Nano-crystalline Oxide Semiconductor Materials for Semiconductor and Display Technology

Sanghun Jeon Ph.D. Associate Professor

Department of Applied Physics Korea University

## **Personnel Profile (Affiliation and Employment)**



Employment

Associate Professor in the Department of Applied Physics at Korea University Education 03 Ph.D. Electronic Materials (Semiconductor Device, MOS dev. & Tr. Tech (w/ Best Paper Award & Young Researcher Award)

Young Researcher Award at Int. Conf. on SSDM Nagoya Japan 2002)

## ~ 10 Yr experience at Samsung Adv. Inst. Tech., and Samsung Electronics in Semiconductor Area for Last a Decade with 6 research awards.

#### 12~ Samsung Adv. Inst. Tech., SEC. Principal Research Staff Member

Project leader of Haptic materials and devices (Tactile sensor)

Affiliation

#### 09~11 Samsung Adv. Inst. Tech., SEC. Principal Research Staff Member

Ox-based Device, Lead Device Physicist and Process Integrator

Photo/Image Sensor, Interactive Display, Integrated Circuits, High Power Device Transparent device, 3D device, Electrical/Reliability/Modeling works.

#### 05~09 Memory Business Division of SEC, Senior Research Staff Member

Charge Trap Flash (8, 16, 32Gb). Process Integrator and Device Engineer.

#### 03~05 Samsung Adv. Inst. Tech., [SAIT] Senior Research Staff Member Initiative Study on Charge Trap Flash Memory Device.

### **Technology Transfer @ Samsung**

Two-time tech. transfer from SAIT to business divisions of SEC, memory division (2005-2009) and display division (2011)



#### Contents

#### For nc-ox. device, I present various applications.



This work Conventional

#### Image Sensor

crolens



TEM images



S. Jeon et al., TCM 2010, IEDM 2010, ACS Appl. Mat. Int. 2011, APL 2011

#### Power

Bilayer oxide transistor exhibits remarkable performance such as, high mobility (23~47cm<sup>2</sup>/Vs) and high breakdown voltage (BV) of 60~340V despite low process temperatures (<300°C), which can be integrated on metal pad.





#### Display

Motivation of oxide photo-sensor

 $\Rightarrow$  Large Area Interactive Display



 Display size is limited by driving speed. μ > 5 cm²/eV/s for UD-level
 ∴ High μ oxide TFT for

display

Process compatibility

oxide sensor



### **The Evolution of Devices**

• CMOS Logic Device (Si  $\rightarrow$  III-V/ Graphene on Si)

Memory (Planar  $\rightarrow$  Vertical/Hybrid Integration)



٠







Key Trend: Alternative Materials and 3D Stack



RRAM, Adv. Fuct. Mat. 2008

Transition Ox. Based RRAM



### Benefit of nc-InGaZnO, nc-HfInZnO, and nc-InZnO

- Optical transparency due to large band-gap of ~3.4eV
- Stackable process nature due to low temp. process capability
- Nano-crystalline structure in amorphous matrix (negligible  $\Delta V_{th}$ ) but High  $\mu$  (>10)
- $\rightarrow$  The integration of *nc*-oxide semiconductor onto Si circuits is possible.



# CMOS Image Sensor Applications

#### **Current Status of CIS Devices**

- Like others, CIS devices are facing physical limitation
- Shrinking the pixel size is a major driver for imaging business
- Pixel performance is inversely proportional to the size of CIS
- At a pace which counteract both, new technique is needed



### **Pixel Circuit of CMOS Image Sensor**

- A pixel consists of 1 Photodiode (PD) and 4 Transistors.
- Pixel Tr.s (Reset, SF, RS) are shared with neighboring pixels
- Interestingly, all pixel transistors are NMOSFET
- Pixel Tr.s (Reset, SF, RS) with less stringent requirement can be replaced with oxide TFT

TX: Transfer Gate Transistor Reset: Reset Transistor SF: Source Follower Transistor RS: Row Select Transistor PD: Photodiode FD: Floating Diode



### **Our Approach**

- The integration of electronically active oxide device onto silicon circuit.
- Here we propose a novel hybrid CIS architecture utilizing nanometer scale nano-crystalline oxide TFT with a photodiode.

S. Jeon et al., ACS Applied Mat. Int. 2011 S. Jeon et al., IEEE IEDM 2010



### **Structural Comparison (1st layer)**

• This demonstrates how Si PD in active can be enlarged.



## Structural Comparison (2nd layer)

• The 2<sup>nd</sup> layer of a novel hybrid four-pixel CIS structure consists of inter-connect metal lines and other pixel transistors.

 Some interconnect metal lines for delivering constant voltage, V<sub>DD</sub>, are replaced by a TCO



### **Simulation Results**

- Electromagnetic power density contour plots were calculated by Sentaurus electromagnetic solver.
- The simulation results reveals a quantum efficiency increase of 143% 116%, and 120% at blue, green, and red wavelengths, respectively.

| ΝΟν     | el Hybrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conventional |                                   |                 |                        |           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-----------------|------------------------|-----------|
| Blue    | Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ection       | Pixel                             | Wavelength (nm) | Quantum Efficiency (%) | Ratio (%) |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Conventional                      | 450             | 34.3                   | -         |
| ue      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Hybrid + TCO<br>Interconnect Line |                 | 49.2                   | 143       |
| Red Gre | Vertical Activity of the second secon |              | Conventional                      | 540             | 61.9                   | -         |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Hybrid + TCO<br>Interconnect Line |                 | 71.5                   | 116       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Conventional                      | 650             | 41.3                   | -         |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Hybrid + TCO<br>Interconnect Line |                 | 49.4                   | 120       |

#### **Structural Analysis & Electrical Analysis**

- Self aligned top gate structure
- Dual gate stack (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>)
- Trapezoidal active channel
- nc-oxide semiconductor
- S. Jeon et al., Applied Physics Letters 2011







# **Memory Applications**

## **Essential Device Architecture for V-NAND**

Even with revolutionary transition, the core stack remains the same.

Vertical NAND for 1 terabit and beyond



SiO<sub>2</sub>

Si

#### Three dimensional approach to high density memory

#### The schematics of 3D approach

#### Depletion load inverter by hybrid channel



# **Power Applications**

#### **Conventional Power and This System**

Different device specifications of PMIC & gate driver hinders on-chip integration even with the merits, such as low cost, reduced form factor, and low noise.

S. Jeon et al., VLSI 2012



#### **High Power Oxide Transistor Technology**

Bilayer oxide transistor exhibits remarkable performance such as, high mobility (23~47cm<sup>2</sup>/Vs) and high breakdown voltage (BV) of 60~340V despite low process temperatures (<300°C), which can be integrated on metal pad.





# **Display Applications**

### In-cell touch technologies

- Displays with touch functionality are in great demand.
- " In-cell touch display" is an industrial goal (integration of sensor into LCD cell)
- Even with various approaches, there is no clear solution to realize large area interactive display.
- Previous photo-sensor technologies based on α-Si are not applicable for large area touch screen due to low speed.





Information Display 2010

## Motivation of oxide photo-sensor

 $\Rightarrow$  Large Area Interactive Display



- Display size is limited by driving speed.  $\mu > 5$  cm<sup>2</sup>/eV/s for UD-level
- ...High μ oxide TFT for display
- Process compatibility: oxide sensor





### **Gated Three Terminal Sensor Architecture**

- High photo-current for oxide sensor leads to simple pixel structure
- 2 TFT architecture: One sensor TFT & one switch TFT (Shield Metal)
- Transparent photo-sensor array due to simple structure S. Jeon et al., Nature Materials 2012





#### Fully Transparent Ox. Sensor Array



#### Demonstration of photo-sensor array and Interactive Display

#### Photo-sensor in 2010



#### **Interactive Display in 2011**



S. Jeon, Nature Materials

S. Jeon IEDM 2010, Adv. Mat. 2012, SID 2012

# Summary

- NC-oxide semiconductor devices present various device applications.
- We proposes a novel hybrid CMOS image sensor utilizing oxide TFT and demonstrating excellent device performance of 180nm L<sub>g</sub> TFT for future high density CIS devices.
- We present the three-dimensionally alternating integration of stackable logic devices with memory cells
- We present high performance bilayer oxide semiconductor such as HfInZnO/InZnO transistor for high power application
- We have integrated photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays