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1. Biofluid Mechanics – Viscous Flow 
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, so flow is laminar in large arteries. 

 
a) Total volumetric flow rate 
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b) Pressure drop in large artery 
The volumetric flow rate in one artery is:  
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c) Shear rate at wall of large artery 
Since flow in large arteries is laminar, we say that: 
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d) Average velocity of blood in aorta 
Q from part a is also the volumetric flow rate in the aorta. 
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(e) Typical value for Reynolds number 

=

⋅

=

scm
g

cmscmcmg

03.0

)1)(/82)(/057.1(
Re

3

 2889, therefore flow is turbulent 

 
2. Biomaterials – MMD 12.2 
The equation for root mean square (rms) roughness is much like the equation for standard deviation: 

�
=

−=
n

x
s xsxs

n 0

2
)()(

1σ  (1).  

 
Given the following information and equation (1), we calculate rms roughness for the four materials 
using an Excel spreadsheet: 
 

Distance Height 
Material 1 

Height 
Material 2 

Height 
Material 3 

Height 
Material 4 

0 1 0 2 0 
1 0 1 0 1 
2 1 0 2 1 
3 0 1 0 1 
4 1 0 2 3 
5 0 1 0 0 
     

rms rough. 0.547723 0.547723 1.095445 1.095445 
 
The rms roughness for materials 1 and 2 is the same, while the roughness for 3 and 4 is the same. The 
roughness for 3 and 4 is twice the roughness for 1 and 2. Profiles 3 and 4 show a limitation to this 
method of finding the surface roughness- despite the fact that 4 has larger peak than 3, the rms 
roughness is the same for these two materials. Thus, a better parameter to define roughness should be 
designed to characterize this data.  
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3. Biomaterials – MMD 12.15 
We are given the following conditions/equation: 
L = 0.10 m 
Q = 10-5 m3/s 
� = 1 cp = 10-2 g cm-1 sec-1 = 1 g m-1 sec-1 = 10-3 kg m-1 sec-1  
r = r0(m) + 0.005 �P (Pa)  (1) 
 
 
We calculate pressure drop in the non-compliant tube using the following equation: 
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Now we calculate the pressure drop in the compliant tube using equations (1) and (2):  
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Using the solve function in Mathematica, we find the following: 
ro� 10�2; L� 0.1; � � 10�3; Q � 10�5;

Solve�dP�
8���L�Q

���ro�0.005�dP�4
, dP� �� N

 
{{dP�-2.81601-0.719796 �},{dP�-2.81601+0.719796 �},{dP�-1.27414-1.02542 �},{dP�-
1.27414+1.02542 �},{dP�0.1803}} 
 
The only real root (and solution for the compliant tube) is �P = 0.1803 Pa. 
 
Thus, the pressure drop needed to sustain flow through a totally noncompliant tube is greater 
than the drop needed to sustain flow through a compliant tube.   
 
 
 


