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Projected HP CMOS Gate-Length Scaling *
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Contemporary Bulk-Silicon MOSFET

Has been scaled a la Moore’s (and now, “More than Moore”) Law, but with
increasingly complex boosters and body/channel doping density Ng, which can

no longer (i.e., for L 4 <~30nm) be adequately controlled
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Continued Scalingto L 4 < 10nm: Undoped UTBs/Channels

FD/SOI (nN)MOSFET w/ thin BOX and GP? (N)FINFET on SOI?
s |57 s
STI BOX STI
| p* GP |

Si Substrate

NO.
Complex processing/layout. BOX
Selective GPs, w/ biasing. YES.
Tuned dual-metal gate work functions. Quasi-planar.
High inherent V. Conventional processing, w/o Ng.
Vitong = (1+1)@ L0.6V . Two gates: good SCE control.

Can be pragmatic.

=z
- .-
w J. G. Fossum /5



2-D Numerical Simulations: Projected Scaling Limits

Taurus-predicted LP and HP scaling limits,f-which, with G-S/D underlap, can
be 5-10nm longer thang), defined byd; = 5nm, for thin-BOX/GP nMOSFETs
and DG nFinFETs. The devices have been designegifer 10pAfum and
~100nAfam for LP and HP applications, respectively, with DIRLLOOmV/V. The
18nm limit for the HP thin-BOX/GP device withgy is questionable due to the
very largeA®q; (gate work-function tuning below midgap) needed; the scaling

Pragmatic FInFET-CMOS can be scaled to the end of the SIA ITRS.

<

limit of 25nm without \gp is more realistic.

Lp Thin-BOX/GP| Thin-BOX/GP DG FinFET
w/0 VGP w/ VGP
Less (NM) 28 18 25/15
ACDGf (mV) 0 450 0/-450
HP Thin-BOX/GP| Thin-BOX/GP DG FinFET
w/o0 VGP w/ VGP
L et (NM) 25 187 15
ADgs (MV) 0 850 0
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Nanoscale Pragmatic-FINFET CMOS

[1 On SOI (no isolation, S-D leakage complexities).
[J Undoped fin-UTB/channel (no RDF effects).

[ DG, not TG (a top gate is virtually ineffective).

[ One ~midgap metal gate (for nMOS and pMQOS).
[ No channel strain (mobilities are high without it).
[J No high-k dielectric (relatively thick SION is OK).

1 G-S/D underlap (Leffweak) > Lg» Lefi(strong) U Lg)-

[1 S/D processing for V; control (and underlap).
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The optimal number of gates is 2!
Davinci (3-D): Undoped Lg¢ = 28nm TG fin size for SCE control; t,, = 1.1nm
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10T DG X hgj = Wgj = Leg i
N I e I
7/

s /hSi = Wg;j (I easier fin)

05
1/5 ~ hgjrpy/Left

0.0

Wsipg)/Left ~ 1/2

Two gates (DG) give good control of electrostatics (i.e., SCESs) with thicker
UTB than that needed for one-gate (FD/SOI) device.
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A third (top) gate is not very beneficial ...

Davinci (w/o QM): Lgss = 25nm, wgj = 13nm, t,, = 1.2nm

1O o s A S
60 + \
- . o—o TG FinFET 30 |
_ ~—= DG FinFET
4071 Re=hgiwg =3 < 60 |
< i )
=2 e
w30 &
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- _ 540
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| ) G\S\_e_ ) - ]
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02 03 04 05 06 07 08 09 1.0 05101520253.03540455.055
VGS (V) Rf

(Note that the effective width (per fin) Wy = 2hg; + Wgj IS not appropriate.)
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.. due to strong bulk inversion in the undoped fin-UTB/channel.

Gate
~—4~ DG FINFET

—>o TG FinFET Si02
=== DG FinFET w/o top gate stack

R¢ = 39nm/13nm = 3

\ ¥
Buried S|02

VGS=VDS:1'OV

Si Substrate

1018

O 5 10 15 20 25 30 35
z (nm)

The predicted electron density in the bulk of the undoped fin-UTB shows
substantial (strong) inversion, irrespective of the top-surface condition.

Activating the third gate is not beneficial nor practical.
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The bulk inversion also underlies the use of thick SION.

* Bulk (a.k.a. volume) inversion is not good, but is unavoidabile.

* For strong inversion, it reduces the effective gate capacitance Cg:

Cox - . . , .
— |(Vgs—V,) (via integration of Poisson’s equation)

1+ €oxX|

L7 egt

—Q =2

oxX™

where x; is the average depth(s) of the inversion carriers, which
IS increased by bulk inversion. The deeper x; reflects lower
Inversion-layer capacitance, and yields lower Cs and Q;.

* The quantization effect further increases x; and reduces Cg.

* Because of the deeper x;, increasing t,, is not so detrimental to Cg
(which is less than C, = g,,/tox), and hence to Q; and current.

* Further, the thicker SION (t,,) reduces the parasitic G-S/D (fringe)
capacitance, which improves speed performance significantly.
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The underlap is effected by engineering of the lateral doping-density

profile in the S/D fin-extension.
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Medici:
Lg=18nm, Legyy=30nm, wg;=12nm
oL DIBL S

[nm] [mV/V]  [mV]
1 (abrupt) 180 94

5 35 62
10 46 66
15 79 71

Straggle defines Leffeak) > Lg-

Optimal straggle and extension length define best SCE (I4) VS. Rg/p (loy) tradeoff;
further, V, can be adjusted for different applications via controlled S/D dopants in
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channel, with reasonable sensitivity to process variations.

J. G. Fossum /12



Very high mobilities can be achieved in undoped FINnFETSs.

Low transverse electric field (I Q;/2) yields high carrier mobilities:

UFDG calibrations to long-L 4 FINFETS

NMOSFETs O electron mobilities PMOSFETs O hole mobilities
450.0 @ ] 200 T T
[ ] - ® {110} DG pFIinFET - measured 1
L ] i ® {100} DG pMOSFET - measured ]
4000 1 ° ] 200.0 b <« {100} bulk pMOSFET - measured]
I L ] o ¢ {110} bulk pMOSFET - measured
350.0 L ° ] - - (low Ng)
P : & BLEX o
< 3000 | ° < 1500¢ ® W lo = 250cm2/V-s
E I e ' 6=0.10
S, ; &E - * . (Wsj = 30nm)
& 250.0 E ]
L [ X2 Ho = 565cm?/V-s g 100.0¢ °| o o
= Z 6=0.20 = SR °
2000 g (ws; = 26nm) ] : DR X3 :
I e ] 50.0 L < <4 ]
1500 L " —— {110} DG nFinFET - UFDG 1 T ]
' @ {100} DG nMOSFET - measured
I m {100} bulk NMOSFET - measured 1 . ]
000 bi—4—m———— ——— 0.0 Bosehoisbatanbacmbitisbcisbossd bbbt
0.5 1.0 1.5 2.0 00 02 04 06 08 lO 12 14 16 18 20
Niny [10%3cm™] Nir, [1013cm™?]
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But ....
UFDG calibrations to nFinFETs with varying L
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Scaling Ly degrades pefr, Which implies excessive scattering centers near the source/drain,
or perhaps significant remote S/D Coulomb scattering.

Recent work suggests that this problem can be resolved via optimal S/D engineering.

J. G. Fossum / 14

=
- "2 F"



UFDG/Spice3: Pragmatic nanoscale DG-FINFET CMOS can give
good speed performance (with very low | ).

Lg = 18nm DG CMOS unloaded RO delays
8.0 [

{ HAbrupt NSD(y) w/ G-S/D overlap (0.1L )
: e—e G-S/D underlap (3.4nm); ty, = 1. onm |
[ =—aG-S/D underlap (3.4nm); t,, = 1.5nm 7
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: 32% speed improvement
2o S o e e with pragmatic FIinFET design*

*The underlap and the thicker t,, reduce the parasitic G-S/D fringe capacitance, which is
very significant in nanoscale CMOS devices.
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Conclusions

[1 Pragmatic nanoscale DG-FINFET CMOS is

viable, and is potentially scalable to the end of
the SIA ITRS (where Ly < 10nm).

[] Source/drain engineering for G-S/D underlap, V;

adjustment, and high carrier mobilities must be
optimized; and tall, thin fins must be controlled.

[] Further, SOl enables embedded FBC (e.g., 1T)
DRAM, which can be viable.
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UFDG: A Process/Physics-Based Predictive Compact Model
Applicable to Generic UTB DG MOSFETSs

/Wg GfT /

Gf =Gb

n —® D

cob

UFDG is applicable to SG FD/
SOl MOSFETSs, as well as
symmetrical-, asymmetrical-,
and independent-gate DG
MOSFETS, including FInFETs.

=z
w J. G. Fossum / 17



Short-Channel Effects Modeling in UFDG

(or, how two gates give good control of the electrostatics)

2-D Poisson equation (for weak inversion), y TGf
2 2 N

0<£+6chq ; , CDGf Loxf

ox~ dy  Esi X !
—> T <—Leﬁ
Is solved in (rectangular) body/channel (UTB) region, S UTB tg| D

defined by tg; and Lgf # Ly, by assuming !
2 I

@(x, y) Dag(y) +a;(y)x +a,(y)x Pip  loxb
in Poisson, and applying the (four) boundary conditions le

(including surface-state charge at both interfaces). The derived
potential (with QM shift) defines the integrated (in x-y, over tg;) inversion
charge (Q;) and an effective channel length (L. < Lot averaged over tg;)
for predominant diffusion current (in y), and thus accounts for:

* S/D charge (impurity and/or carrier) sharing [ Vi(Letr) & S(Lesf)]
* DIBL (throughout UTB) [ AVy(Vps)] -
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Quantization Effects Modeling in UFDG

UFDG is actually a compact Poisson-Schrodinger solver:

Classical PE potentials, SWE updated potentials,
(charge coupling, electric fields q (eigenfunctions, electric fields -OM O; & |
inversion-charge : _ eigenvalues, in UTB/ch I i ch
distribution) (classical Q; & Igp) 2-D DOS, F-D) in UTB/channe
, , , , , 1-D SWE analytical solution is
20 derived using a variational

approach, then coupled to PE
and Qi(Vgss: Vaps) via
Newton-Raphson iteration, all
with dependence ont g;and Si
orientation, as wellas E .
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The QM modeling is also
the basis for a physical
mobility model for the
UTB carrier transport.
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