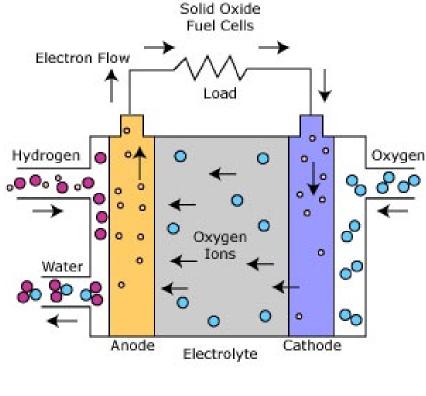
Effect of Starting Materials on the Characteristics of $(La_{1-x}Sr_x) Mn_{1+y}O_{3-\delta}$ Powder Synthesized by GNP

2007.04.26

Fuel cells are making headlines across the globe in almost every area of power production including buildings, cars and portable electronics.


MI-Jai Lee

Principle

What is SOFC ?

Anode : $H_2+O^{-2} = H_2O + 2e^{-2}$ Cathode : $1/2O_2 + 2e^{-2} = O^{-2}$ Total : $H_2 + 1/2O_2 = H_2O$ Solid oxide fuel cell is energy conversion device that produces electricity by electrochemical. It operate at high temperature over 600 °C with pollution-free technology.

Principle

Advantage & Disadvantage

Advantage

- Highest energy conversion efficiency
- No need to use noble metal catalyst (600~1000 °C operation)
- LNG, coal gas can be used
- No problems of electrolyte loss
- High quality byproduct heat
- Modular construction
- Potential for cogeneration
- Much lower production of pollutants.

Disadvantage

Not reliable to thermal cycleLow physiochemical stability

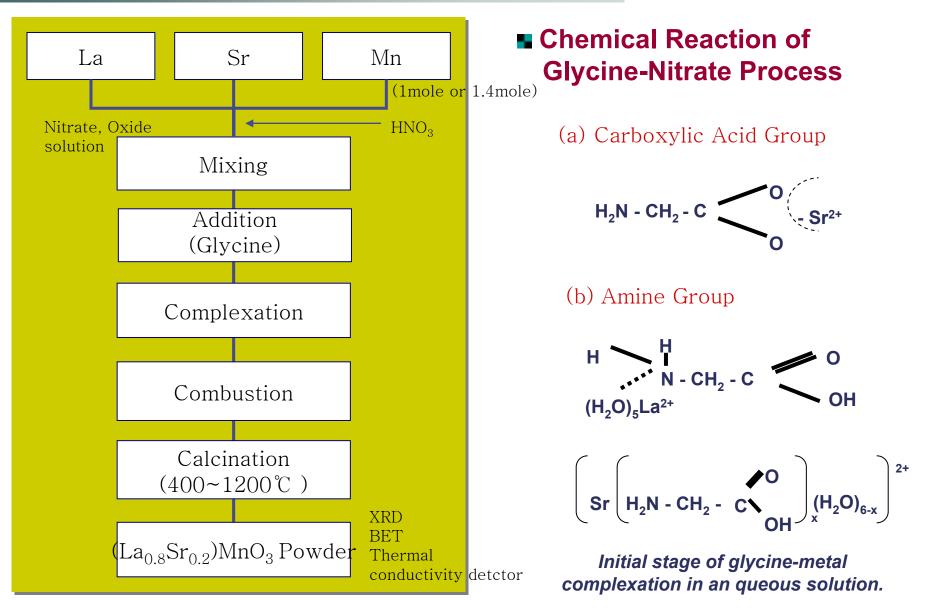
Principle

Key Research Material Areas ?

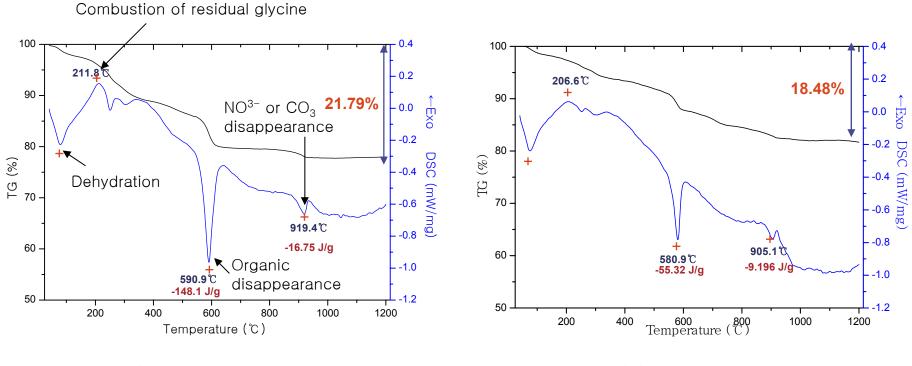
General Materials

Nano-scale materials, and synthesis

- Nano-powders
- Composites


New cathode materials

- Higher conductivity
- Lower polarization
- Fuel flexible anode materials
 - Sulfur tolerance
 - Various fuels

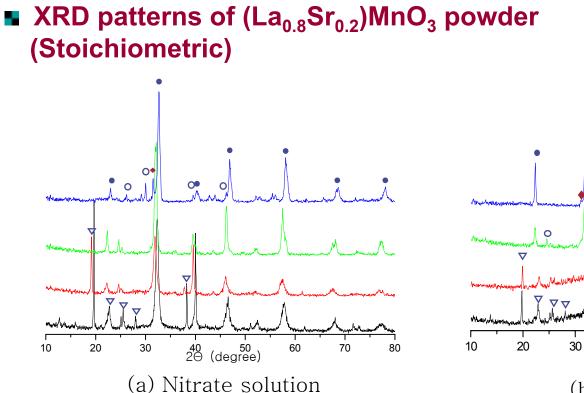

Materials Processing

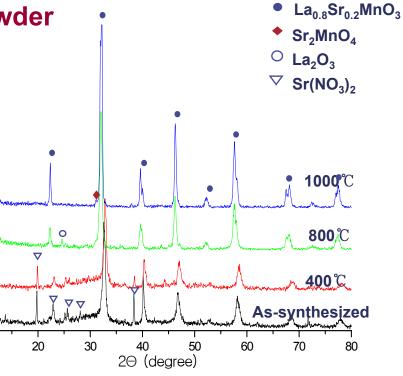
- Thin films
 - lower temperatures
 - new processes
- Chemical synthesis routes for development of mixed conductors
- Investigation of complex perovskitetype oxides
- MEA fabrication and characterization (solid acids, proton conducting oxides)

Experimental Procedure

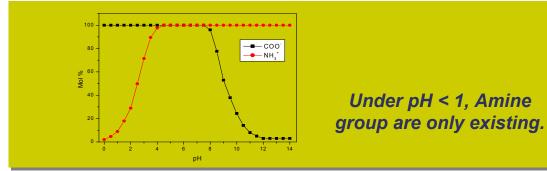
DT-DSC curve of synthesized La_{0.8}Sr_{0.2}MnO₃ powder (Stoichiometric)

(a) Nitrate solution

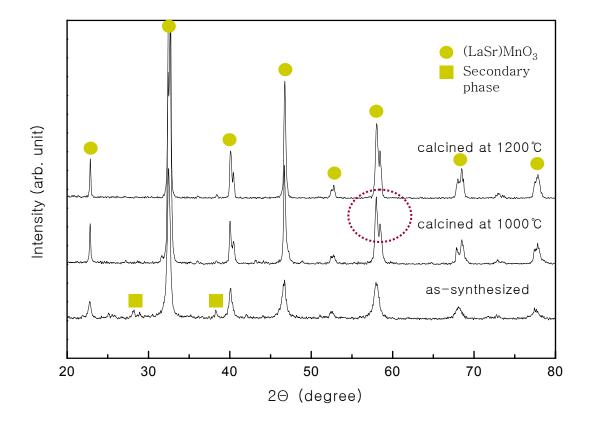

Result


(b) Oxide solution

Κ


ICET

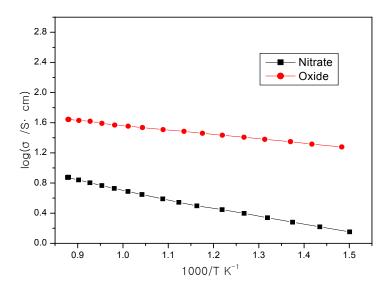
Result


(b) Oxide solution

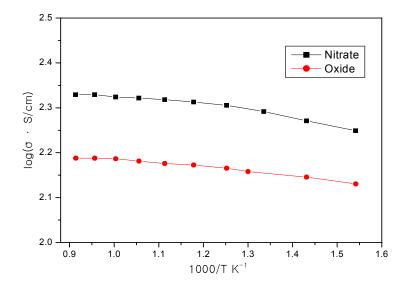
KICET

Result

XRD patterns of (La_{1-x}Sr_x)Mn_{1.40}O₃ powders (Non-Stoichiometric, Nitrate Solution)



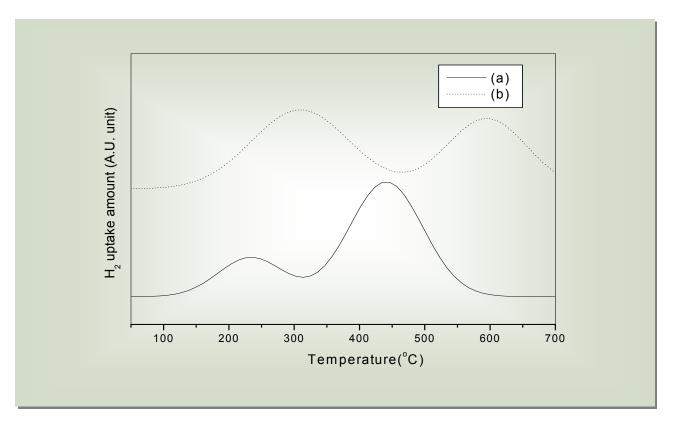
It has single phase after calcination at 1200 °C for 4hrs.


 $(La_{0.8}Sr_{0.2})Mn_{1.4}O_3$

Result

Electrical conductivity of (La_{0.8}Sr_{0.2})Mn_{1-x}O₃ powders

(a) Stoichiometric (Mn = 1mole)
Nitrate solution : 4.87 S/cm at 700℃
Oxide solution : 35.7 S/cm at 700℃



(b) Non-Stoichiometric (Mn = 1.4mole)
Nitrate solution : 210.3 S/cm at 700℃
Oxide solution : 152.7 S/cm at 700℃

Temp.(℃)	σ (S/cm)	Refs.
800	180	Solid State Ionics 110(1998)61
900	155	J. Mater. Chem. 1997, 7(13)

Result

Temperature programmed reduction (Non-Stoichiometric)

Temperature programmed reduction of $La_{0.8}Sr_{0.2}Mn_{1-x}O_3$ powder after calcination 1000 °C for 4hrs with different starting Materials. (a) nitrate and (b) Oxide

Conclusion

KICET

Effect of Starting Materials on the Characteristics of (La_{1-x}Sr_x)Mn_{1+y}O_{3-δ} Powder Synthesized by GNP

- Case1 : Nitrate solution (La:Mn=1:1)
 - LSM powders show secondary phases after calcination at 1000 °C (La₂O₃, Sr₂MnO₄)
 - Average particle size is 0.90 μm and BET is 26.5 m^2/g
 - The particles show porous structure
 - Electrical conductivity shows 4.87 S/cm at 700 $^\circ\!\!\mathrm{C}$ after sintered at 1200 $^\circ\!\!\mathrm{C}$
- Case2 : Oxide solution (La:Mn=1:1)
 - Average particle size is $9.04 \mu m$ and BET is 16.8 m^2/g
 - LSM powders show a secondary phase $\rm Sr_2MnO_4$ after calcination 1000 $^\circ\!\!C$ for 4hrs.
 - Electrical conductivity shows 35.7 S/cm at 700 $^\circ\!\! C$ after sintered at 1200 $^\circ\!\! C$ for 4hrs.
- Case3 : Mn excess (La:Mn=1:1.4, nitrate solution)
 - Average particle size is 2.46 $\mu\mathrm{m}$
 - The powders have good sinterability
 - Deoxidization peak of the synthesized (La,Sr)MnO_{3+δ} powders using nitrate solution appeared at lower temperature than the synthesis powders using oxide solution, at 450°C(β-peak)
 - Electrical conductivity shows 210.3 S/cm at 700°C after sintered at 1200°C for 4hrs.