Homework 6 solutions:

1.

First compute moles of glucose consumed: 26 g glucose* (1 mol glucose $/ 180 \mathrm{~g}$ glucose) $=$ 0.14444 mol glucose consumed with a standard deviation of $.2 \mathrm{~g} *$ (1 mol glucose $/ 180 \mathrm{~g}$ glucose) $=.0011 \mathrm{~mole}$ glucose

Now we note that the molecular weight of the yeast $=144 \mathrm{~g}=\left(6^{*} 12+10^{*} 1+1^{*} 14+3^{*} 16\right) \mathrm{g}$
0.1444 mol glucose $*(0.48 \mathrm{~mol}$ dry cell $/ \mathrm{mol}$ glucose $) *(144 \mathrm{~g}$ dry cell $/ \mathrm{mol}$ dry cell $)=9.95328 \mathrm{~g}$ dry cells produced with a standard deviation of $.0011^{*}(0.48 \mathrm{~mol}$ dry cell $/ \mathrm{mol}$ glucose $) *(144 \mathrm{~g}$ dry cell $/ \mathrm{mol}$ dry cell) $=.0768 \mathrm{~g}$ dry cells.

Use yield coefficient to determine the amount of heat released into the fermenter.
9.95328 g dry cells $*(1 \mathrm{kcal}$ heat $/ 0.42 \mathrm{~g}$ dry cells $)=23.6983$ cal heat with a standard deviation of $.0768 \mathrm{~g} *(1 \mathrm{kcal}$ heat $/ 0.42 \mathrm{~g}$ dry cells $)=.182857 \mathrm{cal}$ heat

Now determine the rise in temperature this leads to:
$(23.6983 \mathrm{kcal}$ heat $/ 15 \mathrm{~L}$ broth $) *(1$ degree $\mathrm{C} * \mathrm{~L}$ broth/ 1 kcal heat $)=1.58$ degree Celsius with a standard deviation of $(.0768 \mathrm{kcal}$ heat/ 15 L broth $) *(1$ degree $\mathrm{C} * \mathrm{~L}$ broth/ 1 kcal heat $)=.005067$ degrees Celsius
total answer: $1.58+/-.005067$ degrees Celsius
Since half of the heat is released into the environment the final answer is $1.58 / 2+/-.005067 / 2$ which gives us $.79+/-.0025$ degrees celsius
2. Energy Balances. MMD text chapter 4, problem 4.

39 g glucose $/ \mathrm{can} * \mathrm{~mol}$ glucose $/ 180 \mathrm{~g} * 36 \mathrm{~mol}$ ATP $/ \mathrm{mole}$ glucose $=7.8 \mathrm{~mol}$ ATP $/ \mathrm{can}$.
$7.8 \mathrm{~mol} \mathrm{ATP} / \mathrm{can} * 30 \mathrm{~g}$ cell mass dw$/ \mathrm{mol}$ ATP $* \mathrm{~g}$ total $/ 0.3 \mathrm{~g} \mathrm{dw}=780 \mathrm{~g}$ cells $/ \mathrm{can} \sim 0.8 \mathrm{~kg}$ tissue/can.

3. Bioenergetics.

Delta $\mathrm{G}=\mathrm{RT} * \ln (\mathrm{C} 1 / \mathrm{C} 2)+\mathrm{ZF} \Delta \Psi$
34.5 nM on outside of cell

Efficiency $=59 \%$
It takes $7.3 \mathrm{kcal} / \mathrm{mol}$ to convert ADP -> ATP
So $0.59=$ DeltaG $/(7.3 \mathrm{kcal} / \mathrm{mol})$ so $\mathrm{DeltaG}=4.307 \mathrm{kcal} / \mathrm{mol}$

So $4.307 \mathrm{kcal} / \mathrm{per} \mathrm{mol}$ is available to overcome and unfavorable transfer of solute across the membrane (must be unfavorable if cell has to actively transport it across memberane)
$\mathrm{F}=9.65 \times 10^{-4} \mathrm{C} / \mathrm{mole}$
$Z=-1$
Assume $\mathrm{T}=37 \mathrm{C}=310 \mathrm{~K}$
$\mathrm{R}=0.001986 \mathrm{kcal} /(\mathrm{mol} \mathrm{K})=1.986 \mathrm{cal} /(\mathrm{mol})$
DeltaG $=+4.301 \mathrm{kcal} / \mathrm{mole}=\mathrm{RT}^{*} \ln (\mathrm{C} 1 / 35.5 \mathrm{nM})+\mathrm{zF}((-35 \mathrm{mV})-(+75 \mathrm{mV}))$
Therefore

$$
\begin{gathered}
4.301-(\mathrm{zF}((-35 \mathrm{mV})-(+75 \mathrm{mV})))=\mathrm{RT} * \ln (\mathrm{C} 1 / 35.5 \mathrm{nM}) \\
{[4.301-(\mathrm{zF}((-35 \mathrm{mV})-(+75 \mathrm{mV})))] / \mathrm{RT}=\ln (\mathrm{C} 1 / 35.5 \mathrm{nM})} \\
\left.\mathrm{e}^{\wedge}[4.301-(\mathrm{zF}((-35 \mathrm{mV})-(+75 \mathrm{mV})))] / \mathrm{RT}\right\}=\mathrm{C} 1 / 35.5 \mathrm{nM} \\
\left.35.5 \mathrm{nM} * \mathrm{e}^{\wedge}[4.301-(\mathrm{zF}((-35 \mathrm{mV})-(+75 \mathrm{mV})))] / \mathrm{RT}\right\}=\mathrm{C} 1 \\
\mathrm{C} 1=1.2 * 10^{\wedge} 12 \mathrm{M}
\end{gathered}
$$

4.

Bioenergetics

Inlet pressure $=7 \mathrm{mmHg}$
Inlet diameter $=6.0 \mathrm{~mm}$
Outlet pressure $=82 \mathrm{mmHg}$
Outlet diameter $=4.5 \mathrm{~mm}$
a) Vdot is same for the inlet and outlet, and we know that $\mathrm{Vdot}=\mathrm{V}^{*} \mathrm{~A}$ where V is linear velocity, A is cross sectional area. Thus,

For the inlet:
$(3.2 \mathrm{~L} / \mathrm{min})^{*}\left(1000 \mathrm{~cm}^{3} / \mathrm{L}\right) *\left(1 /\left(\pi^{*}(.3)^{2} \mathrm{~cm}^{2}\right)\right)^{*}(1 \mathrm{~min} / 60 \mathrm{sec})=188.628 \mathrm{~cm} / \mathrm{sec}$.
Two significant figures: $190 \mathrm{~cm} / \mathrm{sec}$
For the outlet:
$(3.2 \mathrm{~L} / \mathrm{min}) *\left(1000 \mathrm{~cm}^{3} / \mathrm{L}\right) *\left(1 /\left(\pi^{*}(.225)^{2} \mathrm{~cm}^{2}\right)\right)^{*}(1 \mathrm{~min} / 60 \mathrm{sec})=335.338 \mathrm{~cm} / \mathrm{sec}$.
Two significant figures: $340 \mathrm{~cm} / \mathrm{sec}$
b) Work is the only energy involved; kinetic and potential energies are negligible. We consider the equilibrium state, where $\mathrm{d}($ Energy $) / \mathrm{dt}=0$, so work $\mathrm{w}=0$.

The work being done is $\mathrm{F}^{*} \mathrm{~V}$, where the force in this case is pressure, and velocity is the volumetric flow rate. Total $\mathrm{w}=\mathrm{w}($ done by pump $)+\mathrm{w}($ flow $)$.

So $\mathrm{w}($ pump $)=\mathrm{w}($ flow $)=(3.2 \mathrm{~L} / \mathrm{min})(7 \mathrm{mmHg}-82 \mathrm{mmHg})$
Unit conversion:
$(3.2 \mathrm{~L} / \mathrm{min})^{*}(7 \mathrm{mmHg}-82 \mathrm{mmHg})^{*}(1 \mathrm{~min} / 60 \mathrm{sec})^{*}\left(1 \mathrm{~m}^{3} / 1000 \mathrm{~L}\right)^{*}\left(10^{5} \mathrm{~Pa} / 750.061 \mathrm{mmHg}\right)^{*}$ $*\left(1 \mathrm{~W} /\left(1 \mathrm{~m}^{3} \mathrm{~Pa} / \mathrm{sec}\right)\right)=0.5333 \mathrm{~W}$, or 0.53 watts to two sig. figures.
c) We know that Watt = Amp * Volt. So we can solve:
$.53 \mathrm{~W} * 5$ days $* 24$ hours $/$ day $=63.6 \mathrm{~W} \mathrm{hr}$
$63.6 / .38=167.368 \mathrm{~W} \mathrm{hr}$
$(167.368 \mathrm{~W} \mathrm{hr}) /(6 \mathrm{~V}) *(1 \mathrm{~A} /(\mathrm{W} / \mathrm{V})) *(1000 \mathrm{~mA} / \mathrm{A})=27894 \mathrm{~mA} \mathrm{hr}$
With two significant figures, this works out to 28000 mA hr .
d) For this problem we use the solution in part c that has not been adjusted to account for significant figures.

So from before we know that 27894 mA hr leads to 120 hours (5 days) of operation 27894*. $007=195 \mathrm{~mA} \mathrm{hr}$

Note that there is no error introduced from converting current capacity to operation time, so we can easily find the error in time.
$(195 \mathrm{~mA} \mathrm{hr}) *(1 \mathrm{~A} / 1000 \mathrm{~mA}) *(1 \mathrm{~W} /(\mathrm{V} \mathrm{mA})) *(6 \mathrm{~V} /(.53 \mathrm{~W}) *(1$ day $/ 24$ hours $)=.035$ days

Note that this is the same as: 5 days * $.007=.035$ days
Now we use the Z test. To test with 99.9999% confidence, we use a Z-value of 4.67.
$(5 \pm x) / .035=4.67$
So $\mathrm{x}=5-0.16345=4.83655$ days $*(24$ hours $/$ day $)=116.07 \mathrm{hr}$.
When converting to 2 significant figures, we do not round up. Rather, we need to this down to 2 significant figures since we want to have a certainty of at least 99.9999%. Thus, the final answer is 110 hr .

5.

Binding. MMD text chapter 5, problem 1.
(a) P-L1 will be more prevalent because the protein binds it preferentially over L2.
(b) Because binding is dynamic, a given protein molecule will bind different L1's and L2's.
(c) This is akin to competitive inhibition. L2 still binds, so adding more will "distract" the protein from binding L1. Therefore, it will decrease, not increase the amount of P-L1 present.
6.

Binding

S4 binds to the first enzyme's binding site, which is enzyme inhibition. Thus S1 cannot bind with as much of the enzyme, which slows down the whole chain of reaction. Concentrations of S2, S3, S4 will drop. This is therefore an example of negative feedback.

