# Nanoparticles-based FRET for Detection of Protein Glycosylation

# Hak-Sung Kim Dept Biological Sciences KAIST



# **Glycosylation of Proteins**

- Glycoprotein : Protein which has a carbohydrate moiety
- Produced through glycosylation process by which a carbohydrate moiety is conjugated to a protein
- Glycosylation is one of the most important post-translational modifications of protein *in vivo*
- Glycan (carbohydrate) plays an essential role in biological function, localization, trafficking, solubility, immuno-genicity
- Glycoprotein accounts for 60 % of therapeutic proteins
  - Approved : 140
  - Clinical trial : 500



## **Glycan Profile of Glycoprotein in Humans**



ASN : Asparagin residue on protein GlcNAc : N-Acetylglucosamine Man : Mannose Gal : Galactose NeuNAc : N-Acetylneuramic acid (Sialic acid)



- Detailed glycan profile like oligosaccharide composition and glycosylation degree is crucial for prediction of protein functions
- Most analyses rely on conventional ones involving complex multi-step procedures such as deglycosylation and LC/MS



## Rapid and simple method to detect the glycan profile



#### A Method to Detect Protein Glycosylation based on FRET between Quantum Dots and Gold Nanoparticles



# Photoluminence (PL) Quenching of QDs by AuNPs via Foster type FRET

- Model system : Biotin-AuNPs and Streptavidin-QDs
- PL quenching of QDs by AuNPs through Streptavidin-Biotin interaction
- Externally added Avidin prevents the PL quenching of SA-QDs by Biotin-AuNPs → Recovery of the PL intensity of SA-QDs



Oh et al., JACS, 2005, 127, 3270 -3271



# **Interacting Partner : Lectin-Carbohydrate**

- Lectins : Proteins of nonimmune origin that can recognize and bind to specific carbohydrate structural epitopes
- Over 100 lectins are known

| Lectin                            | Carbohydrates                                |
|-----------------------------------|----------------------------------------------|
| <b>Concanavalin A</b>             | Manα(1,6), Manα (1,3)<br>Manβ (1,4), Glucose |
| Weat Germ Agglutinin              | GlcNAc oligomers                             |
| Ulex Euripides Agglutinin I       | Fuca (1,2)Gal                                |
| Ricinus Communis Agglutinin I     | Galβ(1,4)GlcNAcb1                            |
| Griffonia Simplicifolia Lectin II | GlcNAc on non-reducing terminus              |
| Sambucus Nigra Lectin             | Siaα(2,6)Gal/Gal/NAc                         |



# **Conjugation of Interacting Partners to NPs**

**Interacting Partner :** Concanavalin A - Dextran **AuNPs :** Synthesis by reduction of HAuCl<sub>4</sub> in the presence of citrate **QDs :** Emission peak at 605 nm



#### **Characterization of Con A-AuNPs**

- Red-Shift & Broad absorption spectrum of Con A AuNPs
  → SPB shift after conjugation of Con A
- Size of AuNPs :  $3.2 \pm 0.4$  nm (n = 200)
- No significant aggregation among Con A- AuNPs



**TEM image of ConA -AuNPs** 





# **Detection Principle using NPs-based FRET**



Modulation of FRET efficiency between Dex-QDs and ConA-AuNPs by glycan moiety or glycosylation degree Prevention of PL quenching by Glycoprotein having carbohydrates



## PL Quenching of Dex-QDs by ConA-AuNPs

#### • PL quenching, $\Delta P$ , of Dextran-QDs with respect to the ConA-AuNPs concentration

 $: \Delta P = P_0 - P, \qquad \Delta P_{max} = P_{max} - P$ 

Po & P : PL of Dex-QDs before and after addition of Con A-AuNPs

Pmax : Maximum PL quenching of Dex-QDs at excess concentration of Con A-AuNPs



## **Detection of Glycan Moiety on Intact Protein**

### • Avidin

- 67.5 kDa (Tetramer)
- 1 mannose per subunit

- NeutrAvidin<sup>TM</sup>; Deglycosylated form
  - 66 kDa (Tetramer)
  - No capacity to bind to lectins



#### **Detection of Glycan Moiety on Avidin**



Biomolecular Engineering Lab.

**KAIS**1

#### **Detection of Protein with Varied Glycosylation Degrees**

Conjugation of different numbers of Mannose to BSA by changing the molar ratio between α-D-Mannopyronosylphenyl isothiocyanate and BSA



# Conclusions

- PL quenching of Dex-QDs occurred by ConA-AuNPs through specific interaction between ConA and Dex
- Glycan moiety on intact protein could be rapidly detected by using FRET between Con A-AuNPs and Dex-QDs
- Changes in PL quenching of Dex-QDs were well correlated with the mannosylation degree of BSA
- The use of lectins with preference for diverse carbohydrates might enable analysis of the glycan profile.



# Acknowledgement

Eunkeu Oh Dr. Dohoon Lee Young-Pil Kim Younghee Oh Zongwen Jin

Financial supports by the R & D program of Fusion Strategies for Advanced Technologies of MOCIE, the Nano-Bio Science & Technology Program of MOST, and the Korea Health 21 C R & D Project of MHW.

