1. Biofluid Mechanics - Viscous Flow

Aorta
$d_{\text {aorta }}=1 \mathrm{~cm}$
$l_{\text {aorta }}=40 \mathrm{~cm}$

Large Arteries

$N=40$
$d_{\text {arteries }}=0.3 \mathrm{~cm}$
$l_{\text {arteries }}=20 \mathrm{~cm}$
$v_{\text {arteries }}=23 \mathrm{~cm} / \mathrm{s}$
Blood

$$
\begin{aligned}
& \mu=3.0 \mathrm{c} P=0.03 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s} \\
& \rho=1.057 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Reynolds number in large arteries
$\operatorname{Re}=\frac{\rho v d}{\mu}=\frac{\rho v_{\text {arteries }} d_{\text {arteries }}}{\mu}=\frac{\left(1.057 \mathrm{~g} / \mathrm{cm}^{3}\right)(23 \mathrm{~cm} / \mathrm{s})(0.3 \mathrm{~cm})}{0.03 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}}=243$, so flow is laminar in large arteries.
a) Total volumetric flow rate

$$
Q_{\text {total }}=n \cdot v \cdot A=N \cdot v_{\text {arteries }} \cdot \pi \cdot\left(\frac{d_{\text {arteries }}}{2}\right)^{2}=40 \cdot 23 \mathrm{~cm} / \mathrm{s} \cdot \pi \cdot\left(\frac{0.3 \mathrm{~cm}}{2}\right)^{2}=\mathbf{6 5} \mathrm{cm}^{3} / \mathrm{s}
$$

b) Pressure drop in large artery

The volumetric flow rate in one artery is:

$$
\begin{aligned}
& Q=\frac{Q_{\text {total }}}{n}=\frac{65 \mathrm{~cm}^{3} / \mathrm{s}}{40}=1.625 \mathrm{~cm}^{3} / \mathrm{s} \\
& \Delta P=\frac{8 \mu Q l}{\pi R^{4}}=\frac{8(0.03 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s})\left(1.625 \mathrm{~cm}^{3} / \mathrm{s}\right)(20 \mathrm{~cm})}{\pi\left(\frac{0.3 \mathrm{~cm}}{2}\right)^{4}}=4907 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s}^{2} \\
& \Delta P=4907 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{~s}^{2} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{100 \mathrm{~cm}}{\mathrm{~m}} \cdot \frac{1 \mathrm{~Pa}}{\mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}} \cdot \frac{760 \mathrm{mmHg}}{1.01 \times 10^{5} \mathrm{~Pa}}=\mathbf{3 . 6 8 ~ \mathbf { ~ m m H g }}
\end{aligned}
$$

c) Shear rate at wall of large artery

Since flow in large arteries is laminar, we say that:
$\tau=\frac{1}{2} \cdot \frac{\Delta P}{l} R=\frac{1}{2} \cdot \frac{\Delta P}{l_{\text {arteries }}} \cdot \frac{d_{\text {arteries }}}{2}=\frac{1}{2} \cdot \frac{4907 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}^{2}}{20 \mathrm{~cm}} \cdot \frac{0.3 \mathrm{~cm}}{2}=18.4 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}^{2}$
Shear rate $=\frac{\tau}{\mu}=\frac{18.4 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}^{2}}{0.03 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}}=\mathbf{6 1 3} \mathbf{~ s}^{-1}$
d) Average velocity of blood in aorta

Q from part a is also the volumetric flow rate in the aorta.
$\pi \cdot r^{2} \cdot v=Q=\pi \cdot\left(\frac{d_{\text {aorta }}}{2}\right)^{2} \cdot v_{\text {aorta }}$
$v_{\text {aorta }}=\frac{Q}{\pi \cdot\left(\frac{d_{\text {aorta }}}{2}\right)^{2}}=\mathbf{8 2 ~ c m} / \mathrm{s}$
(e) Typical value for Reynolds number
$\operatorname{Re}=\frac{\left(1.057 \mathrm{~g} / \mathrm{cm}^{3}\right)(82 \mathrm{~cm} / \mathrm{s})(1 \mathrm{~cm})}{0.03 \mathrm{~g} / \mathrm{cm} \cdot \mathrm{s}}=2889$, therefore flow is turbulent

2. Biomaterials - MMD 12.2

The equation for root mean square (rms) roughness is much like the equation for standard deviation:
$\sigma_{s}=\sqrt{\frac{1}{n} \sum_{x=0}^{n}|s(x)-\overline{s(x)}|^{2}}$
Given the following information and equation (1), we calculate rms roughness for the four materials using an Excel spreadsheet:

Distance	Height Material 1	Height Material 2	Height Material 3	Height Material 4
0	1	0	2	0
1	0	1	0	1
2	1	0	2	1
3	0	1	0	1
4	1	0	2	3
5	0	1	0	0

\section*{| rms rough. | 0.547723 | 0.547723 | 1.095445 | 1.095445 |
| :--- | :--- | :--- | :--- | :--- |}

The rms roughness for materials 1 and 2 is the same, while the roughness for 3 and 4 is the same. The roughness for 3 and 4 is twice the roughness for 1 and 2. Profiles 3 and 4 show a limitation to this method of finding the surface roughness- despite the fact that 4 has larger peak than 3 , the rms roughness is the same for these two materials. Thus, a better parameter to define roughness should be designed to characterize this data.

3. Biomaterials - MMD 12.15

We are given the following conditions/equation:
$\mathrm{L}=0.10 \mathrm{~m}$
$\mathrm{Q}=10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$\mu=1 \mathrm{cp}=10^{-2} \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{sec}^{-1}=1 \mathrm{~g} \mathrm{~m}^{-1} \mathrm{sec}^{-1}=10^{-3} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{sec}^{-1}$
$\mathrm{r}=\mathrm{r}_{0}(\mathrm{~m})+0.005 \Delta \mathrm{P}(P a)(1)$

We calculate pressure drop in the non-compliant tube using the following equation:
$\Delta P=\frac{8 \mu L Q}{\pi R^{4}}$
$\Delta P=\frac{8\left(10^{-3}\right)\left(10^{-3}\right)\left(10^{-5}\right)}{\pi\left(10^{-2}\right)^{4}}=0.254648 \mathrm{~kg} /\left(\mathrm{m} \mathrm{s}^{2}\right)=0.254648 \mathrm{~Pa}$

Now we calculate the pressure drop in the compliant tube using equations (1) and (2):
$\Delta P=\frac{8\left(10^{-3}\right)\left(10^{-3}\right)\left(10^{-5}\right)}{\pi\left(r_{0}+0.005 \Delta P\right)^{4}}$
Using the solve function in Mathematica, we find the following:
ro $=10^{-2} ; \quad \mathrm{L}=0.1 ; \mu=10^{-3} ; Q=10^{-5}$;
Solve $\left[\mathrm{dP}==\frac{8 * \mu * \mathrm{~L} * \mathrm{Q}}{\pi *(\mathrm{ro}+0.005 * \mathrm{dP})^{4}}, \mathrm{dP}\right] / / \mathrm{N}$
$\{\{\mathrm{dP} \rightarrow-2.81601-0.719796 \dot{\operatorname{i}}\},\{\mathrm{dP} \rightarrow-2.81601+0.719796 \dot{\operatorname{i}}\},\{\mathrm{dP} \rightarrow-1.27414-1.02542 \dot{\operatorname{i}}\},\{\mathrm{dP} \rightarrow-$
$1.27414+1.02542$ í $\},\{\mathrm{dP} \rightarrow 0.1803\}\}$
The only real root (and solution for the compliant tube) is $\Delta \mathrm{P}=0.1803 \mathrm{~Pa}$.
Thus, the pressure drop needed to sustain flow through a totally noncompliant tube is greater than the drop needed to sustain flow through a compliant tube.

