A Network Flow Analysis of One Anonymous Class B Network

Michael Hanley, Brent Kennedy, Devon Rollins
Graduate Students, Information Security Policy and Management
95-855 Network Situational Awareness — Fall 2009

Carnegie Mellon University

Professors: Tim Shimeall and Sid Faber

Introduction

On March 31, 2009 starting at approximately 1500 hours GMT, the MAWI Working
Group cooperated with CAIDA, The Cooperative Association for Internet Data Analysis, to
conduct a large-scale internet data collection project. The MAWI Working Group contributed
by sampling a trans-Pacific link using tcpdump® to collect packet capture data and then
annonimyzing and truncating the data using tcpdprivz. This data appears to us to be in a
network block-preserving anonymized state, provides an incredibly valuable tool for students
(undergraduate and graduate, alike) to perform traffic analysis both at the granular packet
level, and with the appropriate tools, at a net flow level. For the purposes of this paper, 24
hours worth of packet capture (pcap) data from sample point “F” was converted to net flow
data and packed into files compatible with the SiLK suite, developed at the CERT Coordination
Center at Carnegie Mellon University’s Software Engineering Institute. We have been asked to
analyze one /16 network from this dataset of our choice. The team has elected to analyze the

193.52.0.0/16 network, partially because of it’s high volume, and partially because of

! tcpdump is a highly versatile command line interface for collecting packets on a computer
network but using a network card in “promiscuous mode” in order to see all traffic passing by
the interface, not just traffic destined for that interface. There are some graphical tools that
have similar capabilities, such as Wireshark (wireshark.org) that users may be more framiliar
with, but tcpdump’s command line only approach makes it more suitable for this type of
collection.

2 Tcpdpriv (http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html) was developed to eliminate
confidential information from packet capture data and also to anonymize network addresses in
the packet capture file such that relationships between real IPs are preserved, but the octets
themselves are randomized to make geolocation or other identification strategies fruitless. The
team that wrote this article made no effort to reverse-engineer this anonymization.

interesting traffic patterns which will be discussed later in this paper. Detailed analysis of other
CIDR blocks is outside the scope of this paper.

It is worth noting that the team treated this exercise as if the 193.52.0.0/16 class-B
network were a real network block. The fact that the data has been partially scrambled to
provide some anonymity is irrelevant for the purposes of this exercise. This is still real data that
traversed an undersea transit link several months ago, so we treated it as such. Thus, we made
no efforts to reverse-engineer any of the scrambling done by tcpdpriv, nor did we attempt to
extract or derive any personal or confidential data from the net flows or the packet capture
from which the net flow data was derived. In the spirit of the exercise, and to show the
educational benefits of this type of anonymous flow trace data, we treated this data is if it were

live.

Tools

The purpose of this exercise was, in large part, to do a flow-based analysis of this 24
hour traffic window. That said, our toolset consisted largely of the SiLK tools (System of
Internet Level Knowledge) engineered and maintained by the Network Situational Awareness
group at CERT. These tools provide the means to create complex queries, filter sets, and
analysis of flow data at high speed. The team was able to use the SiLK tools to parse
approximately 3 GB of flow traffic on a moderately-powered machine with little delay. The key
tool involved in our analysis was rwfilter for extracting information from the flow files related
to our particular /16 network, as well as for filtering out service ports of interest, inbound vs.

outbound traffic, and other characteristics. Data filtered with rwfilter was piped to a multitude

of tools, including rwcount, rwstats, and rwscan. Information about these and the rest of the

SiLK tools can be found at http://tools.netsa.cert.org/silk/silk docs.html.

Aside from SiLK, we used two other primary tools for our analysis. First, as the reader
will note throughout the remainder of this paper, we used gnuplot for some simple graphs of
traffic volume over time. This is useful for demonstrating our /16’s usage of the network at
various points during the day. Second, we used Excel to aggregate and manipulate some of our
output from SiLK. Graphs from Excel and some of the statistics we derived using our Excel

spreadsheets also appear throughout the remainder of the paper.

Understanding Flow versus Packet Capture

A key distinction to note is that our analysis is attempting to achieve a degree of
situational awareness with respect to our /16 network’s traffic on this transit link. We seek to
understand issues like the following:

* What kind of services appear to be hosted on our network and where?

* Who are the clients outside of our network that are using our services?

* What threats does our network face?

* What external services are our clients accessing?

* How much of this link’s utilization is associated with our network?
While this is not an all-inclusive list, these are just some of the questions we seek to answer.
Further, we are not dealing with packet capture, we are dealing with flow. Thus, we are dealing
with summary records of network transactions, not individual packets. Thus our records consist
of transaction information such as source IP, destination IP, source port, destination port,

protocol, the number of packets in the flow, the number of bytes transferred, flags, start time,

end time, and flow duration. This data is immensely useful for tracking communication volume

as a whole as well as volumes associated with specific services.

General Link Findings

Before we can talk about what we find in the 193.52.0.0/16 network, we need to
provide some context. We would be remiss in our analysis if we did not first provide a short
overview of the link on which the data was captured, and what sort of broad trends were
observed on the day of the capture across all networks traversing the link. First, a look at the

total link volume as extracted from the flows with SiLK and plotted with gnuplot.

Link Volume - Samplepoint F
220 T T T T T T T T T T

T 110

T
Bytes
Packets

200 4 100

180 - 1 90

-1 80

160 -
4 70

140 .

- o0

120

1 50

MBytes per Second

100
1 40

80 |

1
Packets per Second (Thousands)

4 30

60 4 20

40 9 10

20 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

There are a few obvious trends to observe here. First, the link as a whole is keeping a
fairly steady rate of packets/second until a volatile period between 0600 and 1000 on the 31%.

There is a corresponding volatile region in the MB/second graph, and we do find later in this

article that our netblock had some role in this spike. The byte volume trend also follows a fairly
smooth trend downward from 1400 to 2300 on the 30", and increasing again from around
0000 hours on the 31° up through 1400hours on the 31%. There is a non-trivial spike at roughly
0100 hours in byte volume.

The composition of services hosted and accessed via this link is fairly unremarkable. In
terms of byte volume, HTTP leads the way as almost 63.2% of our source traffic. The nearest
service in terms of byte volume is SSH, with 2.3% of the volume by bytes, followed by DNS with
close to 1.9% of traffic. If we count by packets, we find that ICMP traffic moves up to take the
second place spot from SSH, but this is merely a different way of representing the data and still

is not an alarming finding.

General Findings - 193.52/16

There are some interesting general findings to be mentioned about our netblock. In
terms of overall volume, we find that our netblock accounts for a significant amount of the
traffic moving on this link. Specifically, we find that over the 24 hour period, our /16 accounts
for over 35% of the traffic volume with 381 gigabytes of traffic volume served. In terms of
inbound traffic to our network, the number is not as impressive, but is still significant at about
4% of the total traffic by byte count. This puts our network at close to 40% of all traffic running

on the link during this time frame. Complete statistics are shown below:

$ rwfilter ext*/* --saddr=193.52.0.0/16 --print-vol | Recs |

Packets| Bytes| Files|
Total| 168947242 | 1543854447 | 1083477010728 | 24|
Pass| 16661024 | 344913772 381322829661 | |
Faill 152286218] 1198940675 | 702154181067 | |
$ rwfilter ext*/* --daddr=193.52.0.0/16 --print-vol
| Recs| Packets| Bytes| Files|
Total| 168947242 | 1543854447 | 1083477010728 | 24|
Pass| 19347793 | 224218579 | 43942603806 | |
Faill 149599449 | 1319635868 | 1039534406922 | |

If we map out this traffic in granular detail with gnuplot, we find that our block’s graph holds
the general shape of the overall link volume graph in terms of our served traffic (where the
source address is within our netblock), which seems intuitive given that a large portion of the
link’s traffic is from our address space. For traffic that was inbound to our address space, the
graph is actually relatively flat. Comparing these two suggests that out network space might
have some very large content providers residing on it, and that the user population on our

netblock is probably small.

First the outbound traffic:

Outbound Traffic volume

100 T T T T T T T T T T T T 10
Bytes
Packets
90 - 49
80 - 4 8
70 - 47
el
f=
Q
3
$ 60 4 6
1]
Q
8 so0f 45
>
@
=
40 4 4
30 43
20 - H4 2
10 1 1 1 1 1 1 1 1 1 1 1 1 1

03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Then the inbound traffic:

Inbound Traffic volume

60 T T T T T T T T T T T T 40
Bytes —
Packets
4 35
50 I 1
4 30
40 .
° 4 25
Q
o
[
(7]
g 30 4 20
1]
2
>
@
S 4 15
20 b
=4 10
10 | .
45
I
| L)
el ot R AR oo N""'M‘”w \
1 1 1 1 1 1 1 1 1 1 1 1

0 0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:.00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Packets per Second (Thousands)

Packets per Second (Thousands)

Another finding of interest is that SiLK returns no results when we query for traffic
where our block is both the source and destination of the traffic, which might represent
internal traffic in that address space. Because this is a transit link, and the scrubbed data is
network-preserving, this tells us that we are really only seeing what is coming in and out of the
193.52/16 enclave, not what is happening within it. Thus, there’s little we can say about the
actual contents of our address space, and it’s inner workings, however the data still lends well
to an analysis of what is hosted on the network and what external users are coming to us for,
and that discussion is continued in the following sections.

A final general finding, which will be analyzed later in detail is that our network’s large
portion of the link traffic seems to stem from some very large web servers resident on our

network. Some simple commands in SiLK immediately reveal this finding:

$ rwfilter <SiLK volume> --sport=80 --print-vol

| Recs | Packets| Bytes| Files|
Total| 168947242 | 1543854447 | 1083477010728 | 24|
Pass| 7143132 507528106 | 684461175484 | |
Faill 161804110| 1036326341 | 399015835244 |
$ rwfilter <SilLK volume> --saddr=193.52.0.0/16 --sport=80 --print-vol
| Recs | Packets| Bytes| Files|
Total| 168947242 | 1543854447 | 1083477010728 | 24|
Pass| 2282677 217711963 | 298022441713 | |
Faill 166664565 | 1326142484 | 785454569015 | |

Right away we see that in terms of records, packets, and bytes, we are serving 31.9%, 42.9%,
and 43.5% respectively. If we dive deeper to see who's hosting this traffic, and if it is isolated to

a few hosts, we find the following:

Services, spikes

To achieve true situational awareness, it is important to get a full view of your network
and understand the “norm” in order to diagnose anomalies. To do this, common services will
be looked at on an individual basis. Being that the netblock is so large, the services that are
looked at have been narrowed down based on those that are classically popular and the ones
being utilized the most on the netblock. DNS, HTTP, HTTPS, SMTP, and FTP will be looked at in
a more granular fashion. Also, port 1063 will be analyzed since it is showing up as the 4™ most
used port in the netblock.

Services
DNS

As expected, there is a great deal of DNS traffic originating and going to the netblock.
This services appears to be acting normally though. Looking at the overall traffic graph shown
previously, you can get a general idea of the traffic shape throughout the day. The graph below
shows the DNS inbound and outbound flows throughout the day and it can easily be seen that

it matches up will with the overall traffic trend.

70000

60000 - r"‘\‘

50000 -

40000 -

30000 == Qutbound Flows Pass

20000 == Inbound Flows Pass

10000

0 T 1

O ® ® & & & & & & & ©
ISR LN S LN S LY N N ST\ LN SAY N
ST AT W 6T %7 8 a7 W67 W@ S AV

HTTP
Web traffic is obviously going to be a much utilized service in almost any network. This
traffic can take many forms, but we will be looking specifically at port 80 in regards to HTTP.

The graph below shows the outbound packets across the day.

Outbound Bytes Pass

70000000
60000000 A
50000000 I

40000000 I \

30000000
20000000 —%—*‘Wl == Qutbound Bytes Pass
10000000

O | A I I N N RN RN R RN N BN RN N N NN NN RN RN N RN N R E— |

P P T P T O S SO
S EL L LSS SLSSS
OF AT BT 0T T T QT T RT RPT ADT AV

The traffic is consistent throughout the day asides from a very noticeable spike around

14:00 mark. This is seen again by the GNUplot graph below.

Source Port 80 Traffic Volume

80 — T T T T T T T T T T T T T T — 71 T T 7
Bytes
Packets
70 16
60_ 7 _—
. [22)
° g
2 50| | 2
2
g 44 £
2
g 40 .
3
& 1° 2
S 30} 1 @
2
1o 8
20 F 1° ¢
10 - 1
0 PR T TN (N TN SN SR S S [S [S [S S S S SU S S S S R 0

o3 T80 % G0 S GG O G SO SS9 %Y

Since this spike is not normal, it is worthwhile to dive a little deeper to figure out its
cause. There is two ways that HTTP traffic can occur with our netblock acting as the source
addresses. The first is traffic with a source port of 80 which means that web servers exist
within our netblock and are responding to requests. A great deal of the HTTP seems to be due
to web servers and specifically two web servers (193.52.237.154 and 193.52.237.155) account
for 55% of the total outbound traffic. Analysis shows though that traffic from these web
servers is consistent throughout the day. So, the spike must be due to outbound traffic that is
initiating web requests and thus has a destination port of 80.

It turns out that this is exactly the case. SiLK was used to show the top IP addresses
based on byte count on a per hour basis (see Appendix A). There is a very obvious jump in

bytes for 2 hosts, 193.52.229.90 and 193.53.232.189, that occur at the point in question. The

former host is responsible for over 35 million bytes which is about 30 million more than normal.
Its traffic plot can be seen below. What’s more interesting is that this host did not show up in
the top 10 talkers in any other data file (hour). It is still listed in the following data file as the
peak decreases, but it then disappears for the remainder of the day. The latter host listed
above had around 10 million packets but was a consistent top talker throughout the day. It

returned to its normal byte count in the following hours.

193.52.229 .90 Traffic Volume
0.6 i T y T ' T i T i T T T y T i T T T T i 1.6
Bytes
Packets
I 4 14
05 | -
412 _
-
04 . g
- 1 3
g 2
‘% £
©
— c
g 03} 4 08 g
7]
3 g
>
[i7) |
s 106 o
02 | § g
[*]
©
o
-4 04
0.1 F -
02
| | |
0 P TR N NI R U R S SRS NI 1 hluv R B AT |J-'| ul o

03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00

Taking the top talker (193.52.229.90) it is beneficial to see who that host is
communicating with to cause the increase in traffic. The results (see Appendix B) show that the
host made some connections early in the day and then was dormant for several hours. It then
talks a great deal towards the middle of the day which is where the spike occurs. Afterwards, it

was mentioned above that the host goes out of the top 10 list which is true, but further analysis

revealed that it still continues to communicate after the spike. The output shows that it
actually communicated with a specific set of hosts and sent the same fixed amount of bytes to
each of them. It is hard to explain the spike and this fixed byte behavior without seeing the
payload, but it seems as though the host spent a great deal of resources searching for other
hosts during the spike and then continued to talk to specific ones after the fact. One
explanation of this could be a botnet in that the fixed traffic is instructions or responses that
are being sent. This would be consistent with the fact that many present botnets are using
HTTP to communicate as opposed to the outdated IRC channels. Once again though, without

the payload information it is very hard to tell what is specifically causing the increase in traffic.

HTTPS

Like HTTP traffic, HTTPS traffic is equally important to analyze. The initial interesting
observation is that on average there is more HTTPS traffic than HTTP traffic. This may be due to
the fact that many websites are switching to HTTPS for the added security. Looking at the bytes
over time graph (see below) it is seen that the traffic is fairly consistent over the day until a
large spike at the end. Itis also apparent that there is more outbound traffic than inbound and

only the outbound traffic had a spike.

16000000

14000000 R—
12000000

10000000 l
8000000
=&—Qutbound Bytes Pass
6000000 == Inbound Bytes Pass
4000000
2000000
0
[cNeoNoolololoNololoNoNoNolNoNoNoloNoNololNolNoNoNe]
Q2222222222222
O AN N <N OMNVDIODTO A ANMSTENN ONOOODO A ANM
™ AN NN AN

The same methodology to determine the HTTP spike was used here. Also like the HTTP
spike, this spike proved to be due to outgoing traffic except with a destination port of 443.
Traffic with a source port of 443 shows consistency during the time of the spike, but it was the
destination port traffic that shows where the spike is coming from. The results of the flow
analysis (see Appendix C) shows that the second to last data file contains a host with around 10
million more bytes than normal. Diving deeper it is seen (see Appendix D) that this host is
talking to only 3 other hosts during the hour of the spike and during the hour before and after.
The communication may continue longer but there is no data to find this out for certain.
During all three hours, the top destination IP (47.89.25.106) stays the same and during the peak
and the hour before this communication accounted for 99% of the traffic from that host. This is

an awful lot of HTTPS traffic that is going on. One potential explanation is the secure transfer of

a very large file. Even with the payload information though, the file would not be known since

it is done securely.

SMTP

A great deal of situational awareness is composed of web traffic, but email traffic is also

very important as it can be a common tool for attacks. As a service, SMTP traffic (port 25) was

seen as one of the most popular on our netblock. The graph below shows the inbound and

outbound traffic across the day.

120000
100000 -
80000
60000 A Outbound Packets Pass
Inbound Packets Pass
40000 — Total Pkts
| SN SN
W
O T T T T T T T T T T T T T T T 1
O O O 0O 0O OO OO OO O 0O O O O O 0O O O O O O O
sl R-E-ER-E--- ===
S d N M S I BN KXB®AOS o4 N M F N ONWOAHAH O «+ N 0
i L} L} L} i i i i i i (V] N o (o]

Per the graph, you can see a gradual incline with a spike and then a gradual decline.

This is actually very normal traffic and is explained by the high use of email to conduct business.

The start of the incline and the end of the decline (approx. 10:00 — 19:00) signifies the

beginning and end of business hours. With this normal trend of traffic, no further analysis was

needed to detect any sort of malicious behavior.

FTP

The File Transfer Protocol can be a popular service on networks and the netblock being
analyzed is no exception as it was the second most popular port (20) being used. Looking at
some initial flow analysis, it seemed as though that FTP had a minor presence since the number
of flows were minimal. The small amount of flows though was made up by the amount of data

each one represented. The GNUplot seen below shows these facts.

Traffic Volume - Source 193.52/16, Source Port 20

6 T T T T T T T T T T

0.45

B'y1es :
Packets
- 04
5 - -

- 0.35
‘dj g
4t 103 8
3
: T :
£
§ 4025 3
§ o J 15

;2; - 0.2
g g
= 2
2t 4015 @
8
o

il -4 01

1 - -
- 0.05
NN P T TV 1 B L=

0 . 0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Looking a little bit closer at the data, there are only a select amount of hosts that are
doing the FTP talking. The common hosts are 193.52.237.155, 193.52.229.233, 193.52.224.3,
193.52.230.15, and 193.52.237.154. On the other side of the connection, the destination

addresses do not seem to have any trend and are somewhat random. It seems as though the

FTP traffic is typical. It is possible that malicious files are being transported back in forth but
that cannot be determined with this analysis. The traffic pattern is a bit odd with its “step”
pattern, but this can be explained several ways. The actual step is due to the fact that many of
the file transfers span several hours. This is scene by seeing the same source IP and destination
IP across several files (hours) and then never seen again. The graph also shows that the “steps”
all occur in a several hour window. This could just be due to the fact that it was normal

business hours and FTP is a useful tool used in many daily operations.

Port 1063

Interestingly enough, a port showed up on the top 10 list that was not identifiable.
After doing some research on port 1063, the most common finding was that it is common to
the KyoceraNetDev service. However there seems to be very little documentation on this
service so it is still unknown what it is used for. It is also possible that this service is outdated
and the port is being used for another purpose. A plot of the inbound traffic using the port can

be seen below.

Traffic Volume - Source 193.52/16, Source Port 1063

3 —— T — : — ; — . —— 03
Bytes —+—
Packets

25 I - L 4 025
l g
§ 2+ JL -4 02 g
=
g 15t h —Fjﬂ J 4 015 §
i i’ ik 4
s ﬂ[L] I H °
1k i qo1 8
| &

05 |- 1] l - 005

0 Ll T S TN N I | e SR Y W 1 0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

The plot shows how erratic the port use is. Like the FTP traffic, the flows are “table” like
which shows that each use is occurring over a longer period of time. Unlike the FTP port
though, this service is being used all throughout the day with no real trend. It could be possible
that this port is being used as another proxy port, but it is not common to that type of service.
Many different services can be configured to use whatever port they like but without seeing the
payloads it’s hard to tell what it’s being used for. Using more flow analysis, it shows that only a
couple hosts are using the port with the most common being 193.52.252.40. There are also a
few destination addresses that are don’t seem to follow any pattern. Overall, the flow analysis
matches up with the plot in that there are only a few connections that span over a couple hours

each with a large amount of data being transferred.

Threats

The collection of network flow data is optimal for discovering threats to large-scale
networks as attacks follow certain behavioral patterns that can be detected through known
methods and a deep understanding of normal network activity. The sheer volume of data can
be partitioned to dig deeper into anomalies that may signal malicious events. Any findings can
be correlated with system log files, firewall logs, and intrusion detection alerts to determine
how effective the security layers of an organization are against active and passive adversaries.
Furthermore, an organization can enumerate the type of attacks that are targeted to their
network and develop strategy to respond accordingly.

Our analysis of the MAWI netblock 193.52.0.0/16 disclosed varying techniques used to
perform reconnaissance on the netblock. Scanning is a technique highly regarded in the
security community as a means to perform vulnerability assessments against a target of choice.
It is the equivalent of going to a house and checking the doors and windows to see if the locks
aren’t properly attached or if there are any known ways to finagle the lock to open.
Communication on the Internet follows a standard of communication vetted by an Internet
governing body. These protocols determine how end-to-end communication is initiated and
how that communication is sustained until one party decides to terminate the connection. Itis
important to note where the scanning activity originates. This is integral to our analysis as we
pinpoint the infected hosts on the netblock and external hosts that account for large volumes
of traffic. The SiLK Toolkit provides the rwscan tool, which allows us to detect scans targeting

our netblock or originating from it.

To detect scans directed at netblock 193.52.0.0/16 run the following:

rwfilter ext*/* --daddr=193.52.0.0/16 --all-dest=stdout | rwsort --fields=sip,proto,dip | rwscan --scan-model=2 --
output-path=<somepath>

To detect scans originating from netblock 193.52.0.0/16 run the following:

rwfilter ext*/* --saddr=193.52.0.0/16 --all-dest=stdout | rwsort --fields=sip,proto,dip | rwscan --scan-model=2 --
output-path=<somepath>

The data is first partitioned and sorted based on the source ip, protocol, and destination ip.
Then the rwscan tool is used with the BLR algorithm, which is said to have less false positives
than its TRW counterpart. [1] A series of metrics for determining if a host is a scanner is

discussed thoroughly in the documentation.

Results of these findings are below in a graphical treemap representation.

int_scans_vizprep.tm3

193.52.225.98

193.52.250.17

193.5
2.229
.164

Figure 1: Internal Scanners from netblock 193.52.0.0/16

dest_vizprep.tm3
203.110
193.52 193.52 193.52
144.44 33.14 2.142 |220.2 [46.20 (218.2 [11.4 [222.|85.1
37 0 16 |73
35.8 (6.23|202.|82.2(193.{195.|83.3(83.3|195.
1 7 164 (18 (59 218 |4 6 201
147(5.1|19 (22 |8.7 [52.[22 |13.[19 (82.]48.
.43
TR BRREERERIER
beee—130 gL TTTTTITITTIITTITITT
33.169 T
211 |
173.94 ||
1
173.94 21|
7
0. |
35.81 83.34
193.52

Figure 2: External Scanners targeting netblock 193.52.0.0/16

In using visualization software, specifically Treemap 4.0, it is easy to note which
netblocks are harboring scanners that degrade the service of our netblock. With this
knowledge we recommend the use of load balancing techniques and outreach to the
responsible netblock administrators. The disproportionate amount of activity on 203.110 could
be partitioned further to conclude which hosts are the culprits of such malicious behavior.

Other activity of interest is high port to high port communication, which is typical of
worm traffic. Using SiLk tools we can partition based on communication originating from
netblock 193.52.0.0/16 where the source and destination ports are both ephemeral.

To see high port to high port communication originating from netblock 193.52.0.0/16 do the

following:

rwfilter ext*/* --saddr=193.52.0.0/16 --sport=1024- --dport=1024- --pass=stdout | rwstats --
dip --top --count=10

INPUT SIZE: 7724795 records for 966216 unique keys

DESTINATION IP Key: Top 10 flow counts

dIP| Records|%_ of_total| cumul_%|
83.49.177.67| 123728| 1.601699| 1.601699|
85.30.80.159]| 93955| 1.216278| 2.817978|
83.34.64.143| 91393| 1.183112| 4.001090)|
111.85.154.207| 79249| 1.025904| 5.026994|
55.213.74.242| 59809| ©.774247| 5.801241]
61.51.171.205| 50217| ©.650076| 6.451317]
43.59.192.17| 45555| ©.589724| 7.041041|
51.53.187.233| 45497| ©.588974| 7.630015|
2.22.197.175| 43068| ©.557529| 8.187544|
11.41.97.77| 38737| ©.501463| 8.689007]|

To see high port to high port communication targeted to netblock 193.52.0.0/16 do the

following:

rwfilter ext*/* --daddr=193.52.0.0/16 --sport=1024- --dport=1024- --pass=stdout | rwstats --
sip --top --count=10

INPUT SIZE: 9377814 records for 1010840 unique keys

SOURCE IP Key: Top 10 flow counts

SIP| Records|%_ of_total| cumul_%]|
222.16.253.237| 256954| 2.740020| 2.740020|
218.216.95.179| 163861| 1.747326| 4.487346|
55.180.183.229]| 135923| 1.449410| 5.936757|

83.49.177.67| 123956| 1.321801| 7.258557|

83.34.73.41| 98310| 1.048325| 8.306883|

85.30.80.159]| 94158| 1.004051| 9.310933|

83.34.64.143| 91600| 0.976773| 10.287707|
111.85.154.207 | 79251| ©.845090| 11.132797|
2.22.197.175] 67895| ©.723996| 11.856793|
82.188.86.17]| 62131| ©.662532| 12.519325|

Furthermore, we are concerned with incomplete TCP handshakes directed at specific
hosts within the netblock. Popular scans of this type are packets with the SYN flag set.
However, when these packets increase in volume it serves as evidence of a SYN flooding denial
of service (DOS) attack.

To see flows where the SYN flag is set and directed at netblock 193.52.0.0/16 do the following:

rwfilter ext*/* --daddr=193.52.0.0/16 --syn=1 --ack=0 --fin=@ --proto=6 --dport=80 --pass=stdout | rwuniq --fields=sip --

all-counts --flows=500 --dip-distinct
rwuniq: Warning: Using default temporary directory /tmp

sIP| Bytes| Packets| Records| min_sTime| max_eTime |Unique_DIP|
218.160.72.5] 180288| 2817| 2776|2009/03/31T00:43:46|2009/03/31T00:49:39 | 470|
215.187.89.6] 2020580 | 33680 | 33669|2009/03/30T715:00:03 |2009/03/31T14:59:57 | 2]
39.47.60.10| 275200| 6880 | 3440|2009/03/30T15:02:30|2009/03/31T14:57:57| 1|
46.249.113.11| 149640 | 2494 | 2494|2009/03/30T15:01:13|2009/03/31T14:54:42| 1|
222.48.204.15]| 198112| 4169 1585]|2009/03/31T01:46:20|2009/03/31T14:59:57 | 2]
84.231.57.52]| 834480| 13933 13858|2009/03/30T715:00:02|2009/03/31T14:59:47 | 2]
53.78.199.66| 262560 5470 | 1849|2009/03/30T15:03:12|2009/03/31T14:58:06 | 1|
60.165.163.70| 44680 1117 1105]|2009/03/30T15:02:51|2009/03/31T14:59:39| 1105
85.21.46.82| 96672 | 2014 | 938|2009/03/30T17:37:55]|2009/03/31T13:45:46 | 2]
11.34.138.82] 56216 | 1177 512|2009/03/31T02:52:37|2009/03/31T14:56:37| 2]
199.251.147.101| 369540 | 6159 1251|2009/03/30T15:00:11|2009/03/31T14:59:56| 1|
195.109.25.118| 70060 | 1173 751|2009/03/30T17:52:29|2009/03/30T17:54:01 | 90|
222.148.54.132| 144592 | 3018 1586|2009/03/30T18:05:18|2009/03/31T08:18:51| 2]
219.69.194.155| 36720 765| 698|2009/03/31T10:57:24|2009/03/31T14:58:21| 1|
84.65.250.191| 54176 | 1178 882|2009/03/31T03:26:33|2009/03/31T05:44:16 | 2]
11.35.148.206]| 71856 | 1497| 1109|2009/03/30T18:54:22|2009/03/30723:41:50 | 2]
11.161.191.249| 154408| 3488 1786|2009/03/30T15:00:12|2009/03/31T14:59:30| 1|

One potential occurrence of worm traffic has been since refuted in our analysis due to
mere traffic volume, but will be discussed here as an alternative to that hypothesis to showcase
our methodology. Issuing the following command results in a listing of internal hosts that
communicate from some ephemeral source port to destination port 3127, which is a

characteristic of one popular worm outbreak.

rwfilter ext*/* --daddr=193.52.0.0/16 --sport=1024- --dport=3127 --pass=stdout | rwstats --dip
--top --count=50
INPUT SIZE: 1405246 records for 272 unique keys
DESTINATION IP Key: Top 50 flow counts
dIP| Records|%_ of_total| cumul_%]|
193.52.232.189| 476745| 33.926088| 33.926088]|
193.52.232.188]| 433862| 30.874452| 64.800540|

193.52.232.177| 430368| 30.625812| 95.426352|
193.52.232.176| 62464| 4.445058| 99.871410|

These alleged hosts are infected with the myDoom worm, which has been polarized in
the security community due to its widespread propagation through email channels and P2P file
sharing networks. It has acquired the status as one of the largest mass mailers to date; hence
its approaches to infection are well documented. The worm was discovered in January 2004
and allegedly caused uproar concerning the practices of how antivirus vendors disseminate
information. The worm took advantage of these alerting mechanisms as propagation
technique. It commonly spreads as an infected attachment and creates a backdoor proxy

listening on port 3127 TCP.?

DDoS Vulnerability

The threats to our netblock are modest considering its size; however, it should be dually
noted that an influx of traffic targeted at servers 193.52.237.154 and 193.52.237.155 could be
detrimental their ability to serve requests. We have identified 5 servers on our netblock and 3
proxies that account for huge volumes of the total traffic. These hosts can become bottlenecks
and discontinue the flow of traffic. Another cascading effect can be the fail mechanism of these
servers. We cannot determine their configurations, but in the event they fail open our netblock
will become exposed to a series of attacks that can prove harmful. For example, if a DDoS
attack analogous to the one that occurred the summer of 09 were to stampede our netblock

we could see a degradation of services on port 80 and 443. It is imaginable that failures would

3 Stewart, Joe. “MyDoom Worm Advisory.” SecureWorks. 2004 January 27.
<http://www.secureworks.com/research/threats/mydoomadvisory/>

occur and potentially open the network to scathing attacks from adversaries. The integrity of
the communication stream would be compromised and require a massive overhaul of the
infected hosts to be considered operational. Even worse, the attack could go without notice
and serve as a hotbed for malicious software and compromised drone computers who do the
bidding of a remote controller. We recommend DNS round robin techniques to assist in the
load balancing of such requests. Furthermore, firewall rulesets should govern that a series of
packets with only the SYN flag set should be dropped. This requires the firewall to be stateful
and most importantly, this information to be cross-referenced with our flow analysis. Any
overlaps should punctuate the root cause of the problem and the business continuity plan
should be enforced.

Conclusion

Our analysis on the netblock proved fruitful in developing a methodology for properly
conducting flow analysis. The attestation process is much more challenging since full content
captures aren’t inclusive in the set of data; however, it does give a macro-level view of network.
The SiLK Toolkit is crafted for such analysis but is not a panacea for situational awareness.
Through this exercise, layering the defense architecture to include flow analysis will benefit the

network engineers and magnify performance issues and attacks on the network.

Appendix A
INPUT SIZE: 12724 records for 111 unique keys
SOURCE IP Key: Top 10 byte counts
Bytes|%_ of_total]|

193.
193.
193.
193.
193.
193.
193.
193.
193.
193.

52.
52.
52.
52.
52.
52.
52.
52.
52.
52.

232.
232.
232.
230.
.232]
229.
231.
228.
234.
.231]

229

228

INPUT SIZE:

SIP|
189 |
188 |
177
218

240 |
144 |
123
207 |

7.

4050269 20
3050463| 15
2684688| 13
1497380 |
966711| 4
954749| 4
845795| 4
825354| 4
550332 2
427674| 2

12530 records for 122 unique
SOURCE IP Key: Top 10 byte counts
Bytes|%_ of_ total]|

SIP|

193.52.229.90|

193.
193.
193.
193.
193.
193.
193.
193.
193.

52.
52.
52.
52.
52.
52.
52.
52.
52.

232
232

230

229

228

INPUT SIZE:

.189|
.177|
232.

188 |

.218]
229.
.232]
234.

240 |

207 |

.123]
229.

130 |

37740813| 58
10932386| 16

2851192 |
2358181
1764350 |
1041405 |
1006730 |
691509 |
672416 |
528041 |

4

ORRRRLRNMDW

13385 records for 173 unique
SOURCE IP Key: Top 10 byte counts
Bytes|%_ of_ total]|

SIP|

193.52.229.90|

193.
193.
193.
193.
193.
193.
193.

52.
52.
52.
52.
52.
52.
52.

232

232

229

.177|
232.

189 |

.188|
230.
234.
.232]
229.

218
207 |

240 |

193.52.238.39]
193.52.228.123|

5231714| 21
2769552| 11
2650038| 10
2644264| 1@
1485236| 6
1325148| 5
1052271| 4
1040557| 4
854473| 3
815907| 3

.870596 |
.718705|
.833906 |
715837
.981357|
.919718|
.358290|
.252960|
.835801 |
.203758|
keys

.422320|
.923201 |
.413611|
.650436 |
.731192|
.612082 |
.558406 |
.070448|
.040892 |
.817401|
keys

.326688|
.289870 |
.802680 |
.779143 |
.054453 |
.401866 |
.289503 |
.241752|
.483195|
.325983|

20.
36.

50

58.

63

68.
72.
76.

79
81

58
75
79
83
86

87.

89

90.

91

92.

21.

32
43
54

60.
65.

69

74.
77.
80.

cumul_%]|
870596 |
589301 |
.423207 |
139044 |
.120400 |
040118 |
398408 |
651368 |
.487169 |
.690926 |

cumul_%]|
.422320|
.345521|
.759132 |
.409567 |
.140759|
752842 |
.311248|
381695 |
.422587 |
239988

cumul_%]|
326688 |
.616558 |
.419238|
.198381 |
252834 |
654700 |
.944203 |
185955 |
669150 |
995134 |

Appendix B

[bkennedy@unix37 ext1l]$ rwfilter 2009033100.rw --saddr=193.52.229.90
--dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033101.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033102.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033103.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10 && rwfilter 2009033104.rw --saddr=193.52.229.90 --
dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033105.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033106.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033107.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10 && rwfilter 2009033108.rw --saddr=193.52.229.90 --
dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033109.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033110.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033111.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10 && rwfilter 2009033112.rw --saddr=193.52.229.90 --
dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033113.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033114.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033115.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10

INPUT SIZE: 129 records for 78 unique keys

DESTINATION IP Key: Top 10 byte counts

diP| Bytes|% of total| cumul_ %]
147.138.17.24| 32377| 36.301155| 36.301155]|
160.137.153.25| 9867| 11.062899| 47.364054|
45.128.130.180| 4038| 4.527413| 51.891468|
36.36.176.75| 2065| 2.315282| 54.206750|
96.116.72.176| 1605| 1.799529| 56.006279|
36.22.239.85| 1451| 1.626864| 57.633143|
46.207.29.98| 1301| 1.458684| 59.091826 |
37.126.135.91| 1207| 1.353291| 60.445117|
196.111.22.37| 1184| 1.327503| 61.772620|
199.202.185.20| 1168| 1.309564| 63.082184|

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

INPUT SIZE:
DESTINATION

80.35.136.

217.217.186.22|
80.35.136.5|
201.225.98.12|

0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_ total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_of_total]|
@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_ total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_ total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_ total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
0@ records for @ unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
237 records for 67 unique keys

IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
164 | 3318661| 8.793295|
3287535|
3248077 |
3247657 |

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|
8.793295 |

8.710822| 17.504117|
8.606272| 26.110389]
8.605159| 34.715548|

80.35.136.75| 3243613| 8.594444| 43.309992 |
54.27.49.16| 3231097| 8.561281| 51.871273|
54.27.4.193| 3213445| 8.514509| 60.385782|
54.27.49.182| 2752780| 7.293908| 67.679689 |
80.35.137.215| 2706564 | 7.171451| 74.851141|
80.245.153.180| 2280661| 6.042957| 80.894097 |

INPUT SIZE: 18 records for 9 unique keys
DESTINATION IP Key: Top 10 byte counts

diP| Bytes|% of total| cumul_ %]
80.35.136.85| 1756664 | 33.577218| 33.577218|
80.35.138.115| 1517384| 29.003573| 62.580791|
54.27.23.40| 1012324| 19.349758| 81.930549|
80.245.153.180| 922172| 17.626575| 99.557124]|
46.138.135.136 16598| ©.317257| 99.874382]|
208.68.5.116| 4256| ©.081350| 99.955732|
193.172.235.134]| 981| ©0.018751| 99.974483|
34.163.1.44| 867| ©.016572| 99.991055|
37.116.22.113| 468| ©.008945|100.000000 |

[bkennedy@unix37 ext1l]$ cd ../ext2

[bkennedy@unix37 ext2]$ rwfilter 2009033116.rw --saddr=193.52.229.90
--dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033117.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033118.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033119.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10 && rwfilter 2009033120.rw --saddr=193.52.229.90 --
dport=80 --pass=stdout | rwstats --dip --bytes --top --count=10 &&
rwfilter 2009033121.rw --saddr=193.52.229.90 --dport=80 --
pass=stdout | rwstats --dip --bytes --top --count=10 && rwfilter
2009033122.rw --saddr=193.52.229.90 --dport=80 --pass=stdout |
rwstats --dip --bytes --top --count=10 && rwfilter 2009033123.rw --
saddr=193.52.229.90 --dport=80 --pass=stdout | rwstats --dip --bytes
--top --count=10

INPUT SIZE: 9 records for 4 unique keys

DESTINATION IP Key: Top 10 byte counts

diP| Bytes|% of total| cumul_ %]
46.138.135.136 15867| 71.861413| 71.861413|
208.68.5.115| 4576| 20.724638| 92.586051|
193.172.235.139| 981| 4.442935| 97.028986|
198.20.160.41| 656| 2.971014|100.000000 |

INPUT SIZE: 38 records for 19 unique keys
DESTINATION IP Key: Top 10 byte counts
diP| Bytes|% of total| cumul_ %]
46.138.135.136 16770| 15.270164| 15.270164|
200.77.67.229]| 10000| 9.105644| 24.375808]|

54.22.10.99|
80.139.214.89|
212.90.16.23]|
43.14.65.129]|
200.205.198.47|
201.31.222.56]|
213.117.4.2|
200.77.67.195|

10000| 9.105644|
10000| 9.105644|
10000| 9.105644|
10000| 9.105644|
10000| 9.105644|
10000| 9.105644|
5669| 5.161989]|

4874| 4.438091|

INPUT SIZE: 64 records for 13 unique keys
DESTINATION IP Key: Top 10 byte counts

diP|
192.122.209.231|
46.138.135.136
37.116.177.207|
208.68.5.114|
42.86.41.150|
200.205.198.1]|
213.152.136.125|
34.143.144.68|
16.68.189.205 |
193.172.235.138]|

Bytes|%_ of_ total]|
31756| 43.244274|
10658| 14.513713|
8461| 11.521911|

4656| 6.340387|
4252| 5.790233|
3278| 4.463872]|
3189| 4.342675]
2493| 3.394885|
1896| 2.581910|
981| 1.335893|

INPUT SIZE: 73 records for 25 unique keys
DESTINATION IP Key: Top 10 byte counts

diP|
213.70.71.102|
80.139.214.89|
43.14.65.129]|
200.205.198.47 |
212.90.16.23|
200.77.67.229]|
201.31.222.56]|
54.22.10.99|
213.117.4.2|
200.77.67.195|

Bytes|%_ of_ total]|
23868| 11.620706 |
20000| 9.737478|

20000| 9.737478|
20000| 9.737478|
20000| 9.737478|
20000| 9.737478|
20000| 9.737478|
20000| 9.737478|
12376| 6.025551]|

6845| 3.332652]|

INPUT SIZE: 51 records for 12 unique keys
DESTINATION IP Key: Top 10 byte counts

diP|
192.122.209.231|
54.22.10.99|
43.14.65.129]|
200.77.67.229]|
201.31.222.56]|
80.139.214.89|
212.90.16.23|
200.205.198.47 |
200.77.67.195|

Bytes|%_ of_total]|
27093| 25.058732]

10000| 9.249154|
10000| 9.249154|
10000| 9.249154|
10000| 9.249154|
10000| 9.249154|
10000| 9.249154|
10000| 9.249154|
4529| 4.188942|

33.481452|
42.587095 |
51.692739|
60.798383|
69.904027 |
79.009670 |
84.171660 |
88.609750 |

cumul_%]|
43.244274|
57.757987 |
69.279898 |
75.620285 |
81.410518|
85.874391 |
90.217066 |
93.611951 |
96.193861 |
97.529755 |

cumul_%]|
11.620706 |
21.358183|
31.095661 |
40.833139|
50.570616 |
60.308094 |
70.045571 |
79.783049 |
85.808600 |
89.141252|

cumul_%]|
25.058732|
34.307886 |
43.557040|
52.806193|
62.055347 |
71.304501 |
80.553654 |
89.802808 |
93.991750 |

206.202.68.50| 3052 |

INPUT SIZE: @ records for © unique keys
DESTINATION IP Key: Top 10 byte counts

diP| Bytes|%_of_total]|
INPUT SIZE: @ records for © unique keys
DESTINATION IP Key: Top 10 byte counts

diP| Bytes|%_ of_total]|
INPUT SIZE: © records for © unique keys
DESTINATION IP Key: Top 10 byte counts

diP| Bytes|%_ of_ total]|

2.822842]

Appendix C

INPUT SIZE: 686 records for 31 unique keys
SOURCE IP Key: Top 10 byte counts
SIP| Bytes|%_ of_total]|

193.52.227.125| 2610657| 64.680452 |
193.52.238.39| 319788| 7.922922]|
193.52.233.113 174742| 4.329328]|
193.52.227.99| 153912| 3.813254]|
193.52.230.218| 122420| 3.033022]|
193.52.228.85]| 120402| 2.983025]|
193.52.228.64| 112828| 2.795375|
193.52.252.82| 87312| 2.163202|
193.52.228.37| 78835| 1.953180|
193.52.232.189] 36380| ©0.901334|

INPUT SIZE: 494 records for 24 unique keys
SOURCE IP Key: Top 10 byte counts

SIP| Bytes|%_ of_total]|
193.52.227.125| 13188787| 91.582642|

193.52.238.39| 280947| 1.950890|
193.52.230.218| 178109| 1.236785]|
193.52.227.99| 153487| 1.065810]|
193.52.228.64| 117684| ©.817195|
193.52.228.85| 110596| ©.767976|
193.52.252.82] 108436| ©.752977|
193.52.228.37| 50615| ©.351469|
193.52.232.189] 34998| ©.243025|
193.52.232.188| 34752| ©.241317|

INPUT SIZE: 511 records for 24 unique keys
SOURCE IP Key: Top 10 byte counts

SIP| Bytes|%_ of_total]|
193.52.227.125| 7474243 | 86.280158|

193.52.238.39| 250091| 2.886967|
193.52.227.99| 153800| 1.775416]|
193.52.230.218| 136343| 1.573898]|

96.814591 |

cumul_%]|

cumul_%]|

cumul_%]|

cumul_%]|
64.680452 |
72.603375|
76.932703 |
80.745957 |
83.778979|
86.762005 |
89.557380|
91.720582|
93.673763|
94.575097 |

cumul_%]|
91.582642|
93.533532|
94.770317|
95.836127|
96.653322|
97.421298|
98.174276 |
98.525745 |
98.768770|
99.010087 |

cumul_%]|
86.280158|
89.167125|
90.942540 |
92.516438|

193.52.228.85]|
193.52.252.82|
193.52.228.64|
193.52.228.37|
193.52.233.
193.52.232.

Appendix D

INPUT SIZE:
DESTINATION

47.89.25.
39.149.249.
39.149.249.

INPUT SIZE:
DESTINATION

47.89.25.
39.149.249.

35.44.213
INPUT SIZE:
DESTINATION

47.89.25.

212.214.241

47.89.2.12|

111156| 1.283148| 93.799586 |
108503| 1.252522| 95.052108|
104943| 1.211427| 96.263535]|
85190| ©.983405| 97.246940 |
113 47488| ©.548186| 97.795125|
189 | 35264| ©0.407076| 98.202201|
5 records for 3 unique keys
IP Key: Top 10 byte counts
diP| Bytes|% of total| cumul_ %]
106 | 2603358| 99.720415| 99.720415|
181 5348| ©.204853| 99.925268|
186 | 1951| ©.074732|100.000000 |

6 records for 3 unique keys
IP Key: Top 10 byte counts

diP| Bytes|% of total| cumul_ %]
106 | 13183107| 99.956933| 99.956933]
181| 3701| ©.028062| 99.984995|
.154| 1979| ©.915005|100.000000 |

7 records for 3 unique keys
IP Key: Top 10 byte counts

diP| Bytes|% of total| cumul_ %]
106 | 5296799| 70.867364| 70.867364|
222 1640096 | 21.943306| 92.810670|

537348| 7.189330|100.000000 |

