Ultimately Scaled CMOS: DG FinFETs?

Jerry G. Fossum

SOI Group Department of Electrical and Computer Engineering University of Florida Gainesville, FL 32611-6130

J. G. Fossum / 1

Outline

* Introduction - CMOS Scaling
* Thin-BOX FD/SOI MOSFETs
* Pragmatic Nanoscale FinFETs
* Conclusions

Projected HP CMOS Gate-Length Scaling*

J. G. Fossum / 3

Contemporary Bulk-Silicon MOSFET

Has been scaled a la Moore's (and now, "More than Moore") Law, but with increasingly complex boosters and body/channel doping density N_B , which can no longer (i.e., for $L_g < \sim 30$ nm) be adequately controlled.

Continued Scaling to L_g < 10nm: Undoped UTBs/Channels

FD/SOI (n)MOSFET w/ thin BOX and GP?

(n)FinFET on SOI?

NO.

Complex processing/layout. Selective GPs, w/ biasing. Tuned dual-metal gate work functions. High inherent V_t: $V_{t(long)} = (1+r)\phi_c \sim 0.6V$.

Quasi-planar. Conventional processing, w/o N_B. Two gates: good SCE control. Can be pragmatic.

2-D Numerical Simulations: Projected Scaling Limits

Taurus-predicted LP and HP scaling limits (L_{eff}, which, with G-S/D underlap, can be 5-10nm longer than L_g), defined by t_{Si} = 5nm, for thin-BOX/GP nMOSFETs and DG nFinFETs. The devices have been designed for I_{off} ~ 10pA/µm and ~100nA/µm for LP and HP applications, respectively, with DIBL \leq 100mV/V. The 18nm limit for the HP thin-BOX/GP device with V_{GP} is questionable due to the very large $\Delta \Phi_{Gf}$ (gate work-function tuning below midgap) needed; the scaling limit of 25nm without V_{GP} is more realistic.

LP	Thin-BOX/GP w/o V _{GP}	Thin-BOX/GP w/ V _{GP}	DG FinFET
L _{eff} (nm)	28	18	25/15
$\Delta \Phi_{\mathrm{Gf}} (\mathrm{mV})$	0	450	0/-450
НР	Thin-BOX/GP w/o V _{GP}	Thin-BOX/GP w/ V _{GP}	DG FinFET
L _{eff} (nm)	25	18?	15
$\Delta \Phi_{\rm Gf} ({\rm mV})$	0	850	0

Pragmatic FinFET-CMOS can be scaled to the end of the SIA ITRS.

Nanoscale Pragmatic-FinFET CMOS

- * On SOI (no isolation, S-D leakage complexities).
- ***** Undoped fin-UTB/channel (no RDF effects).
- ***** DG, not TG (a top gate is virtually ineffective).
- * One ~midgap metal gate (for nMOS and pMOS).
- * No channel strain (mobilities are high without it).
- * No high-k dielectric (relatively thick SiON is OK).
- **★** G-S/D underlap ($L_{eff(weak)} > L_g$, $L_{eff(strong)} \cong L_g$).
- ***** S/D processing for V_t control (and underlap).

The optimal number of gates is 2!

Two gates (DG) give good control of electrostatics (i.e., SCEs) with thicker UTB than that needed for one-gate (FD/SOI) device.

A third (top) gate is not very beneficial ...

(Note that the effective width (per fin) $W_{eff} = 2h_{Si} + w_{Si}$ is not appropriate.)

... due to *strong* bulk inversion in the undoped fin-UTB/channel.

The predicted electron density in the bulk of the undoped fin-UTB shows substantial (strong) inversion, irrespective of the top-surface condition.

Activating the third gate is not beneficial nor practical.

The bulk inversion also underlies the use of thick SiON.

- * Bulk (a.k.a. volume) inversion is not good, but is unavoidable.
- * For strong inversion, it reduces the effective gate capacitance C_G :

$$-Q_{i} = 2 \left[\frac{C_{ox}}{1 + \frac{\varepsilon_{ox}\bar{x}_{i}}{\varepsilon_{Si}t_{ox}}} \right] (V_{GS} - V_{t})$$
 (via integration of Poisson's equation)

where $\overline{x_i}$ is the average depth(s) of the inversion carriers, which is increased by bulk inversion. The deeper $\overline{x_i}$ reflects lower inversion-layer capacitance, and yields lower C_G and Q_i.

- * The quantization effect further increases \overline{x}_i and reduces C_G .
- * Because of the deeper \overline{x}_i , increasing t_{ox} is not so detrimental to C_G (which is less than $C_{ox} = \varepsilon_{ox}/t_{ox}$), and hence to Q_i and current.
- * Further, the thicker SiON (t_{ox}) reduces the parasitic G-S/D (fringe) capacitance, which improves speed performance significantly.

The underlap is effected by engineering of the lateral doping-density profile in the S/D fin-extension.

Optimal straggle and extension length define best SCE (I_{off}) vs. R_{S/D} (I_{on}) tradeoff; further, V_t can be adjusted for different applications via controlled S/D dopants in channel, with reasonable sensitivity to process variations.

Very high mobilities can be achieved in undoped FinFETs.

Low transverse electric field ($\Leftarrow Q_i/2$) yields high carrier mobilities:

UFDG calibrations to nFinFETs with varying L_q

Scaling L_g degrades μ_{eff} , which implies excessive scattering centers near the source/drain, or perhaps significant remote S/D Coulomb scattering.

Recent work suggests that this problem can be resolved via optimal S/D engineering.

UFDG/Spice3: Pragmatic nanoscale DG-FinFET CMOS can give good speed performance (with very low I_{off}).

*The underlap and the thicker t_{ox} reduce the parasitic G-S/D fringe capacitance, which is very significant in nanoscale CMOS devices.

Conclusions

- * Pragmatic nanoscale DG-FinFET CMOS is viable, and is potentially scalable to the end of the SIA ITRS (where L_g < 10nm).</p>
- Source/drain engineering for G-S/D underlap, V_t adjustment, and high carrier mobilities must be optimized; and tall, thin fins must be controlled.
- * Further, SOI enables embedded FBC (e.g., 1T) DRAM, which can be viable.

UFDG: A Process/Physics-Based Predictive Compact Model Applicable to Generic UTB DG MOSFETs

UFDG is applicable to SG FD/ SOI MOSFETs, as well as symmetrical-, asymmetrical-, and independent-gate DG MOSFETs, including FinFETs.

Short-Channel Effects Modeling in UFDG

(or, how two gates give good control of the electrostatics)

2-D Poisson equation (for weak inversion),

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y} \cong \frac{q N_B}{\varepsilon_{Si}}$$

is solved in (rectangular) body/channel (UTB) region, defined by t_{Si} and $L_{eff} \neq L_g$, by assuming

$$\phi(x, y) \cong \alpha_0(y) + \alpha_1(y)x + \alpha_2(y)x^2$$

,

in Poisson, and applying the (four) boundary conditions (including surface-state charge at both interfaces). The derived potential (with QM shift) defines the integrated (in x-y, over t_{Si}) inversion charge (Q_i) and an effective channel length (L_e < L_{eff} averaged over t_{Si}) for predominant diffusion current (in y), and thus accounts for:

* S/D charge (impurity and/or carrier) sharing [V_t(L_{eff}) & S(L_{eff})],

* DIBL (throughout UTB) [$\Delta V_t(V_{DS})$].

Quantization Effects Modeling in UFDG

UFDG is actually a compact Poisson-Schrödinger solver:

