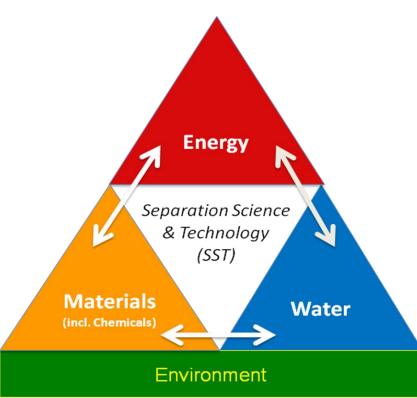
Nanoporous Membranes With In Situ Synthesized Polymeric Particles: Preparation, Characterization and Applications to Sustainable Chemistry, Engineering and Materials (SusChEM)

Prof. Mamadou S. Diallo^{1,2}


¹Graduate School of Energy, Environment, Water and Sustainability (EEWS) Korea Advanced Institute of Science and Technology (KAIST)

> ²Environmental Science and Engineering Division of Engineering and Applied Science California Institute of Technology

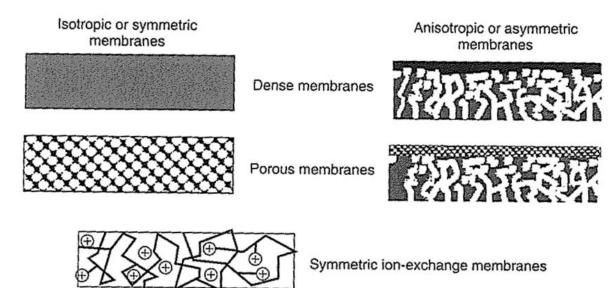
11th Korea US Forum on Nanotechnology Seoul National University September 29-30, 2014

Mamadou Diallo as Co-Chair of an ACS Presidential Symposium (August 12-13, San Francisco, 2014: NSF CBET Funding)
Separation Science and Technology (SST) for Sustainable Chemistry, Engineering and Materials (SusChEM)

Separation S&T Platform

Separation Processes Separation Materials Separation Systems

Integral Element

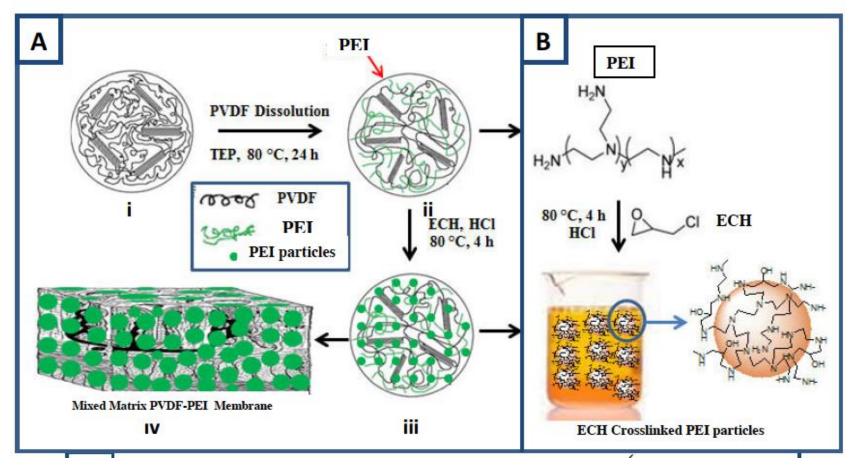

Reclaiming and Maintaining The Environment

Membrane Technology for SusChEM

- Polymeric membranes are critical for a broad range of sustainability related applications including
 - Energy conversion and storage
 - Water treatment, reuse and desalination
 - Gas separations
 - Biofuel processing
 - Metal and resource recovery
 - Biochemical separations and purifications

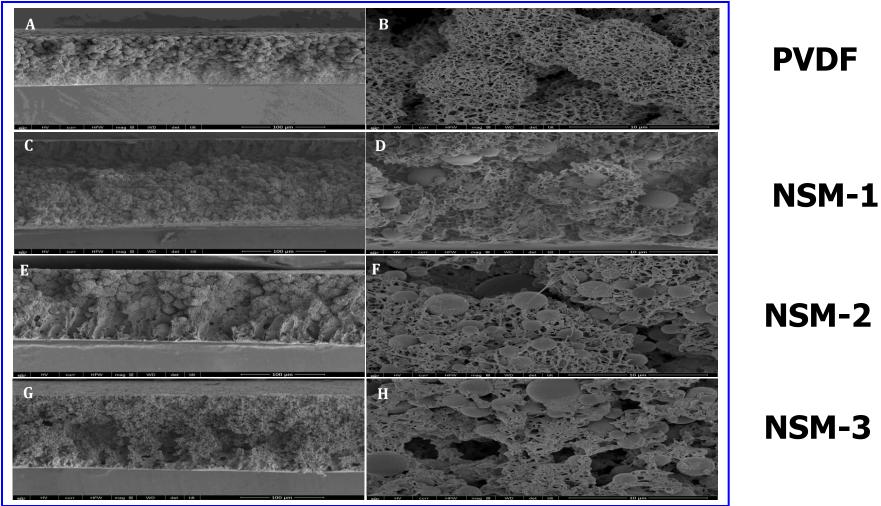
Current Polymeric Membranes

- Current commercial polymeric membranes perform a single function such as
 - Salt rejection in desalination using a dense and composite membrane
 - Particle rejection in algae separations and harvesting using a porous and low-pressure membrane
 - Proton transfer in fuel cells by a cation-exchange membrane


Multifunctional Polymeric Membranes

- Membrane technology is moving towards advanced membranes that perform multiple functions with improved flux and fouling resistance including:
 - Solute rejection
 - Sorption
 - Catalysis
 - Charge transport

Next Generation Polymeric Membranes: Mixed Matrix Membranes With Embedded Nanomaterials


- Convergence of membrane technology and nanotechnology to prepare mixed matrix membranes (MMMs) with embedded nanomaterials
 - Carbon nanotubes
 - Graphene
 - Zeolites
 - Metal oxide nanoparticles
 - Metal organic frameworks
 - Dendritic macromolecules (Our Group)
 - Polymeric nanoparticles (Our Group)

Example 1: MMMs With In-Situ Generated Polyethyleneimine (PEI) Particles as Weak-Base Membrane Absorbers

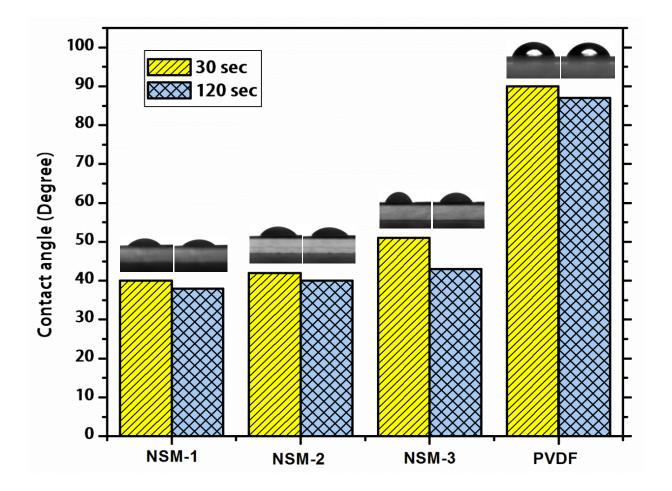
Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci* .2014, 450, 93-102.

SEM Images of MMMs With In-Situ Generated PEI Particles

Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci.* **2014**, 450, 93-102.

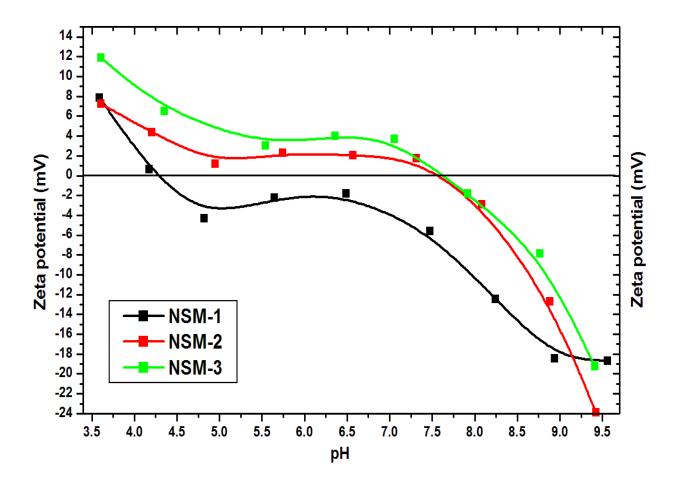
Composition of MMMs With In-Situ Generated Polyethyleneimine (PEI) Particles

Membrane Composition	NSM-1		NSM-2		NSM-3		PVDF (Neat)	
	Wt,g	Wt, %	Wt, g	Wt, %	Wt, g	Wt, %	Wt, g	Wt, %
PVDF	5.25	73.32	5.25	62.16	5.25	52.27	5.25	100
[a] PEI Particles	1.91	26.68	3.196	37.84	4.794	47.73		

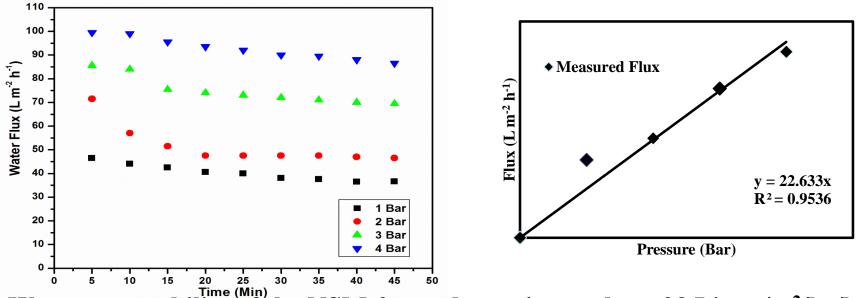

Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci* .2014, 450, 93-102.

Surface Compositions of MMMs With *In-Situ* **Generated PEI Particles As Determined by XPS**

Membrane Sample	Concentration (wt%)					
	С	F	0	Ν		
PVDF	51.71	48.29				
NSM-1	53.93	38.2	6.85	1.02		
NSM-2	54.46	36.01	8.25	1.28		
NSM-3	57.37	28.41	12.38	1.84		


Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci*. **2014**, 450, 93-102.

Contact Angles of MMMs With In-Situ Generated PEI Particles

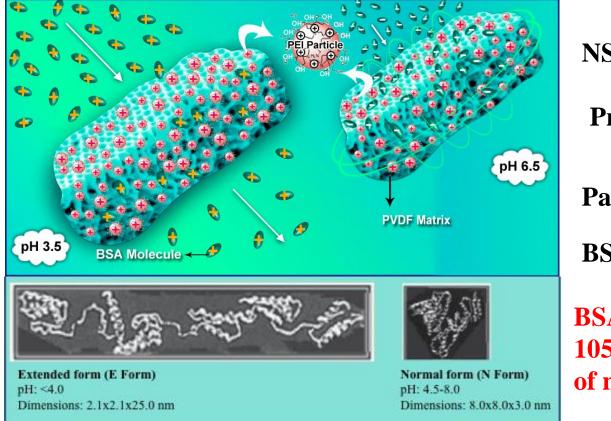

Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with In-Situ Generated Polyethyleneimine Particles. *J. Mem. Sci*. 2014, 450, 93-102.

Zeta Potentials of MMMs With In-Situ Generated PEI Particles

Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci* .2014, 450, 93-102.

Water Permeability of the NSM-2 Membrane With In-Situ Generated PEI Particles

Water permeability of the NSM-2 membrane is equal to ~23 Liters/m²/hr/bar.

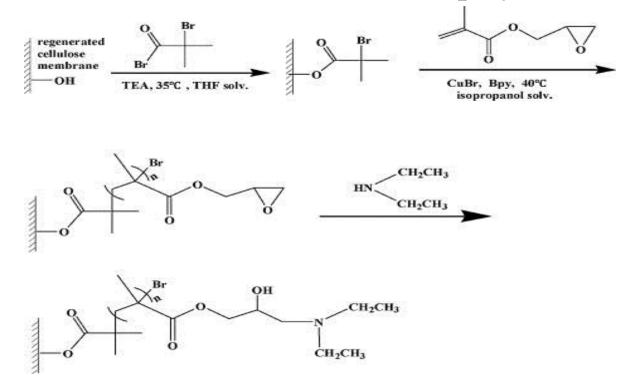

Water permeability of an ultrafiltration (UF) membrane typically varies from 50 to 800 Liters/m²/hr/bar.

NSM-2 membrane behaves as a "tight" UF membrane

Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci*. 2014, 450, 93-102.

MMMs With In-Situ Generated PEI Particles as Weak-Base Membrane Absorbers

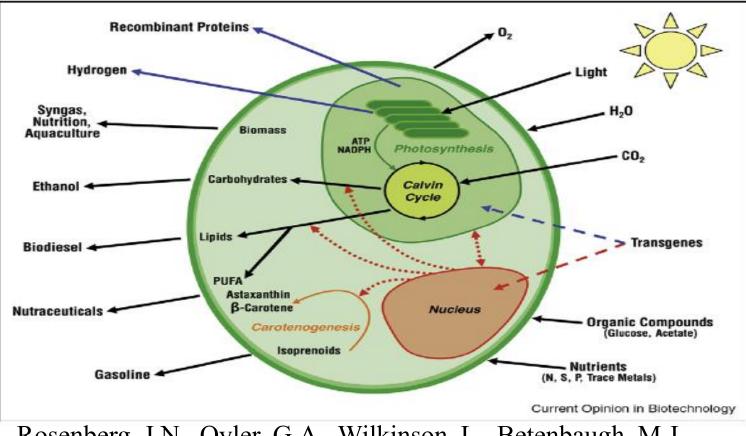
BSA: Bovine Serum Albumin Protein (1000 mg/L)


NSM-2 UF Membrane Pressure = 1 bar Particle loading: 38 wt% BSA rejection: 90% BSA binding capacity;

105 mg of protein per mL of membrane at pH 6.5

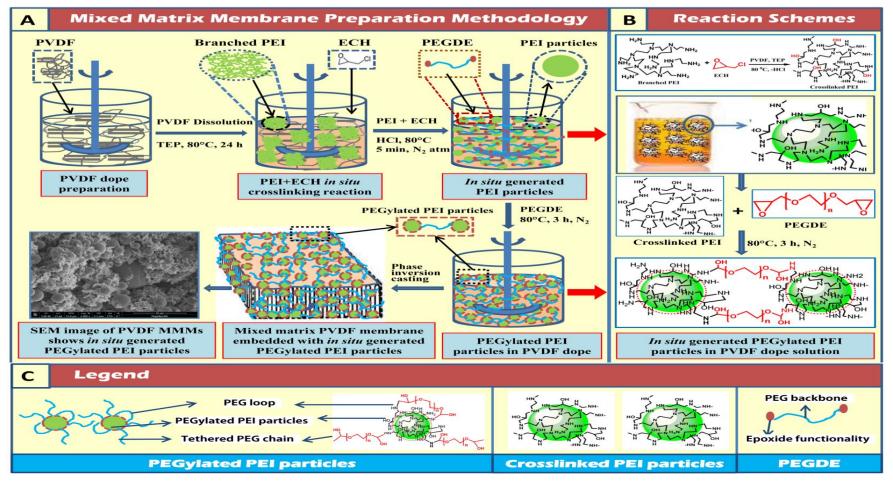
Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with In-Situ Generated Polyethyleneimine Particles. J. Mem. Sci .2014, 450, 93-102.

Other Reported Preparation Routes for Weak-Base Membrane Absorbers

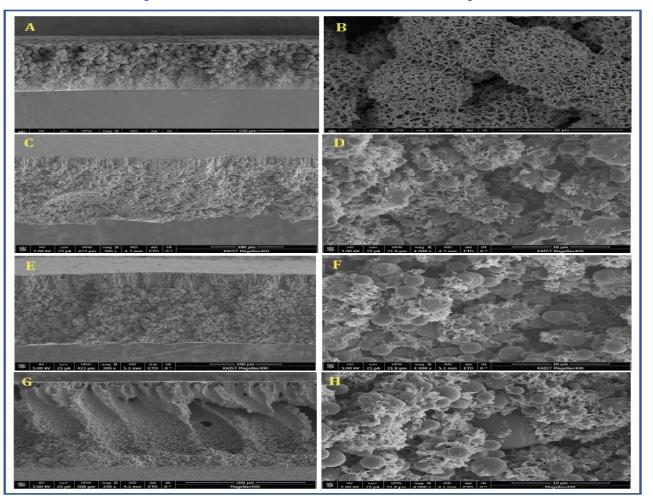

Surface-initiated atom transfer radical polymerization

BSA binding capacity: 96 mg of protein per mL of membrane in PBS buffer (pH ~7)

Qian et al. Appl. Surf. Sci. 271, 2013, 176–183


Example 2: Microalgae Biotechnology as Platform for a Sustainable Energy, Water, Materials and Food Nexus

Rosenberg, J.N., Oyler, G.A., Wilkinson, L., Betenbaugh, M.J., 2008. Curr. Opin. Biotechnol. 19, 430-436.


Microalgae extraction and concentration for dilute culture media remains a major and unresolved challenge

Example 2: MMMs with In Situ Synthesized and PEGylated PEI Particles as Fouling Resistant Membranes for Microalgae Recovery and Harvesting

Kotte, M. R., Hwang, T., M.; Han, J-I. and Diallo, M. S. A One-Pot Method for the Preparation of Mixed Matrix Polyvinylidene Fluoride Mem branes with In Situ Synthesized and PEGylated Polyethyleneimine Particles. J. Mem. Sci. 2014. In Press. DOI: 10.1016/j.memsci.2014.09.044.

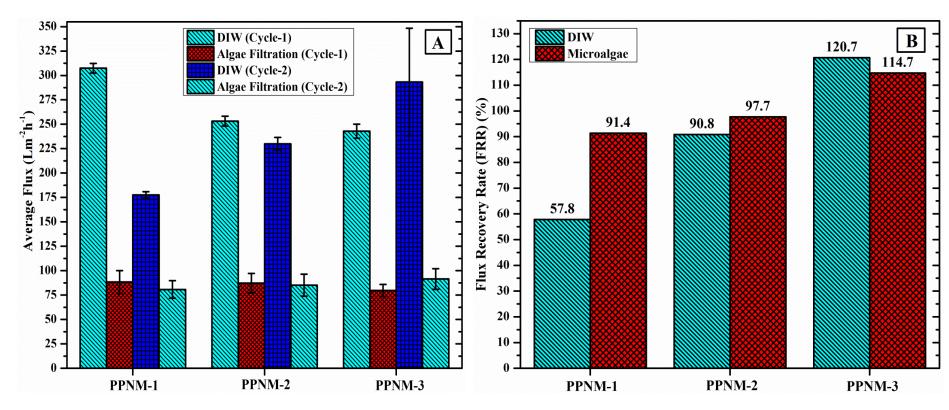
SEM Images (Cross Sections) of MMMs with In Situ Synthesized and PEGylated PEI Particles

Neat PVDF

PPNM-1 (35 wt%)

PPNM-2 (47 wt%)

PPNM-2 (57 wt%)


Kotte, M. R., Hwang, T., M.; Han, J-I. and Diallo, M. S. A One-Pot Method for the Preparation of Mixed Matrix Polyvinylidene Fluoride Mem branes with In Situ Synthesized and PEGylated Polyethyleneimine Particles. J. Mem. Sci. 2014. In Press. DOI: 10.1016/j.memsci.2014.09.044.

Selected Physicochemical Properties of MMMs with In Situ Synthesized and PEGylated PEI Particles

Membrane	Contact	Zeta potential	Average pore diameter		PEGylated PEI particle diameter		
	angle (Degree)	(mV)	(nm)		(nm)		
		рН 7	Adsorption	Desorption	Minimum	Maximum	
PPNM-1	53	8.59	20.22	15.98	599	2092	
PPNM-2	51	2.27	24.04	19.50	751	2215	
PPNM-3	43	4.23	23.55	19.01	925	3642	
PVDF (Neat)	87	-5.9	16.87	12.79			

Kotte, M. R., Hwang, T., M.; Han, J-I. and Diallo, M. S. A One-Pot Method for the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with In Situ Synthesized and PEGylated Polyethyleneimine Particles. J. Mem. Sci. 2014, In Press. DOI: 10.1016/j.memsci.2014.09.044.

MMMs with In Situ Synthesized and PEGylated PEI Particles as Fouling Resistant UF Membranes for Microalgae Recovery

Suspensions of Chlorella *sp. KR-1* microalgae (1.2-1.4 g/L dry biomass)

Kotte, M. R., Hwang, T., M.; Han, J-I. and Diallo, M. S. A One-Pot Method for the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with In Situ Synthesized and PEGylated Polyethyleneimine Particles. J. Mem. Sci. 2014. In Press. DOI: 10.1016/j.memsci.2014.09.044.

Journal Articles (Published and Submitted)

- 1. Kotte, M. R., Cho, M. and Diallo, M. S. A Facile Route to the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with *In-Situ* Generated Polyethyleneimine Particles. *J. Mem. Sci*. **2014**, 450, 93-102.
- Kotte, M. R.; Hwang, T.; Han, J-I. and Diallo, M. S. A One-Pot Method for the Preparation of Mixed Matrix Polyvinylidene Fluoride Membranes with In Situ Synthesized and PEGylated Polyethyleneimine Particles. *J. Mem. Sci.* 2014. In Press. DOI: 10.1016/j.memsci.2014.09.044.
- 3. Hwang, T.; Kotte, M. R.; Han, J-I.; Oh, Y-K and Diallo, M. S. Microalgae Recovery by Ultrafiltration Using Novel Fouling-Resistant PVDF Membranes With In Situ PEGylated Polyethyleneimine Particles. **Submitted. Under Review.**

Caltech/KAIST Joint Patents (Published and Filed)

- 1. Diallo, M.S., Goddard, W. A. III., Park, S-G and Cho, M-K. Filtration Membranes, and Related Nano and/or Micro fibers, Composites, Methods and Systems. US Patent Application. Pub No: US20130112618 A1. Publication Date: May 9, 2013.
- Diallo, M. S. and Kotte, M. R. Filtration Membranes and Related Compositions, Methods and Systems. US Patent Application. Pub No US20130213881 A1. Publication Date: August 22, 2013.
- 3. Diallo, M. S. and Kotte, M. R. Mixed Matrix Membranes With Embedded Polymeric Particles and Networks and related Compositions, Methods, and Systems. US and PCT Applications (Pending). **Expected Publication Date:** January 30, 2015.

Acknowledgments: AquaNano/Caltech Program

- Senior Collaborators: Prof. William A. Goddard III (Caltech), Prof. Jean Frechet (Then at UC-Berkeley), Prof. James H. Johnson (Howard U) Prof. Donald Tomalia (Central Michigan University) and Dr. Glenn Waychunas (Lawrence Berkeley Lab)
- Staff Scientists/ Post Doctoral Research Associates : Dr. Hang Ting Chang (AquaNano), Dr. Vyacheslav Bryantsev (Caltech), Dr. Tapan Shah (Caltech), Dr. Joytsnendu Giri (Caltech), Dr. Yi Liu (Caltech), Dr. CJ Yu (AquaNano), Dr. Emine Boz (UC-Berkeley), Dr. Samuel Webb (Stanford Synchrotron Radiation Laboratory) and Dr. Pirabalina Swaminathan (Howard U)
- Graduate/Undergraduate Students: Himanshu Mishra(Caltech), Simone Christie (Howard U), Sa'Nia Carasquero (Howard U), Kwesi Falconer (Howard U), (Howard U) (Caltech) and John Howard (Caltech)
- US National Science Foundation (Funding)
- US EPA STAR Program (Funding)
- Aqua Nano, LLC (Funding)
- Stanford Synchrotron Radiation Laboratory (EXFAS and XANES)
- Advanced Light Source of Lawrence Berkeley National Laboratory (NEXAFS)
- Environmental Molecular Science Laboratory (Supercomputing)

Acknowledgments: KAIST EEWS Program

- Senior Collaborators: Prof. Yousung Jung (KAIST Graduate School of EEWS) and Prof. Jangwook Choi (KAIST Graduate School of EEWS)
- Staff Scientists and Post Doctoral Research Associates : Dr. Rao Kotte (KAIST) , Dr. Seongjik Park (KAIST), Dr. Dr. Chidralaravi Kumar (KAIST)
- KAIST Graduate Students: Man-Ki Cho (Ph. Candidate), Doyeon Lee (MS) Dennis Chen (MS) and Sang Lee (MS)
- KAIST EEWS Initiative (Funding)
- KAIST WCU Program (Funding)