Nanowire FET Biomolecular Sensors

> Mark Reed Yale University

Departments of Applied Physics and Electrical Engineering Yale Institute for Nanoscience and Quantum Engineering

with: Eric Stern, David Routenberg, Erin Steenblock, Alek Vacic, Nitin Rajan, Prof. Tarek Fahmy

Thanks to: Jin Chen, James Klemie, Daniel Turner-Evans, Pauline Wyrembak, Cathy Jan Labs of Profs. Ronald Breaker, Andrew Hamilton, Tarek Fahmy

NanoForum09

Las Vegas, NV

April 29, 2009

What I won't talk about today

nanowire materials & devices

DNA sequencing devices

molecular electronic transport, IETS

physics of scaled devices

NanoForum09

Las Vegas, NV

April 29, 2009

M. Reed (Yale)

<u>2</u>

Current Macromolecular Sensing Labeled sensing

DNA sequencing, radiotag

DNA array, fluor

ELISA: Indirect fluor

NanoForum09

Las Vegas, NV

April 29, 2009

M. Reed (Yale)

I,

Nanowire biosensors (unlabeled detection)

ISFETs detection limits typically ~ µM

$$\frac{1}{I}\frac{dI}{dQ} \sim \frac{1}{r}$$

NanoForum09

Las Vegas, NV

April 29, 2009

4

Silicon-on-insulator (SOI) CMOS Nanowires

NanoForum09

Las Vegas, NV

April 29, 2009

p-type accumulation mode (backgate)

NanoForum09

Las Vegas, NV

April 29, 2009

1/f noise of nanowires

7

NW Sensitivity Scaling with Size : pH Sensing

NanoForum09

Las Vegas, NV

April 29, 2009

Fluid Considerations

Nano Lett **5**, 803 (2005)

Biotin-Avidin & Streptavidin Sensing

analyte receptor

- n p-type accumulation mode, biotinylated NW device
- n avidin
 - u positive charge
 - $u \Rightarrow$ current decrease
- n streptavidin
 - u negative charge
 - $u \Rightarrow$ current increase

poly(ethylene glycol) (PEG)-ylated device, quenched avidin controls

Nature, 445, 519 (2007)

Las Vegas, NV

April 29, 2009

09

Sensitivity: Concentration Dependence

n initial S/N ~ 140 (@10fM)

> \Rightarrow <100 aM limit (< 3 fg/ml)

 $(1 \text{ aM} = 30 \text{ molecule per mm}^3)$

Debye Screening Considerations

NanoForum09

Las Vegas, NV

April 29, 2009

Protein Assay: Antibody-Antigen Specificity Surface: α-mouse-IgA

100 fM mouse-IgG/IgA in 1.5 mM bicarbonate ($\lambda_D \sim 6.8$ nm)

NanoForum09

Las Vegas, NV

April 29, 2009

Unlabeled Cellular Detection

n Most cells (including pathogenic) release H⁺ in response to specific stimulation

Nat Rev Immunol **3** (2003) 973

NanoForum09

April 29, 2009

Real-time live cellular response – T-lymphocyte activation

Real-time measurement of cell immune response dynamics

NanoForum09

SD

G

Las Vegas, NV

April 29, 2009

M. Reed (Yale)

16

Transgenic peptide-specific MHC T-cell response OT-1/2C transgenic murine CD8⁺ T-cells ■ OT-1 reacts to H-2K^b-SIIN, not H-2K^b-SIY 2C reacts to H-2K^b-SIY, not H-2K^b-SIIN

H-2K^b-SI

Model system for detecting autoimmune diseases and cancer Stern et al, Nano Lett. 8, 3310 (2008).

NanoForum09

Las Vegas, NV

April 29, 2009

2COT-1 Kp-SIIN

Summary

- n CMOS-integrable "NWs"
 - u Label-free sensing to aM resolution
 - Enables system-level integration
 - u Macromolecular assays
- n Real-time cellular immune response
 - u Applicable to simple, point-of-care diagnostics (all simple DC, ambient)
 - u Immune response dynamics
- n Rich area for novel device designs, applications

n <u>The challenge:</u> sensing with physiologic solutions (blood)

