

NetSA Final Report 12/8/09

Table of Contents

L DAVZS LAY 1010010) 3
NetWOrK Profile.....iieiinssis s ssss s s sss s ssssssssssssssssnsssssssssssssssssssanss 3
TraffiCc SUIMMATY .o a s e R s E s s R e 4

BT TZ0=Y o T 1 2V i i 8
a0 ot S O 9

1 1 9

03 T LY 1 B2 1 10

AN 10

R = 7 10

N S 13
Non-Internet Traffic ... ——————————————————————- 13

A =] 8 5 (01 13
23053 40 0 o I 0 1 1 o o) 14

28) T 14

72 14
MESSAZING SEIVICES .eicrmrirmsmsiissssssmssissssssssss s s s s s e s e R e AR s e RS e R R e R s e n 15

D 22T 1 0T T T <) 14 16
Y0] Y=Y 7) ol TP 16
MYSQL = POTT 3306 ceoeuieeieureeeeeeeeseeseesseessesssesssesssessse s bbb s st s ss s bbb bbbt 19

7 20

23 o 0) i =) 0 O 20

2 T3) o O 20
Suggestions for IMProvement........—————————————— 21
D=0 o Ly 21
AVATIADIIIEY ettt ettt eb e s bR R e 22
POLICY ettt ettt b et e b s s R R AR AR AR 22
Event ANalysSis. ..o seans 22

Page 2

NetSA Final Report 12/8/09

Event Summary

The class B subnet that we analyzed was 8.76.0.0/16. During the course of the data
collection period, this net block saw 25,457 unique traffic flows composed of
384,211 individual packets. This particular class B network was chosen for analysis
over the others because of its size. [t is large enough the provide interesting analysis
points without being so huge that there would be too much data to analyze. Based
upon the analysis conducted, we have come to the conclusion that this net block is
probably entirely, or at least largely comprised of a corporate network. Some of our
key findings included SMB scanning and possible worm infection. This was evident
by performing flow analysis on the data packets that were captured. For an event
analysis, we compared out net block’s activity to a DDoS attack of a Belarusian news
site. A similar attack on our network would be extremely noticeable do to the
significant increase in web traffic to our web servers.

Network Profile

908 gggp 09

876243104 876243105 876243176 SMTP Server SMTP Server SMTP Server SMTP Server 5%88889%95 2558389?5@6
876880 876885 876887 8768810

Dasher.C Infected Web Server DNS Server

8.76.157.129 8.76.199.19 8.76.69.14 Scanning SMB(445)
8.76.2.89

208 0900

W Seprih Soner e Sever Wb Senc
87684180 87684182 87684203 R : R :

Page 3

NetSA Final Report 12/8/09

The network diagram above divides some of the top-talkers and notable
hosts in our /16 into /24 blocks. We concluded that our /16 consists primarily of
business hosts based on several observations. The most obvious feature of the data
is that the bulk of the traffic volume is to and from web servers located in our
subnet. The analysis also revealed that other top services were DNS and SMTP,
which is mostly indicative of a business network. However, the traffic pattern does
not follow any obvious workday so the web servers could be potentially
international customer facing sites. Moreover, the subnet does not contain any
obvious BitTorrent, P2P, gaming or instant messaging flows, which lends further
evidence that it is a corporate network.

Traffic Summary
Below depicts a graph that compares the total volume of incoming traffic to the total

volume of outgoing traffic. We see large spikes in the amount of incoming traffic at
12:00 Am and at approximately 7:00 AM.

Incoming v. Outgoing Traffic Volume

4 -1 - 1 - 1 - r - T T T T T T T 1 — 1 T
Incoming ——
Outgoing
35 | i
3 i
- 25 1
o
<)
(]
[
(%]
@ 2r T
o
2
o
E 1-5 - -
1L i
05 .
I “ b g ln) BT

O bl I b
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

When we compare TCP v. UDP incoming traffic volume, there is a large amount of
TCP traffic compared to UDP. The large spikes in overall data traffic seen above can
be linked directly to TCP traffic. Comparing the Mbits per Second between the two
graphs we see that they are approximately the same.

Page 4

NetSA Final Report

TCP v. UDP Incoming Traffic Volume

35

25 |

Mbits per Second
N
T

05

0

03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31

14:.00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

TICP Incolming R
UDP Incoming

03/31 03/31 03/31 03/31

12/8/09

Outgoing TCP and UDP traffic differs greatly from incoming, as shown in the graph
below. The amount of TCP outgoing traffic spikes at approximately 9:00 PM and
then again around 6:00 AM. There are additional spikes around 6:00 AM leading us

to believe a lot of downloading was occurring at that particular time.

TCP v. UDP Outgoing Traffic Volume

14 T T T T T T T T
TCP Outgoing ———
UDP Outgoing
12 B
1 - .
°
c
S o08f 4
ol
(]
3
Q
I
£ 06 B
=
04 | B
02
4l VTN PR J' AN | i LI1U|.L‘H|IM‘\L m

0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31

14:.00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Page 5

NetSA Final Report 12/8/09

When we compare incoming ICMP traffic to outgoing, they both tend to create the
same amount of traffic with the exception of two times throughout the day. At
approximately 11:00 PM and 1:00 AM, the amount of inbound ICMP traffic spikes.
We hypothesize that ping scanning was occurring and the firewall dropped all ICMP
responses. That is why we do not see the same spikes in outgoing ICMP traffic.

ICMP Incoming v. Outgoing Traffic Volume

0.12 — T T T T T T T T T T T T T T T — T T T T T
ICMP Incoming
ICMP Outgoing
0.1 | 4
0.08 |- i
°
j
I}
Q
5]
(]
5 0.06 B
a
i)
a
=
0.04 | R
0.02 | R
0 indab b b il ol nmun“ soas b bl o il ool b oo b bbn v

03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Comparing the traffic volume of incoming HTTP traffic to HTTPS traffic we are able
to identify very little HTTPS traffic and 3 spikes in HTTP traffic. The spikes in HTTP
traffic occur at approximately 12:30 AM, 2:30 AM, and 7:30 AM.

Page 6

NetSA Final Report

HTTP v. HTTPS Incoming Traffic Volume

09

0.8 -

0.7 |

0.6 |-

05

04 -

Mbits per Second

03 |

0.2

0.1 |

uiL 11 [T

HTITP Incolming
HTTPS Incoming

PR AR ‘HLI by IHH. ‘ all mhh\‘\hl ol s i il

0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

12/8/09

The graph below analysis the traffic volume of outgoing HTTP and HTTPS in order
to find any spikes in the data flow. We have identified quiet a few spikes in the
amount of outgoing HTTP traffic, while HTTPS traffic is very minimal. There are
many spikes between 3:00 PM and 6:00 PM, and then again at 3:30 PM and a little
before 6:00 PM. The spikes in outgoing traffic are not aligned with the spikes in

incoming traffic.

Page 7

NetSA Final Report 12/8/09

HTTP v. HTTPS Outgoing Traffic Volume
0.8 — 1 T T T T T T T T T T T T T T 1

' H'II'I'P 'Outlgoin'g I
HTTPS Outgoing
0.7 4

0.6 -]

0.5]

04 | g

Mbits per Second

03]

0.2 B

0 .‘\H I PRSI TR R \‘l n\\lu\. db L Mh’l L .Mmhuu\‘h‘h Al

03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

0.1

Web Traffic

One of the most common types of traffic on the Internet is that used by the World
Wide Web. A corporate network is no different. The most commonly used ports for
web traffic are TCP ports 80 and 443. Alternative ports exist, which are 8080 and
8443. In our netblock, however, we did not find any instances of traffic flows on
either of the alternative ports. Most of the web traffic was on port 80. This is the
most commonly used port for web traffic. Port 443 is the standard port for HTTPS.
Many corporate networks include servers using HTTPS to allow employees and
clients to securely access services.

$ rwfilter *.rw --dport=80 --daddr=8.76.0.0/16 --protocol=6 --pass=stdout | rwuniq

--fields=sip,dip,sport,dport,bytes,packets | sort -nr -t '|' -k 5 | head

rwuniq: Warning: Using default temporary directory /tmp
144.44.24.208| 8.76.14.190|54087| 80| 873912| 20215] 1]
144.44.24.208| 8.76.14.190|41750| 80| 804201] 18597| 1]
144.44.24.208| 8.76.14.190|58891| 80| 707652| 16532| 1]
144.44.24.208| 8.76.14.8|59326| 80| 522728| 12222| 1]
144.44.24.208| 8.76.14.2|160592| 80| 512926| 12047| 1]
144.44.102.38| 8.76.14.176|53909| 80| 491239| 11139 1]
173.94.111.43| 8.76.199.19| 1447| 80| 364438| 444| 1]

Page 8

NetSA Final Report 12/8/09

$ rwfilter *.rw --dport=443 --daddr=8.76.0.0/16 --protocol=6 --pass=stdout |
rwuniq --fields=sip,dip,sport,dport,bytes,packets | sort -nr-t'|' -k 5 | head
rwuniq: Warning: Using default temporary directory /tmp
192.42.134.97| 8.76.148.13| 2630| 443| 122728| 2623| 1]
192.42.134.97| 8.76.148.33| 4830| 443| 111552| 2270| 1]
192.42.134.97| 8.76.148.4| 1710| 443| 62196| 1270| 1]

Port 83/TCP

Port 83 is not a normally used port on most networks. However, in our subnet the
two flows with the higher amount of traffic originate from out net block and have a
port of 83/TCP. Internet research found that the only service known to use TCP
port 83 is known as mit-ml-dev. Unfortunately, the name of the service is all that is
known. However, there is nothing stopping a system administrator from running
services on non-default ports. There is a likely possibility that this service running
on port 83 is actually a common protocol such as HTTP.

$ rwfilter *.rw --protocol=6 --pass=stdout | rwuniq --
fields=sip,dip,sport,dport,bytes,packets | sort -nr -t '|' -k 5 | head

8.76.14.3| 192.42.30.184| 83| 4315| 43231477 30769|FSPA | 1|
8.76.14.176| 192.42.30.184| 83| 4095| 43153717| 30712|FSPA | 1]
193.52.224.3| 8.76.12.249| 80|17931| 21081097| 14373| SPA | 1]
173.94.202.220| 8.76.177.166] 80|46912| 4120360| 2910|FSPA | 1]
193.52.237.155| 8.76.12.242|64219|26084| 2673276| 1898| SPA | 1]
149.162.10.222| 8.76.146.163| 80|55146| 2672034| 1794|FSPA | 1]

Mail

Outgoing mail uses the default TCP port of 25 using SMTP. There is both mail
coming into this netblock and leaving. There is, however, no traffic using POP3 or
IMAP, the protocols used to retrieve email from a server. This is in keeping with the
assertion that this netblock is a corporate network. A properly configured corporate
network will show incoming and outgoing SMTP traffic from email going into and
coming out of the network. However, it makes sense that there is no visible POP3 or
IMAP flows because they will all be internal and behind a firewall.

$ rwfilter *.rw --dport=25 --daddr=8.76.0.0/16 --protocol=6 --pass=stdout | rwuniq
--fields=sip,dip,sport,dport,bytes,packets | sort -nr -t '|' -k 5 | head
rwuniq: Warning: Using default temporary directory /tmp
144.44.34.4| 8.76.88.109|56716| 25| 16424| 20| 1]
144.44.34.4| 8.76.88.68|61327| 25| 9942] 16| 1]
144.44.34.4| 8.76.88.68|60466| 25| 5909| 13| 1]
149.162.10.177| 8.76.217.226|56214| 25| 5797| 29| 1]

Page 9

NetSA Final Report 12/8/09

$ rwfilter *.rw --sport=25 --saddr=8.76.0.0/16 --protocol=6 --pass=stdout | rwuniq -
-fields=sip,dip,sport,dport,bytes,packets | sort-nr-t'|' -k 5 | head
rwuniq: Warning: Using default temporary directory /tmp
8.76.88.10|149.101.220.128| 25|54274| 892| 14| 1]
8.76.88.10| 193.52.228.35| 25|36532| 656| 10| 1]
8.76.88.7| 193.52.228.35| 25|36541| 656| 10| 1]
8.76.88.0| 149.92.211.34| 25|26539| 546| 10| 1]

File Sharing

NFS

The Network File System protocol, created by Sun Microsystems in 1984, allows
users to access files across a network (RFC 35301). We looked to see if we could
locate any of this traffic on our class B address block sending or receiving
information on port 2049.

[pfb@unix37 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=2049 --pass=stdout | rwstats --count=100 --sip --dip

sIP| dIP| Records|%_of total| cumul_%|
8.76.43.42| 133.44.82.73| 3| 75.000000] 75.000000|
8.76.81.239| 133.44.82.73| 1] 25.000000(|100.000000|

We found two hosts, namely 8.76.43.42 and 8.76.81.239, sending packets over the
NFS protocol. Digging down in more detail, we found TCP packets being sent to the
NFS port on other machines.

[pfb@unix37 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=2049 --pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|

8.76.43.42| 133.44.82.73| 80| 2049| 6| 1| 0.000]

8.76.43.42| 133.44.82.73| 7400| 2049| 6| 1| 0.000]

8.76.43.42| 133.44.82.73| 7000] 2049| 6| 1| 0.000|

8.76.81.239| 133.44.82.73| 3389| 2049| 6| 1| 0.000]

The flow that is most interesting is the host 8.76.43.42 sending traffic from port 80
over NFS.

SMB

L http://tools.ietf.org/html/rfc3530

Page 10

NetSA Final Report 12/8/09

We also explored the application layer network protocol Server Message Block,
which is used to users to files and printers. Because SMB is a Microsoft protocol, we
were unable to locate an official RFC.

[pfb@unix38 ext2]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=445 --pass=stdout | rwstats --count=100 --sip --dip

sIP| dIP| Records|%_of total| cumul_%|
8.76.84.180| 133.44.225.4| 1| 1.449275| 62.318841|
8.76.84.180| 133.44.220.46| 1] 1.449275| 63.768116|
8.76.84.180| 133.44.151.132| 1| 1.449275]| 65.217391|
8.76.84.180| 133.44.164.30| 1] 1.449275| 66.666667|
8.76.84.180| 133.44.217.208| 1| 1.449275| 68.115942|
8.76.84.180| 133.44.57.76 1| 1.449275| 69.565217|
8.76.84.180| 133.44.253.2] 1| 1.449275| 71.014493|

In our netblock, we found a lot of SMB traffic originating from host 8.76.84.180.
Exploring the host, we found the following:

pfb@unix36 ext2]$ rwfilter *.rw --any-address=8.76.84.180 --print-volume-stat --
aport=445 --pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|

| Recs| Packets| Bytes| Files|
8.76.84.180| 133.44.111.72]| 2020| 445| 6| 2| 2.933|
8.76.84.180| 133.44.192.56| 2567| 445| 6| 2| 2.980]|
8.76.84.180| 133.44.57.76| 1889| 445| 6| 2| 2.946|
8.76.84.180| 133.44.60.244| 1696| 445| 6| 2| 2.825]
8.76.84.180| 133.44.151.132| 3176]| 445] 6| 2| 3.014|
8.76.84.180| 133.44.156.38| 3904| 445| 6| 2| 2.889|
8.76.84.180| 133.44.81.234| 2237| 445| 6| 2| 2.870]
8.76.84.180| 133.44.253.2| 3880| 445| 6| 2| 2.984|
8.76.84.180| 133.44.37.92| 1508| 445| 6| 2| 3.002|
8.76.84.180| 133.44.225.4| 3520| 445| 6| 2| 2.918|
8.76.84.180| 133.44.188.229| 3013| 445] 6| 2| 3.000]
8.76.84.180| 133.44.170.65| 3575| 445| 6| 2| 2.972]
8.76.84.180| 133.44.247.82| 3578| 445| 6| 2| 2.982]
8.76.84.180| 133.44.177.110| 1274| 445] 6| 2| 2.907|
8.76.84.180| 133.44.164.30| 1529| 445| 6| 2| 2.960|
8.76.84.180| 133.44.227.77| 3505| 445| 6| 2| 2.928|
8.76.84.180| 133.44.111.27| 3985| 445| 6| 2| 3.014]
8.76.84.180| 133.44.220.46| 2108| 445| 6| 2| 2.941]
8.76.84.180| 133.44.47.32| 4226| 445| 6| 2| 2.963|
8.76.84.180| 133.44.30.71| 3747| 445| 6| 2| 2.978|
8.76.84.180| 133.44.217.208| 4264| 445]| 6| 2| 2.992]
8.76.84.180| 133.44.77.118| 4686| 445| 6| 2| 2.965]
8.76.84.180| 133.44.170.69| 1800| 445| 6| 2| 2.970]

Page 11

NetSA Final Report 12/8/09

8.76.84.180| 133.44.145.119| 3388 445| 6] 2| 2.970]
8.76.84.180| 133.44.184.130| 3275| 445| 6] 2| 2.942]

The host is attempting to connect to SMB ports on other machines outside of its
network. The rate at which the packets are being sent implies that 8.76.84.180 is
performing horizontal scanning on port 445.

[pfb@unix35 public]$ rwfilter *.rw --saddress=8.76.84.180 --print-volume-stat --
flags-all=S/SARF --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur,flags
sIP| dIP|sPort|dPort|pro| packets| dur| flags|
8.76.84.180| 133.44.167.58| 4575| 445| 6| 2| 3.012|S |
8.76.84.180| 133.44.119.79| 4449| 445| 6| 2| 2.847|S |
8.76.84.180]|192.177.166.219| 1155| 445| 6| 2| 2.923|S |

A packet size of two indicates that the victim is responding to the TCP requests with
indicating to the host that the portis open or closed. Here we see that the port is
closed because an ICMP packet with destination port 771 is being returned. Port
771 indicates that ICMP is Destination Unreachable, Port Unreachable, because the
decimal translation of the ICMP packet appears in the destination port field of the
flow record.

[pfb@unix36 ext1]$ rwfilter *.rw --daddress=8.76.84.180 --print-volume-stat
--pass=stdout | rwcut
--fields=sip,dip,sport,dport,protocol,packets,dur,flags

sIP| dIP|sPort|dPort|pro|packets| dur|
133.44.167.58 | 8.76.84.180| 0| 771| 1| 2| 3.023|
133.44.119.79 | 8.76.84.180| 0| 771| 1| 2| 2.848|
133.44.125.234| 8.76.84.180| 0| 771| 1| 2| 2.953|
133.44.218.102| 8.76.84.180| 0| 771| 1| 2| 3.011]
133.44.206.179| 8.76.84.180| 0| 771| 1| 2| 2.999|
133.44.101.39 | 8.76.84.180| 0| 771| 1| 2| 2.972|

Expanding our search for the host in the first group of flows, we find host 8.76.2.89
is also performing horizontal port scanning on port 445.

[pfb@unix36 ext1]$ rwfilter *.rw --any-address=8.76.2.89 --print-volume-stat --
aport=445 --pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|

8.76.2.89| 133.44.2.83| 2688| 445]| 6| 2| 2.925]|

8.76.2.89| 133.44.212.212| 2001| 445] 6| 2| 2.929|

8.76.2.89| 133.44.65.27| 1116| 445| 6| 2| 2.950]

8.76.2.89| 133.44.61.6| 4097| 445]| 6| 2| 3.014|

8.76.2.89| 133.44.202.13]| 1156| 445| 6| 2| 3.020]

Page 12

NetSA Final Report 12/8/09

8.76.2.89| 133.44.138.254| 2553| 445| 6| 2| 3.013]

Similar to above, we see responses from destination port 771 from the victims
indicating that the portis closed. We were unable to find any evidence that any of
the ports on the victims’ machines were open.

AFP

The network protocol, Apple Filing Protoco], is a file service for Mac OS X. Looking at
the flow records from our network we see that one host is using AFP.

[pfb@unix38 ext2]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=548 --pass=stdout | rwstats --count=100 --sip --dip
sIP| dIP| Records|%_of total| cumul_%|
8.76.84.224| 133.44.194.65| 1/100.000000{100.000000|

Learning more about 8.76.84.224, we determine the following.

[pfb@unix38 ext2]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=548 --pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
8.76.84.224| 133.44.194.65| 80| 548| 6| 1] 0.000]

The host sent one packet of TCP traffic from port 80 to port 445 on another
computer. This is interesting in that web traffic is attempting to connect to AFP.

Non-Internet Traffic

NetBIOS

The Network Basic Input/Output system is related to the session layer and runs
over TCP or UDP in order to allow computers to communicate over a LAN (RFC
10012). Different NetBIOS functions use different ports and protocols. For example,
nbname will use port 137 and either TCP or UDP, nbdatagram will use port 138 over
UDP, and nbsession will use port 139 over TCP.

[pfb@unix37 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=137,138,139 --pass=stdout | rwstats --count=100 --sip --dip
sIP| dIP| Records|%_of total| cumul_%|
8.76.65.91| 174.63.104.45]| 1/100.000000|100.000000]|

One host on our network sent one netbios record to another host. We need more
information to determine what protocol and what port were used.

2 http://tools.ietf.org/html/rfc1001

Page 13

NetSA Final Report 12/8/09

[pfb@unix37 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=137,138,139 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
8.76.65.91| 174.63.104.45| 139| 3544| 6| 3] 8.301]

Here we see that the nbsession function was called because there was TCP traffic
sent to from port 139. This is suspicious because netbios traffic should not leave the
LAN for security reasons. (Note: There are some exceptions.)

Remote Control

RDP

The Remote Desktop Protocol, developed my Microsoft, allows a user to control
another computer through a graphical interface. This is particularly common inside
of LANs where administrators monitor servers remotely, as well as employee
workstations.

[pfb@unix37 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=3389 --pass=stdout | rwstats --count=100 --sip --dip

sIP| dIP| Records|%_of total| cumul_%|

144.44.240.121| 8.76.81.239| 449| 6.114667| 6.114667|
144.44.188.89| 8.76.81.239 3| 0.040855| 6.155522
8.76.81.239| 192.177.175.11| 3| 0.040855| 6.196378|
8.76.81.239| 133.44.81.217| 3| 0.040855| 6.237233|
8.76.81.239| 133.44.155.104] 3| 0.040855| 6.278088|
8.76.81.239| 133.44.39.77| 3| 0.040855| 6.318943|
8.76.81.239| 133.44.29.34| 3| 0.040855| 6.359798|

Here we see that host 8.76.81.239, which is inside of our network, is communicating
with host 144.44.240.121, which is outside of our class B address space.

VNC

Another graphical desktop sharing system, Virtual Network Computing, uses the
RFB protocol to allow users to remotely control hosts. RFB stands for the “remote
framebuffer” and was designed as a simple protocol to facilitate cross platform
remote communication.

[pfb@unix38 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --

aport=5800,5900 --pass=stdout | rwstats --count=100 --sip --dip
sIP| dIP| Records|%_of total| cumul_%|

Page 14

NetSA Final Report 12/8/09

8.76.81.239| 133.44.33.60| 1/100.000000|100.000000]

Host 8.76.81.239 is communicating with host 133.44.33.60 over VNC. We must
examine the host more closely to learn more.

[pfb@unix38 ext1]$ rwfilter *.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=5800,5900 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|
8.76.81.239| 133.44.33.60| 3389| 5900| 6| 1] 0.000]

The communication originated from our class B network and was sent to port 5900.
No other VNC communication was found in any of the flow data.

Messaging Services

Messaging communications could help to profile the network in some ways. Seeing
very large amounts of traffic for these protocols could imply that many of the IP
addresses belong to personal users. Therefore, we determined the different port
numbers used by many common messaging programs and looked for their traffic.
The commands and results follow.

Service Port Number
MSN Messenger (messages) 1863

MSN Messenger (voice) 6901

MSN File Transfers 6891-6900
AIM 5190-5193
Yahoo Messenger (messages) 5050

Yahoo Messenger (voice) 5000, 5001
XMPP (including Google Talk) 5222

IRC 6667

$ rwfilter ext1/*.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=1863,6891,6892,6893,6894,6895,6896,6897,6898,6899,6900,6901,5190,51
91,5192,5193,5000,5001,5050,5222,6667 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
Total| 104723184 918568027| 656996415962| 16|
Pass| 8| 21| 1099| |

Fail| 104723176] 918568006| 656996414863 |
8.76.43.42| 133.44.255.88| 80|6667| 6/ 1| 0.000]
8.76.43.42| 133.44.255.88| 7400| 6667| 6| 1| 0.000]
8.76.43.42| 133.44.255.88| 7000| 6667| 6| 1| 0.000]
8.76.43.42| 133.44.255.88| 80|6667| 6] 1| 0.000]
8.76.12.242| 174.63.204.30149101| 1863| 17| 13| 52.797|

Page 15

NetSA Final Report 12/8/09

8.76.81.239| 133.44.172.199| 3389| 5192| 6| 1| 0.000]
8.76.81.239| 133.44.228.37| 3389|1863| 6] 1| 0.000]
8.76.134.64| 133.44.220.6| 1863| 445| 6] 2| 2.820|

$ rwfilter ext2/*.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=1863,6891,6892,6893,6894,6895,6896,6897,6898,6899,6900,6901,5190,51
91,5192,5193,5000,5001,5050,5222,6667 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
Total| 64224058| 625286420| 426480594766| 8|
Pass| 2| 4| 471]| |

Fail| 64224056] 625286416| 426480594295 |
8.76.69.161| 133.44.255.88| 80| 6667| 6| 1| 0.000]
8.76.12.240| 149.92.143.230|44656| 1863 17| 3| 84.884|

As we can see, there were some instances of communication for MSN Messenger,
which operates on UDP protocols, as well as plenty of IRC traffic. The IRC traffic
exists mostly in older applications, so it seems that there are several older systems
within our network.

Database Services

In addition to many of the other services, it is also important to observe the
database services that may be occurring through our network. Activity on these
ports will expose different servers that may be used for businesses within our
networks. Therefore, we searched for and documented the results for the services
being used for SQL Server, Oracle as well as MySQL.

sqQL Server®
Services Ports
SQL Server 156,1433, 1434
SQL Services 118
Analysis Server 2725
OLAP Services 2393, 2394

$ rwfilter ext1/*.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=156,1433,1434,118,2725,2393,2394 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets| dur]|

3http://www.microsoft.com/smallbusiness/support/articles/ref_net_ports_ms_pro
d.mspx

Page 16

NetSA Final Report

| Recs| Packets| Bytes| Files|
Total| 104723184 918568027| 656996415962| 16|
Pass| 17| 17| 688| |

Fail| 104723167| 918568010| 656996415274 |
214.75.58.59| 8.76.84.203| 1433 6000] 6] 1| 0.000]
214.75.58.61| 8.76.84.203| 1433 6000] 6] 1| 0.000]
214.75.58.90| 8.76.84.203| 1433| 6000| 6] 1| 0.000]
214.75.59.24| 8.76.84.203| 1433 6000] 6] 1| 0.000]
214.75.59.19| 8.76.84.203| 1433 6000] 6] 1| 0.000]
214.75.59.20| 8.76.84.203| 1433 6000| 6| 1| 0.000]
214.75.59.32| 8.76.84.203| 1433 6000| 6] 1| 0.000]
214.75.59.7| 8.76.84.203| 1433|6000 6] 1| 0.000
214.75.59.36| 8.76.84.203| 1433 6000] 6] 1| 0.000]
214.75.59.80| 8.76.84.203| 1433 6000| 6] 1| 0.000]
214.75.59.89| 8.76.84.203| 1433 6000| 6] 1| 0.000]
214.75.56.214| 8.76.84.203| 1433|6000 6/ 1| 0.000|
193.66.118.10| 8.76.157.129| 1433| 6000] 6] 1| 0.000
215.149.60.129| 8.76.84.203| 1433|6000 6| 1| 0.000]
215.149.60.128| 8.76.84.203| 1433|6000 6| 1| 0.000]
193.66.118.10| 8.76.157.129| 1433| 6000] 6] 1| 0.000
8.76.81.239| 133.44.86.168| 3389| 118| 6| 1| 0.000]

$ rwfilter ext2/*.rw --any-address=8.76.0.0/16 --print-volume-stat --

aport=156,1433,1434,118,2725,2393,2394 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
Total| 64224058| 625286420| 426480594766| 8|
Pass| 2| 4| 184| |

Fail| 64224056] 625286416 426480594582| |
8.76.84.224| 133.44.201.53| 80| 2393 6| 1| 0.000]
144.44.166.166| 8.76.14.96| 1433| 80| 6| 3| 8.896|

Oraclet

Service TCP
Sql*net 66
Sql*net 2 1521
Sql*net 1 1525
Listener port 1526
Tlisrv 1527
Coauthor 1529
Oracle Remote 1571

4 http: //www.chebucto.ns.ca/~rakerman/oracle-port-table.html

Page 17

12/8/09

NetSA Final Report 12/8/09

Database

Oraclenames 1575
Oracle Net8 Cman 1630
Oracle-em1 1748
Oracle-em2 1754
Oracle-VP2 1808
Oracle-VP1 1809
Oracle Net8 Cman 1830
Admin

Oracle GIOP 2481
Oracle GIOP SSL 2482
Oracle TTC 2483
Oracle TTC SSL 2484
OEM Agent 3872
Oracle RTC-PM 3891
port

Oracle dbControl 3938
Agent

$ rwfilter ext1/*.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=66,1521,1524,1526,1527,1529,1571,1575,1630,1748,1754,1808,1809,1830,
2481,2482,2483,2484,3872,3891,3938 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets| dur]|
| Recs| Packets| Bytes| Files|
Total| 104723184 918568027| 656996415962| 16|
Pass| 7| 15| 1539 |

Fail| 104723177| 918568012| 656996414423 |
8.76.43.42| 133.44.123.64| 7400| 1808| 6| 1| 0.000]
8.76.43.42| 133.44.123.64| 7000| 1808| 6| 1| 0.000]

192.42.134.97| 8.76.178.112| 1575/ 8000] 17| 1| 0.059
8.76.178.112| 192.42.134.97| 8000| 1575 17| 1| 0.000]

192.42.134.97| 8.76.148.150| 1748| 80| 6/ 5| 0.146]
8.76.148.150| 192.42.134.97| 80| 1748| 6] 4| 0.087|
8.76.84.180| 133.44.250.91| 1630| 445| 6] 2| 2.907|

rwfilter ext2 /*.rw --any-address=8.76.0.0/16 --print-volume-stat --
aport=66,1521,1524,1526,1527,1529,1571,1575,1630,1748,1754,1808,1809,1830,
2481,2482,2483,2484,3872,3891,3938 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,protocol,packets,dur,bytes

sIP| dIP|sPort|dPort|pro| packets| dur| bytes|
| Recs| Packets| Bytes| Files|
Total| 64224058| 625286420| 426480594766| 8|
Pass| 19| 89| 21189| |

Page 18

NetSA Final Report

Faill 64224039] 625286331 426480573577

192.42.134.97| 8.76.150.1| 1526| 80| 6|
8.76.150.1| 192.42.134.97| 80| 1526| 6
192.42.134.97| 8.76.146.137| 1529| 80| 6|
8.76.146.137| 192.42.134.97| 80| 1529 6|
144.44.166.166| 8.76.14.96| 1524 80| 6|
144.44.166.166| 8.76.14.96| 1630| 80| 6|
144.44.166.166| 8.76.14.96| 2481| 80| 6|
8.76.84.224| 133.44.123.64| 80| 1808| 6
192.42.134.97| 8.76.18.140| 1748| 80| 6|
8.76.18.140| 192.42.134.97| 80| 1748| 6
8.76.18.140| 192.42.134.97| 80| 1748| 6
8.76.84.180| 133.44.164.30| 1529| 445| 6
8.76.84.224| 133.44.100.205| 80| 3872| 6
144.44.166.166| 8.76.14.96| 1521| 80| 6|
144.44.166.166| 8.76.14.96| 1527| 80| 6|
144.44.166.166| 8.76.14.96| 1529 80| 6|
144.44.166.166| 8.76.14.96| 1630| 80| 6|

192.42.134.97| 8.76.144.67| 2484/ 8000| 17| 1| 0.000

149.162.180.62| 8.76.199.30| 1527| 80| 6|

MySQL — Port 3306

5| 0.453
5| 0.373
5| 0.357
5| 0.269
3| 8.875]
3| 8.947
3] 9.048]
1] 0.000]
17| 12.283|
11| 12.191]
9| 79.554|
2| 2.960]
1| 0.000]
3] 9.049
3] 9.049
3] 9.148|
3| 8.948

6| 0.664|

|
1171

699

1226
598|

144
144
144

40|
1075|
13399
360|
96|
40|

144
144
144
144

44
1433|

12/8/09

rwfilter extl/*.rw --any-address=8.76.0.0/16 --print-volume-stat --aport=3306 --
pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur
sIP| dIP|sPort|dPort|pro| packets| dur]|

| Recs| Packets| Bytes|

Files|

Total] 104723184| 918568027| 656996415962]

Pass| 0] 0] 0| |

Fail| 104723184] 918568027| 656996415962]

16|

rwfilter ext2 /*.rw --any-address=8.76.0.0/16 --print-volume-stat --aport=3306 --
pass=stdout | rwcut --fields=sip,dip,sport,dport,protocol,packets,dur

sIP| dIP|sPort|dPort|pro| packets|

| Recs| Packets| Bytes|

dur|
Files|

Total] 64224058 625286420| 426480594766

Pass| 0] 0] 0| |

Fail| 64224058| 625286420] 426480594766

8|

As we can see, there are definitely a couple of SQL Server and Oracle databases.
However, there were no MySQL databases. Through the reporting, we were able to
distinguish several Oracle servers. There were several different ports used, but this
is common with Oracle as the application runs through the different ports for
authentication and connections. Within the SQL Server data, we can see that there

was a lot of data from port 1433 to port 6000. Since port 6000 is commonly

Page 19

NetSA Final Report 12/8/09

associated with X11, this could be common traffic. However, since there are many
different computers connecting it, there could be something interesting there. We
will go into more detail about our findings later in this paper.

P2P

BitTorrent

The typical BitTorrent client uses the default port range of 6888-6900 over both
TCP and UDP>. Our analysis did not reveal any torrent traffic over this port range.
However, the results were still inconclusive as some BitTorrent clients allow users
to specify their own ports or randomize them each time the program starts.
Unfortunately, detecting Torrent traffic using flow data requires a more in-depth
understanding of your network in order to realize and detect what sort of flows are
anomalous. Simply searching for ports that can easily be randomized is not
sufficient to conclude that there is absolutely no torrent traffic on our network.

Dasher.C

While searching for hosts running Microsoft SQL Server we came across a strange
pattern of traffic. We encountered multiple traffic flows coming from a TCP source
port of 1433 and going to a destination port of 6000. TCP port 1433 is used by
Microsoft SQL Server and TCP port 6000 is used by X11. This seems like an odd
combination so we did some more digging and discovered a worm called
Win32/Dasher.C that uses these ports also. Dasher.C will use a source port of 6000
and send out SYN requests to hosts on ports 1433 and 445. These are the ports used
by SQL Server and Microsoft-DS, respectively. If Dasher.C receives a valid response
that the port is open it will attempt to exploit a vulnerability on that service. All of
the records we found using port 6000 all have that port as the destination and the
source is either 1433 or 445. All of the flows are only a single packet in length and
all have the RST/ACK flag, meaning they are response packets. This suggests a few
possible explanations. First, the original SYN packets might have not been collected
for some reason. Another explanation would be that when the SYN packets were
sent out they came from an address outside our subnet with a spoofed source
address. If this had happened, when the outside addresses responded with their
RST/ACK packet it would go to the spoofed address instead of the real source
address.

$ rwfilter *.rw --aport=6000 --pass=stdout | rwuniq --
fields=sip,dip,sport,dport,bytes,packets,protocol,flags
rwuniq: Warning: Using default temporary directory /tmp

sIP| dIP|sPort|dPort| bytes| packets|pro| flags| Records|
214.75.59.80| 8.76.84.203| 1433| 6000| 40| 1] 6] RA | 1]
214.75.58.61| 8.76.84.203| 1433| 6000]| 40| 1] 6] RA | 1]

5 http://en.wikipedia.org/wiki/List of TCP and UDP port numbers

Page 20

NetSA Final Report 12/8/09

214.75.59.24| 8.76.84.203| 1433| 6000] 40| 1| 6| RA | 1
214.75.59.36| 8.76.84.203| 1433| 6000] 40| 1| 6| RA | 1
214.75.59.20| 8.76.84.203| 1433| 6000] 40| 1| 6| RA | 1]
|
|

214.75.59.89| 8.76.84.203| 1433|6000] 40| 1| 6| RA 1|
214.75.59.32| 8.76.84.203| 1433|6000] 40| 1| 6| RA 1|
215.149.60.128| 8.76.84.203| 1433 6000| 40| 1| 6| RA | 1]
193.66.118.10| 8.76.157.129| 1433| 6000] 40| 1| 6| RA | 2|
214.75.56.214| 8.76.84.203| 1433|6000| 40| 1| 6/ RA | 1]
215.149.60.129| 8.76.84.203| 1433 6000| 40| 1| 6| RA | 1]
214.75.58.59| 8.76.84.203| 1433] 6000] 40| 1| 6| RA | 1
214.75.59.7| 8.76.84.203| 1433 6000| 40| 1] 6| RA | 1]

214.75.58.90| 8.76.84.203| 1433| 6000] 40| 1| 6| RA | 1
214.75.59.19| 8.76.84.203| 1433| 6000] 40| 1| 6| RA | 1
193.66.118.10| 8.76.157.129| 445|6000] 40| 1] 6] RA | 2|

Suggestions for Improvement

After our analysis of the data, there are many things that can be extrapolated
from this data. We have attempted to do what we can, but there are many more
things that we could have missed. However, we have collected several suggestions,
which are an aggregate of our findings. We have divided these recommendations
into three categories: Security, Availability, and Policy.

Security

First, we found some NetBIOS traffic passing through the network. Since the
data was collected on a Tier 1 router, it shows that the traffic was passing back and
forth on the Internet. We suggest that this traffic be blocked because there is no
need for it to travel across the Internet. Instead, it should exist only within a private
network.

Second, network administrators should frequently analyze their networks in
order to detect irregular traffic. Tools such as Snort should be used in order to
detect occurrences such as DDoS attacks, viruses, or any other undesired traffic
within their networks. Our network did a decent job of blocking much of this traffic,
but we were still able to identify some questionable traffic.

Third, the network administrators should also use some heuristic filtering on
their network based on ICMP traffic in order to prevent outsiders from scanning
ports. As part of our analysis, we have identified a couple scan attempts that could
have been used to profile a network, in addition to the analysis that we were able to
perform. Specifically, since we have identified that our network mostly consists of
corporate networks, it is crucial to protect to confidentiality of a network. Allowing
people to use ICMP scans could allow hackers access to information that would aid

Page 21

NetSA Final Report 12/8/09

them with intrusion attempts. We suggest using intelligent filtration methods to
block particular [P addresses would be very beneficial in terms of security.

Availability

Since our network contains several corporate servers, it likely that these
servers need to be available at all times. The non-functional requirements of those
servers are not known due to the anonymity of the data, but assumptions can be
made. We recommend that the ISP’s as well as the network administrators of the
corporations use network-monitoring tools such as Nagios in order to ensure the
stability of the network. This could be utilized in order to use better load balancing
of a network or block attacks that might be occurring. In any case, many of these
servers will need to be available on a consistent basis, so necessary steps should be
taken.

Policy

We have identified many outdated services as well an outdated virus in our
analysis. This demonstrates to us that many computers on this network have not
been updated with their virus definitions or other security updates. It is possible
that these computers do not have any security software installed, but this would fall
into the same recommendation of ours. Our recommendation to these computers is
to mandate updates in security software. If this happens, then many of the holes in
the currently running software will be patched as well as provide many additional
preventative measures. We raise this issue because our network is primarily
corporate. If these vulnerabilities are not patched properly, then there will be a
significant risk for the company. Updating their security software will at least give
the company a fighting chance against many common vulnerabilities.

Event Analysis

In early June 2009, a Belarusian news site, Charter97.org, suffered a distributed
denial-of-service attack that lasted several days. Arbor Networks’ security
researcher Jose Nazario believes the attack was fueled by a geopolitical conflict
between Russia and Belarus®. Apparently, leading up to the attack, Belarus refused
to recognize the independence of rebel Georgian territories much to the dismay of
Russia who fears that its influence in former Soviet Union nations is slowly
deteriorating’. In response to this, Russia withheld a very large loan installment
from Belarus and banned the importation of Belarusian dairy goods into Russia. 8
Belarus then demonstrated their intent to align themselves politically and
economically with the European union by requesting their financial support.

6 http://asert.arbornetworks.com/2009/06/ddos-floods-in-belarus-political-motivations/
7 http://www.etaiwannews.com/etn/news content.php?id=971327&lang=eng news
8 http://www.etaiwannews.com/etn/news content.php?id=971327&lang=eng news

Page 22

NetSA Final Report 12/8/09

Apparently not satisfied with their initial punishment tactics, Nazario believes that
Russia, or individuals acting for Russia, orchestrated a DDoS attack against
Charter97.org, which is a news site for the human rights organization of the same
name that has been vocal in favor of democratic movements in Belarus.® The attack
itself consisted of initial short attacks that the administrators at Charter97 were
able to mitigate, however the attackers increased the intensity of the attack and the
site was unavailable for several days.1® According to their own reports, Charter97
believed that over 5000 bots were involved in the attack.!! This attack was yet
another incident that indicates that political events have cyber-world repercussions.
Figure 1 shows a chronology of the attack that was taken from another Belarusian
site. During the initial attack, Charter97 administrators were able to keep the site
reasonably online, however around 19:13 the attackers escalated the number of
hosts to 5000 and the site was rendered completely unavailable.

Figure 1 - Charter97.org DDoS Chronology from
http://www.electroname.com/photos/20090609_ddos.png

Report Name: Daily Report (2009-06-08 00:01:07 - 2009-06-09 00:01:07)
Object: charter Switch: 10.6.206.55
Max Avg Cur Total

To Internet 7.64 Mbits/s 2.77 Mbits/s 235.5 Kbits/s 26.8 Gbytes
From Internet 9.86 Mbits/s 4.07 Mbits/s 9.83 Mbits/s 38.8 Gbytes

TOTAL 17.5 Mbits's 6.84 Mbits's 10.06 Mbits's 65.6 Gbhytes
RTG 0.7.4

9.9

7.9
d 5.9
(5]
2
g 3.9 L/

2.0

0:01 2:25 4:49 7:13 9:37 12:01 14:25 16:49 19:13 21:37 0:01
06/08 06/03

ETO_INTERMET
WFROM_INTERNET

Since sample point F is collected from a trans-Pacific link, evidence of this DDoS
attack would most likely not appear in the data set since Russia and Belarus are

9 http://en.wikipedia.org/wiki/Charter 97
10 http://www.theregister.co.uk/2009/06 /12 /belarus ddos/
11 http://www.charter97.org/en/news/2009/6,/10/18992/

Page 23

NetSA Final Report 12/8/09

located in northern Asia and Eastern Europe. The bot-net was most likely centered
in Russia, and traffic from any US hosts probably would have passed a trans-Atlantic
line. However, for the sake of analysis, let us imagine the scenario that our network
contains the web server(s) for Charter97.org. Figure 2 displays all traffic to and
from web servers within our subnet. We can assume that the initial traffic levels at
0:01 on Figure 1 represent the average traffic level for Charter97. Figure 2 indicates
that the total volume of web traffic on our subnet rarely exceeds 1 Mbps compared
to a much higher throughput for Charter97. In other words, had this attack
occurred against our web servers, the impact of the DDoS would have been much
more obvious and effective. If our infrastructure was only designed to support such
a low level of traffic, potentially fewer bots might have been needed to initiate the
attack against our web servers. In terms of manifesting itself in our dataset, the
magnitude of the Charter97 attack would have been immediately apparent even just
by looking at the total link saturation. Specifically, depending on the method used
for this attack, it could have manifested itself in the form of single packet SYN flows,
RST flows, or an ICMP flood. Unfortunately, there was not adequate media source

material regarding this particular attack to determine the actual attack vector.
Port 80 Traffic Volume

4 T T T T T T T T T

Inco'ming i
Outgoing

35 1

Mbits per Second
N
T
1

1+ ‘ -
05 J .

! 11l |
”‘l‘”ld:‘llmuh 1 TWPIVERT) LLLuJL _llJJJ JJL. L JJ h.lkn LNV I APAR

0
03/30 03/30 03/30 03/30 03/30 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31 03/31
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Figure 2 - Traffic going to and from all web servers on our subnet

Page 24

