voting probabilities are not estimated class probabilities

• Suppose that we wanted probability estimates p̂k(x) out of our bagging
procedure.

• What if we tried using:

p̂vote
k (x) = 1

B

B∑
b=1

(
f̂ tree,b(x) = k

)
This is the proportion of bootstrapped trees that voted for class k.

• This can be a bad idea
• Suppose we have two classes, and the true probability that y0 = 1

when X = x0 is 0.75.
• Suppose each of the bagged trees f̂ tree,b(x) correctly classifies x0 to

class 1
• Then p̂bag

1 (x) = 1... that's wrong
• What if we used each tree's estimated probabilities instead?

35 / 43

.

Alternative form: Probability Bagging

• Instead of just looking at the class predicted by each tree, look at the
predicted class probabilities p̂tree,b

k (x)
• Define the bagging estimate of class probabilities:

p̂bag
k (x) = 1

B

B∑
b=1

p̂tree,b
k (x) k = 1, . . . K

• We can use p̂bag
k (x) itself as an alternative to plurality voting of the

trees.
• Given an input vector x0, we can classify it according to

ŷbag
0 = argmax

k=1,...K
p̂bag

k (x)

• This form of bagging is preferred if we want to estimate class
probabilities, and it may improve overclass classification accuracy

36 / 43

.

Comparison of the two bagging approaches
The probability form of bagging produces misclassification errors shown
in green. The Consensus version is what we first introduced. It's not as
well behaved.

The Test error eventually stops decreasing past a certain value of B
because we hit the limit in the variance reduction bagging can provide

37 / 43

.

Out-of-Bag (OOB) Error Estimation
• Recall, each bootstrap sample contains roughly 2/3 (≈ 63.2%) of the

of the training observations

• The remaining observations not used to fit a given bagged tree are
called the out-of-bag (OOB) observations

• Another way of thinking about it: Each observation is OOB for
roughly B/3 of the trees. We can treat observation i as a test point
each time it is OOB.

• To form the OOB estimate of test error:
◦ Predict the response for the ith observation using each of the trees for

which i was OOB. This gives us roughly B/3 predictions for each
observation.

◦ Calculate the error of each OOB prediction
◦ Average all of the errors

38 / 43

.

Random Forests

• Random forests provide an improvement over bagged trees by
incorporating a small tweak that decorrelates the individual trees
◦ This further reduces variance when we average the trees

• We still build each tree on a bootstrapped training sample

• But now, each time a split in a tree is considered, the tree may only
split on a predictor from a randomly selected subset of m predictors

• A fresh selection of m randomly selected predictors is presented at
each split... not for each tree, but for each split of each tree

• m ≈ √
p turns out to be a good choice

◦ E.g., if we have 100 predictors, each split will be allowed to choose from
among 10 randomly selected predictors

39 / 43

.

Bagging vs. Random Forests

0 50 100 150 200 250 300

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Number of Trees

E
rr

o
r

Test: Bagging

Test: RandomForest

OOB: Bagging

OOB: RandomForest

Figure 8.8 from ISL. Various fits to the Heart data
Dashed: Error from a single Classification tree
Random forest fit with m = 4 ≈

√
13 = √

p 40 / 43

.

A big data example: Gene expression data

• p = 4,718 genetic measurements from just 349 patients
• Each patient has a qualitative label. K = 15 possible labels

◦ Either normal, or one of 14 types of cancer

• First, filter down to the 500 genes that have the highest overall
variance in the training set

• Split data into training and testing, fit Random forest to training set
for 3 different choices of number of splitting variables, m.

41 / 43

.

Test error: Gene expression data

0 100 200 300 400 500

0
.2

0
.3

0
.4

0
.5

Number of Trees

T
e

s
t

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r

m=p

m=p/2

m= p

• Curves show Test misclassification rates for a 15-class problem with
p = 500 predictors and under 200 observations used for training

• x-axis gives number of trees (number of bootstrap samples used)

• m = p corresponds to bagging.

• A single classification tree has an error rate of 45.7%.
42 / 43

.

Acknowledgements

All of the lectures notes for this class feature content borrowed with or
without modification from the following sources:
• 36-462/36-662 Lecture notes (Prof. Tibshirani, Prof. G'Sell, Prof. Shalizi)

• 95-791 Lecture notes (Prof. Dubrawski)

• An Introduction to Statistical Learning, with applications in R (Springer, 2013)
with permission from the authors: G. James, D. Witten, T. Hastie and R.
Tibshirani

• Applied Predictive Modeling, (Springer, 2013), Max Kuhn and Kjell Johnson

43 / 43

