Decoding

Anonymized Packet
Data

Finding useful patterns and trends in anonymized packet data.

Shawn McCaffrey
Shrikant Pandhare
Paul Pasquale
David Rennicker

11/19/2008

Contents

Tl oo [T o1 o] o USSR 3
Part |- Population Profiling Tools and TEChNIQUESuuviiieiii ittt e e rrare e e e e e e aarees 4
101001 0o -1 VU PPPPPPPPPPPPPPP 6
Part [1- Media Profiles ..c..eo ittt sttt st sttt et et e et e be e b e be e s e 7
Vid€0 0N DEMANG SEIVICES ...coeveieiieiiiiieiteectee ettt e st e b e smt e s be e s eme e e sereesmreesreeesmneesaneeas 8
YouTube and YOUTUDE HDcooiiieiiieie ettt ettt st e s e s bt e e be e e smteesreeenneeenns 8
Hulu Standard and High Definitioncooiiiiiciie et 10

DT oo) 2= VA @1 o F=1 oY o Y= SRR 13

LIVE VIOEO SEIVICES ...ttt ettt et et b e bt e bt e s bt e sheesae e sane st sabeeaneenneennee ees 16
CNIN LIVE V@O .etieiiteiiieicetee ettt et st st s st s b e s e e e ame e e sabeeeneeesmneesns sanee 16
AUIO ON DEMANG SEIVICES ...eeeeiieiiiieiieeiee ettt e sttt e st e s e e sbe e e sar e e sbe e e seeesnreesnreesnenesaneesanes 18
T oo (o] - H OO UPTOTURPURTOPSPTRI 18

LIVE AUGIO SEIVICES....nutiiiiieeite ettt ettt ettt ettt e sat e sttt e bt e e s ab e e s abeesabeeesateesabeesabeesabeeesabeesabeesabeeen eas 22
2T [o T o T o [T PR PP PP PRSPPSO 22
CNN LIV RAIO .. ettt ettt et st st sttt e et et e et e e bt e sneenneen eeane 23
Part lll- Applying Profiling Techniques Learned to FIOW Datacccccueeeieciiiiiiciiee et 26
SUMMIANY Data. it ———————————————————————.—aaaaaaes 26
Application t0 REal FIOW Data..........ueeiiiiiiiiiiiiiiee ettt s e ettt e e e e e e eetee e e e e e e s snaree e e e e e essanntsaneeeessennnnns 29

Conclusion and ENhancements tO SILK TOOIS.......oooiuuuiiiie ettt e e e e e v e 33

Introduction
Researchers studying Internet traffic face two significant problems when attempting to learn more

about their populations. First, IP addresses are frequently anonymized so that a researcher does not
know the IP address of the user or the server. This is a problem because the researcher cannot visit the
IP, or research the IP addresses being mentioned to determine what services are being accessed, or
what the profile of the users are like accessing the services. The second problem is that companies many
times to save space, and reduce overhead, capture packets in a reduced form. One such form is flow
data, which is essentially a summarization and aggregation of packet traffic. A second reduced form is
choosing not to capture the payload section of the packet. This method preserves the individual packets,
but it just drops the data section or replaces it with random data to either save space, or increase
privacy. This once again creates the problem that it is harder for the researchers to know anything about

the population being studied, or the services being accessed.

Through this report we intend to develop techniques for demystifying anonymous packet capture data.
The first section of the report will talk about ways that a researcher can determine information about a
population even with limited knowledge from packet capture data. The second section of the report will
then talk about ways that a researcher can try and determine what services a user may be accessing
based solely on the shape of the traffic flows. This will allow a researcher, if using data with anonymized
IP addresses, to still be able to have an educated guess on what service is being accessed by a user. For
the purposes of this report we will be focusing on media services, specifically play on demand audio and
video, as well as live audio and video. The third section of the report will then show our attempts to use
characteristics discovered in part two of the report, to try and find media services in flow data, and the

challenges that this presents.

Part I- Population Profiling Tools and Techniques
A useful piece of data that a researcher would be interested in obtaining would be the operating system

(0S) of systems involved in a data flow. Since the data the researcher is using is either anonymized, or is
flow data it makes it hard for the researcher to actively determine the OS, therefore passive OS
fingerprinting techniques must be used. Passive OS fingerprinting can be achieved based on various
factors and with different levels of accuracy depending on the data available. Some OS fingerprinting
can be achieved by flow data, such as observing the ephemeral ports used when a host connects to
network services. More precise OS fingerprinting is done by examining packet header data such as
ephemeral ports, window size, max segment size, TTL, packet size, and so on — this information is usually
included in full packet captures. Applications such as pOf (a passive OS fingerprinting tool) attempt to
examine this information in order to fingerprint a device’s operating system. It is important to note that
nmap performs active OS fingerprinting and therefore is not a valid tool to use in our implementation.
Our passive techniques involve examining data from past or current connections by doing nothing other
than observing traffic. On the other hand, active fingerprinting involves sending packets to a destination

node and observing the response.

When fingerprinting with flow data, the only real indicator is ephemeral source port. Although an
operating system identity can’t be established with 100% confidence from this information alone, it can
be established at a high level of confidence. Different operating systems use different ephemeral port
ranges. Ephemeral ports are the temporary client-side ports used when opening up a TCP connection
and the range of ephemeral ports are usually a default setting in the operating system’s TCP stack. The
client will start assigning ephemeral ports for connections at a certain number, and increase the port
number by 1 for each new connection. When the port is incremented past the highest number in the
range, it will reset to the lowest number once again and the next port assigned will be at that number.
Therefore, by observing the traffic from a certain host for long enough, the ephemeral port range of that

host can be established, and the operating system could theoretically be determined.
Ephemeral port ranges for the most popular operating systems are as follows®:
Windows XP and Previous: 1024 — 4999

Windows Vista and Server 2008: 49152- 655352

! http://www.ncftp.com/ncftpd/doc/misc/ephmeral_ports.html

Apple Mac 0S: 49152 - 65535

Linux (2.4 kernel): 32768 — 61000

Free BSD: 1024 — 65535 (assigned randomly, does not follow the linear pattern)

Solaris: 32768 — 65535

Although there is some overlapping of ranges, we can look at their boundary limits in order to establish
the OS fingerprint. For example, a host that starts its range at 1024 can be Windows or Free BSD, but a

host that doesn’t exhibit a port higher than 4999 is guaranteed to be a Windows machine.

This method is not foolproof. Many operating systems provide mechanisms for manually changing the
ephemeral port range, and smart administrators that don’t want their machines to be profiled in this
way may change the setting, therefore invalidating this mechanism. On the other hand, the majority of
machines on the network probably haven’t had this “tweaking” performed, so results on a large scale

should be fairly accurate.

When fingerprinting packet data, there are some fields within the IP and TCP packet can be examined
when determining the client system’s OS. These fields include window size (WSS), initial TTL, maximum
segment size (MSS), and NOPs. Of course, we can also examine ephemeral port data here as well. Data
from these different fields, when combined, can help determine the operating system. In fact, an

application entitled pOf (available at http://Icamtuf.coredump.cx/p0f.shtml) keeps a database of

fingerprints for many operating systems, and assigns probabilities by hosts. The input to this application

is a packet capture (pcap) file.

The most important element of fingerprinting by packet is examining the first few packets of any flow.
This is where the client and server are “handshaking” via the TCP protocol, and are exchanging their TCP
capabilities. While the server might be able to sustain a packet size of 64, the client may prefer a packet
size of 60, and so all future packets from the server may only be of size 60. This event is very significant
as this packet size could be linked to a specific operating system, but the important issue is which
machine initially sets an option in this manner, not which machines use this option later on; the server

may choose to drop down to size 60 to better communicate with the client).

2 http://blogs.msdn.com/drnick/archive/2008/09/19/ephemeral-port-limits.aspx

http://lcamtuf.coredump.cx/p0f.shtml

Summary
The following techniques are available as methods of determining the operating system from a

restricted data set:

When the data set consists of packet flow captures using the “traditional” settings with anonymized

IP addresses that remain consistent in the data set

e Monitoring ephemeral port connects from an IP addresses, ideally determining the minimum

and maximum value used.

When the data set consists of individual packet captures, with the data field of the packet dropped or

filled with random data, anonymized IP addresses that remain consistent in the data set

e Monitoring ephemeral port connects from an IP addresses, ideally determining the minimum
and maximum value used.
e Possible use of tools such as pOf which looks at a variety of characteristics of the packet and

compares them to known signatures.

Part II- Media Profiles

Using the techniques described in Part | of the paper can give researchers information on the population
of the network, specifically the OS. However none of these techniques give any information on what is
being services are being accessed by the users of the network. In this section, we investigate a variety of
media services, and analyze the traffic generated by visiting the services to determine if there are any
distinctive patterns which give away the presence that a specified media service is being used, that a
researcher could then compare traffic flows to try and determine what a specific flow represents. These
patterns are most useful when looking at anonymized IP packet capture data, since their generation is
based off of the size of individual packets, so looking at flow data would not have as much utility, since

flow data is the summation and aggregation of these individual packets.

The following represent the result of the research into a selection of media services. The tests were
conducted over high bandwidth connections (6Mbps cable, or campus internet connections), and the
home IP address, and the IP address of the service that is being connected to is clearly marked. The tests
were repeated to ensure results were not because of latency or network congestion errors. The graphs,
when appropriate are expressed on a 60 second scale, except when the connection was less than 60

seconds, or the graph needed to show a longer scale to illustrate a point.

Video on Demand Services
Video on demand services are services, which provide videos to the user by them specifically picking a

video and having the video play.

YouTube and YouTube HD

YouTube and YouTube HD are encoding in the H.264 codec, with standard quality having a resolution of
320x240 and 22 KHz audio and high quality having a resolution of 448x336 and 44 KHz audio quality®. To
analyze the YouTube traffic, we used a 0:24 clip that was available in both YouTube regular quality as

well as YouTube HD*.

Traffic Analysis
Home Server Home Server
Address Address Address Address
Time 1921681114 74.125.5.93 Time 1921681114 208.117.254.161
E-DES'D hitp [SY |
0.000 {E@S}Iﬁﬂﬁﬂﬂ > http [S* NL. 20) 0.000 (50s20)! " ShE :SY:L 50)
1 | 1 = 1
0.090 (s0zgy it > 60593 [SYN, 50) 0.033 (posan) ﬁﬂﬁﬂfﬂhﬁ —_
1 = |
0.0a0 {E-:'_FGA}:EM} http[ACIﬂ_.{ 50) 0033 (50520). |B0630 el K]_
0,090 {EﬂDEEG}GEermEYmcE? 50} 0033 GEI'.Mdenplﬂybaclg?
I | ttp = 60630 [AC .
0.184 (rose D2 OOSBIACK) 0.067 (rosany R BB 1A
YouTube Partial TCP Stream YouTube HD Partial TCP Stream

The first interesting thing to note is that the two services use completely different IP ranges, which were
consistent throughout testing. Querying the ARIN® database, the results are that YouTube uses a
74.125.0.0/16 network block, where YouTube HD uses 208.117.224.0/19, which was registered three
months after the YouTube block. This would suggest that currently HD media is not nearly as prevalent
on YouTube, since with the smaller network block it restricts the number of possible servers that could
be used to stream the media. This is something to note, as since HD content becomes more prevalent,
YouTube will need to add additional capacity, which may use a different IP range, so if a network
administrator were to ban based on IP it would be logical to assume that the IP range for YouTube’s HD

service will be expanding. However in anonymized data, this difference would not be as obvious.

® http://googlesystem.blogspot.com/2008/03/youtube-tests-higher-resolution-videos.html
* http://www.youtube.com/watch?v=3uftByymXNg
> http://ws.arin.net

The YouTube service itself uses HTTP over port 80 to send the Flash movie. Unfortunately, for profiling
purposes there is nothing interesting in the TCP stream going on, that would differentiate the stream

from any other HTTP traffic.

The next part of the analysis is to analyze what do the traffic profiles look like for these two services, and

how do they compare to each other.

50000 FIOW

J h o0 Bytes

II..Illllliiihiljl ‘.u“ .

0205 0405 0.60s 0805 1005 1205 1405 1605 1805 2005

Red- Incoming to Client Black-Outbound from Client
YouTube
50000 Flow
i '"
e Bytes
Jlllllii. lw HHW i H-mn“"

0.20s 0.40s 0.60s 0.80s 1.00s 1.20s 1.40s 160s 1.80s 200s 2.20s
Red- Incoming to Client Black-Outbound from Client

YouTube HD

The first thing illustrated by these graphs is the lack of data sent by the client. In both cases, the client
bars are negligible. That is because the client is sending almost no data in this conversation. The three

main things that are causing the client to send data are:

e TCPincorrect checksum errors, commonly caused when the network adapter is responsible for
calculating the checksum value instead of the CPU and since the capture is done before the
packet reaches the network adapter, the checksum will be incorrect®.

e TCP duplicate ACKs received, which can be caused by TCP segments going missing, or being

delayed due to congestion’.

® http://wiki.wireshark.org/TCP_checksum_offload
” http://condor.depaul.edu/~jkristof/technotes/tcp.html

e The GET request from the browser, asking to load the webpage for the video.

The second thing illustrated by the graphs, and that which would be useful for profiling, is the very
distinctive shapes both graphs have, and the transmission patterns. The YouTube stream sent 884
kilobytes of data to the user, where as the YouTube HD stream sent 3.3 megabytes. However, despite
the almost four times size difference, the difference in time it took for the conversation to complete
between the two services was minimal, 2.02 seconds for the YouTube transmission, compared to 2.3
seconds for the YouTube HD transmission, a 14% difference to send 3.73 times as much data. This
anomaly can be explained by looking at the network flow graphs. YouTube seems to send chunks of data
waiting almost as much as .1seconds between transmissions and the transmissions can easily be broken
down into discrete bursts. However, the YouTube HD transmission is an almost continuous transfer,
with few areas of no transmission. While there is less activity between 1.7 seconds and 2.0 seconds, this
corresponds with an increase in the client sending data, the majority of which were TCP duplicate ACK
packets, which could indicate network congestion. These two very distinctive shapes provide a useful
visual identification pattern for the YouTube streams. Since the file is being sent over regular port 80, as
file delivery, the difference in transmission speed must be being regulated by the server, and not the

protocol.

Summary and tools for identification
e Both YouTube and YouTube HD are served over TCP port 80.
e YouTube flows are characterized by the video being completely buffered well before the end of
the clip (assuming available bandwidth); the movie is transferred as opposed to streamed.
e YouTube and YouTube HD flows are differentiated in that YouTube HD has a much higher rate of
transmission meaning that it takes almost the same amount of time to fully load either a

YouTube or YouTube HD clip.

Hulu Standard and High Definition

Hulu standard definition video is encoded using the VP6 codec, at a resolution of 640x360 while high
definition video is provided at 720x1280 resolution using the H.264 codec®. To analyze Hulu traffic we

used a 1:00 clip from Quantum of Solace on Hulu, and Hulu HD.

® http://www.streamingmedia.com/article.asp?id=10114&page=2&c=31

Traffic Analysis

Home Address Server Home Server
Address Address Address

Time ?1.199.9?.123 95.1?.?2.51 Time ?1.199.9?.123 95.1?.153.45

. \boldsoft-im = macrg, 0.000 . = .
- e :,: b 0.018 W}Mm e
0144 wu%ﬂm ulms (3094) . '{1935)
0.144 (s8] ; ira8) 0020 £ ofa —
0.145 m}wﬁﬂm : m}"MLDrﬂ (1935
0.145 ;zsanmalnsw 0.020 M}Mﬁﬂm}
Hulu Partial TCP Stream Hulu HD Partial TCP Stream

Looking at the stream, there are two significant differences with Hulu, compared to YouTube. First, the
server is sending data to the client using port 1935, as opposed to port 80, which was used by YouTube.
The significance of this is that the Hulu player is Macromedia Shockwave based, so as a result the server

uses a dedicated port (1935) to send the data to the clients.

The second difference is that Hulu appears to house both the standard and HD content on the same
96.17.x.x subnet. However, cross-referencing the information with ARIN, reports the 96.16.0.0/15 block
is owned by Akamai, a company that provides value by allowing content hosts to locate themselves
physically closer to the end user through. This is an important distinction for both network
administrators and researchers; whereas 208.117.224.0/19 is definitively owned by YouTube, so
blocking access to that range of IPs, or seeing traffic from that range of IPs would be a positive indicator
of YouTube traffic, seeing traffic from the 96.16.0.0/15 block is not always a positive indicator of Hulu
traffic as Akamai could be hosting other content on IP addresses within this block. Once again, when

using anonymized data these nuances in hosting and providing will not be evident.

b il

10s= 2

500000

I I I 250000
] ‘ .
0= 60

THATH]

Red- Incoming to Client Black-Outbound from Client

3 4 5

Hulu

— 2000000

— 1000000

— 4]

l..Il.llI'IJilJIJlIhlUIIII
N N s B s s B e S B L O S L LA R B B B e B B B R B B B s B B I
Os 10s 205 30s 40s 50s 60s

Red- Incoming to Client Black-Outbound from Client

Hulu HD

The data flow graphs are mostly unremarkable. The Hulu and Hulu HD streams appear to be
transmitting at fairly the same pattern of a burst, a rest, and then a burst again. The main difference
between the two is that Hulu HD has a much greater magnitude of transmission (2.2 Mbps), compared

to the Hulu standard (.75 Mbps).

Comparing this graph to the YouTube graph, there is one marked difference. First, with the YouTube
stream, YouTube managed to finish downloading the entire 23 second clip in approx 2.2 seconds for
both the standard and HD version. With Hulu, the 60 second clip continued to be downloaded for the
duration of watching. This is because Shockwave is a streaming protocol, over port 1935, where as
YouTube uses file delivery, HTTP over port 80. So, with HTTP it delivers a file of fixed length, trying to
serve it as quick as possible, unless the server is using an artificial (outside the protocol) method for
constricting bandwidth. However, the Flash protocol provides for the server setting the outgoing

transmission rate, so delivery of content will continue at this rate until one side stops the connection.

Summary and tools for identification
e Hulu and Hulu HD travel are served on port 1935, the port for Shockwave Flash, and the client
uses a random ephemeral port which changes with every new connection to the website.
e Hulu and Hulu HD streams have an almost identical shape, differing in only the magnitude of the
flows, and not the density as in YouTube vs. YouTube HD.
e Hulu prefers not to send the entire file at one time, and instead sends it incrementally as it

plays.

Flow

Bytes

Discovery Channel

Discovery Channel uses a player powered by Move Networks, using a proprietary streaming

methodology, as well as a proprietary encoding mechanism®. Discovery only offers one type of stream,

so no comparative analysis between streams is possible. The analysis is based off a study off the first 60

seconds of a 45 minute long television program.

Traffic Analysis

Home Address Server

Address
Time 71.199.97.123 8153217
0.283 s 4292 > bttp [ACK] 3
1.584 _:,,w: {GET ’diﬂm"ﬂwﬂﬂfif;&q:

1 1
1.585 {425‘1}.4294}“ SN e

1 ==

1.586 mzc‘m'lﬂﬂﬁkhﬁ SN Ifa."'-

~E e
fip = 42684 [SYN A
1619 oy MR IRV A,

Discovery Channel Partial Stream

Looking at the partial stream graph, immediately something interesting is evident. The client appears to

be talking to the server across three different ports (4292, 4294, 4295) which is unusual; however the

server is serving the data over port 80, using well formed TCP. Looking at the TCP conversations, the

server appears to be balancing the load across all three ports almost perfectly, but each of the three

conversations are all use the same pair of IPs:

Address A Port AddressB Port Packets Bytes Packets A- Packets A<- Rel Start Duration
A B >B B

71.199.97.123 4295 8.15.32.17 http 5912 6127776 1777 4135 1.585732 76.0053

71.199.97.123 4292 8.15.32.17 http 6300 6352283 1836 4464 0 77.435

71.199.97.123 4294 8.15.32.17 http 6747 6961128 2008 4739 1.585114 75.9248

The reason for this split might be due to the software Discovery uses to stream the videos. The player

uses a mash up of Flash and Microsoft Silverlight and proprietary technology to stream video, all still

9 . . .
http://www.movenetworks.com/move-media-services/move-simulcode

1% http://www.richardleggett.co.uk/blog/index.php/2008/03/28/movemedia_silverlight_hd_video_player

using port 80, and boasts of features called adaptive stream, which allows bandwidth to be instantly

throttled depending on the connection.

— 2000000

— 1000000

|IIII|IIII|IIII|II I|IIII| l:l

Oz 10s 205 0z ks 505 60s

Red- Total Incoming to Client Black-Outbound from Client

Discovery

The bandwidth pattern Discovery follows is front loaded, which is different compared to the other two
services discussed thus far. Presumably, this is because the Discovery stream is buffering a few seconds
of media before playing, so that a temporary network interruption won’t cause the video to skip or
pause. The media is then streamed at a very consistent and very predictable pattern. This pattern
presumably would continue until the end of the media. The three ports that the media uses are all used
during each transmission burst, and it appears that data is requested from them based on numerical

port order as shown:

Hl ;;E 5; :

T T | T T T T I T T T T T T T T T | T T T T I T T T U

26.00s 26.50s 27 Uﬂs 27. 505 28. 005 28.50= 29.00s

Green-Port 4292 Blue-Port 4294 Magenta-Port 4295

Close-up of a data transmission from the server to the client

Flow

Bytes

Flow

Bytes

Summary and tools for identification

When using flow data, Discovery channel media can be found by looking for three flows, almost
all simultaneously started, all going to the same IP address coming from the same IP address,
with the server streaming the file on port 80 and the client using 3 close to consecutive ports, all
of which have similar amounts of bytes transmitted.

Discovery buffers a portion of the media for approximately five seconds before playing, which is
represented by a very dense and bandwidth intensive initial traffic flow followed by groups of

packets coming in at a very predictable and consistent pattern as the media plays.

Live Video Services

Live video services are those services which provide one live video stream that many users receive and

watch, so that all users are watching the same stream.

CNN Live Video

CNN Live Video uses Flash to provide the video, as well as the Octoshape Grid Delivery Enhancement
plug-in, which allows media to be streamed in a fashion similar “peer to peer” to provide availability and
higher bandwidth™'. This traffic is a 60 second sample from CNN Live, an Internet broadcast of live

programming airing on CNN.

Traffic Analysis
Home Address Server Address

Time 67165106107 69.16.187.80 {

. _ . \Gource port: 20102 | P
25.720 @2am) 2010 Yoorazy VCF
. . ‘gource port: 20102 ! :
25720 (@247} 20102} UCF

. _..1Gource port: 20102 , =
ot e 20102 ol
. - ‘gource port: 20102 ! P

CNN Video Live Partial Stream

The traffic that is shown on CNN’s website is much different than any traffic seen previously. CNN Video
is the only service to use UDP for transmission, which does not guarantee reliability. This makes sense,
since the video is live and time-efficiency is of maximum importance, so the overhead of TCP would be a

hindrance.

A second area of interest is that there are separate streams being used by CNN (not shown in partial

stream). Both streams come from a source identified as Highwinds CDN Group, which provides similar
services to Akamai. The first stream has duration of almost 25 seconds, and is present while there is a
loading screen in the video player. The second stream begins after the loading screen ends, and is the

live video feed itself:

" http://www.reuters.com/article/pressRelease/idUS125043+23-Sep-2008+PRN20080923

Address A Port A Address B Port Packets Bytes Packets A- Packets A<- Rel Start Duration

B >B B
69.16.187.53 554 67.165.106.107 8247 3797 3860936 2834 963 6.619096 19.748
69.16.187.80 20102 67.165.106.107 8247 12747 13087334 12321 426 25.666195 93.0088

Port 554 is the real-time streaming protocol (RTSP), but that doesn’t seem to be extremely useful in
diagnosis. However, two guesses can be made based on the available information. First, the video could
be being buffered on the .53 address, and then switched over to the .80 address when the feed is
activated as a form of load balancing. Alternatively, the “Loading” graphic and animation could be

considered a movie and that is what is being streamed on .53, and then the actual show is streamed on

.80.
— 1000000
— 500000
|||||||||||||||||||||||||rmﬁ_hﬁﬁﬁ_ﬁﬁﬁﬁ_hﬁﬁﬁ_ﬁﬁﬁﬁj_mﬁ_mﬁ_r_ 0
Os 10s 20s 30s 40s 50s 60s

Red-.53 Traffic Green-.80 Traffic Black-Outbound from client
CNN Live

This very distinctive and unique pattern of the spike in traffic, followed by the constant traffic being
sent, into perpetuity. Would seem to be a very useful tool for researchers trying to profile this service in
data, but there is an important caveat. Since the red and green traffic both have different source IPs,
they would be different flow records in flow data; as a result this distinctive graph will not appear as a

flow record, instead there will be two separate graphs.

Summary and tools for identification
e CNN Live uses UDP to transmit packets.
e Aninitial short(less than 6 seconds) and high byte volume occurs from one IP address which is
then followed by relatively low traffic for 15 seconds. After this, the IP address switches and

there is a constant stream of traffic at about 100,000bytes per second.

Flow
In

Bytes

Audio on Demand Services
Audio on demand services are services which provide streaming audio to users based on pre-recorded

content they pick, so many users may all be requesting different media from one server.

Pandora

Pandora is an Internet radio on demand service, which picks a song based on the preferences of the
user, and then the user can choose to listen to the song, or veto the song, which then causes the service
to pick another song based on the updated preferences of the user. The testing for this protocol was to
listen to 30 seconds of a song, force the system to change songs by vetoing the current song, listen to a
2" song, and then stop the capture 15 seconds into the 3" song. Pandora streams at 128 kbps through a

Flash application®?.

Traffic Analysis
Home Address SSL Music Music
Server Server Server 2
Time 67165106107 66.151.149.78 8612177 208854112 C
2.853 (50346) :='. Application Data :{-‘1-‘13} : : TLSw1:
2854 {5:3_.“:_!}; Encrypted Alert :;{_q_.u} : : TLSw1:
1.908 (50343) 50349 > http [SVN] o) : TCP: 5
4991 (502434 i I E SRt o : TCP: b
4.991 e : 503489 > hitp [ACK] =:_®_ﬁ : TCFE: &

Pandora Partial Stream
The Pandora stream looks significantly different than any of the other streams encountered thus far.
There are three unique IP addresses, not including the IP address of the client. The explanation for this

can be illustrated by looking at the partial stream flow, as well as the data flow graph for Pandora.

The partial stream flow shows traffic on port 443, so it is immediately identifiable as SSL. Pandora
requires credentials to log in, so this traffic is simply just the credential being automatically provided by
the browser. Here, the SSL connection is being used as the control channel, for the actual audio stream

which is then transmitted over HTTP on port 80.

2 http://blog.pandora.com/faq/

— 5000 Flow
In

L Bytes

T T T T T T T |I T T T T T T T T T T T T 0
0.00s 0.20s 040s 0.60s 0.80s 1.00s

Red-SSL (Note Scale of Graph)
Pandora Zoom In

The next two IP addresses then are then able to be identified by looking at the full data flow graph for

the Pandora service:

2000000

1000000

0s 205 40s 605 805 1005 1205 1405 160s 1805
Red-SSL Green-Music Server 1 Blue-Music Server 2 Black-Outbound from client

Pandora

Since as part of the testing we know three songs were played, and we know at what times they were
played, both the green and the blue IP addresses can be identified as music servers, where the green IP
served the 1% and 3™ song, and the blue IP served the 2" This could be a method of load balancing, or
some songs may be stored only on certain servers. Since Pandora does not let you pick songs
specifically, and the software auto picks for you, it is impossible to duplicate this test with the same
songs to see if the pattern holds. Important to note from a flow perspective, when the 1% song is
buffered, it a SYN=>SYN/ACK sequence is established, and when the 1* song is finished buffering a
FYN->FYN/ACK sequence is sent. Therefore, even though songs 1 and 3 use the same ports, and the
same IP addresses, they will be two separate flows since the connection is closed after each song is

buffered fully.

Pandora appears to buffer the song fully at the start, and then not buffer again until the next song is

selected. An interesting question is if there is a difference in packet flow between rejecting a current

Flow

Bytes

song and making the server pick a new one based on new criteria, or letting a song finish and then
listening to the next song. The second case might have a slightly different flow, since the server might
start to pre-buffer the next song as you approach the end of the currently playing song, on the
assumption that you will not reject the song currently playing since it is almost over. Since the second
song was the product of a rejection, and the third song just played after that song with no user

intervention packet data can be examined:

o :Jlllillldilﬂilllii““‘

38.00s 38.50s 39.00s 39.50s 40.00s 40505 41.00s 41.50s 42.00s 42505 43.00s

Blue-Music Server 2

Pandora- Buffering of Song 2, Caused by Rejection of Previous Song

50

25

—_— T 0

187.50= 188.00= 188,50 189.00= 18950 190.00s 190.50s 191.00s 191.50= 192.00s 192,50
Green-Music Server 1

Pandora- Buffering of Song 3, Caused by Ending of Previous Song

Based on these two graphs, there appears to be little to no evidence of pre-buffering. Both songs started
buffering when either the previous song ended by rejection or the song was over, and there appears to

be no evidence of packets being sent early as a song became close to finishing.

Summary and tools for identification
e Pandora uses SSL to authenticate a user, and then transmits the audio over standard TCP port
80 to a random port on the client.
e The entire song is buffered before playing, usually in less than five seconds, on a sufficiently fast

connection. The next song may or may not then originate from the same IP as the current song.

Flow

Bytes

e When looking in packet flow records, a strategy could be to look for short(3 to 8 seconds) high

volume flows 3 to 5 minutes apart going to the same IP address.

Live Audio Services
Live audio services are services which stream one feed to many users, so that all users are listening to

the same live stream.

Radio Paradise

Background

Radio Paradise is a popular streaming radio station, where listeners tune into a stream and listen to a
live radio feed, which all other users are listening to at the same time. For testing purposes, a 90 second
feed of the stream was sampled. Radio Paradise plays using a 64Kbps audio stream, in a Windows Media

applet.

Traffic Analysis

Home Address Server Address

Time 128.237.153134 2041617360 il
\PLAY rtsp:/irp.chag | :

5.758 5355 . RT;P;IP ﬁ ez RTSF:
I ey o S
5,549 T - HEEW} RTSF:
=Ln Loall h .

5863 {ﬂ-1l:]-4ﬂ-}F-II (95} | R
5,863 mmﬁf”“m“’“ (96], 5%50041 RTF: 1

Radio Paradise Partial Stream

Radio Paradise is differentiated from other protocols seen thus far, as it uses RTSP and RTP as the
transport protocols. RTSP is the protocol, which negotiates the connection and sets up preliminary parts
of the connection, where as the RTP protocol is used for one-way connections to send live or stored

streams®.

 http://www.apple.com/quicktime/technologies/streaming/

— 100000

— 50000

0

0s 10s 20s 30s 40s 50s 60s
Red- Incoming to Client Black-Outbound from Client
Radio Paradise
Radio Paradise’s traffic flow exhibits a fairly standard pattern for streaming media, similar to CNN Live
Video, with a large spike in the beginning, possibly where the protocol is being set up, and there is

buffering of media, and then a fairly consistent low volume traffic flow for the duration.

Summary and tools for identification
e Radio Paradise initializes the connection using RTSP, and then transmits using RTP to a random
port on the client.
e Thereis a quick spike at the beginning of the connection, followed by continuous transmission

as the media plays.

CNN Live Radio

Background Information
CNN Live Radio provides a live stream of radio provided by CNN. The radio is a 32Kbps stream, played
through a Windows Media applet. The analysis was done based on a 90 second clip of the live radio

stream.

Traffic Analysis

Home Address Server Address

Flow
In

Bytes

Time 7119997123 £4.212198.159 |
0.353 . 25?}@=u nknown (95), Sﬁf@‘} -
0353 ..o, Shockwavez - dsgf ~ To=
0354 v 25?}'??“ nknown (96), glg{m} -
0354 1o, FAzUnknown (96), 8§ -
0.354 T ZET}ES-thkwavez = rts,nrjjl{m} S

CNN Radio Live Partial Stream

CNN Live is for the most part exactly the same as Radio Paradise, using RTP. The only interesting part is
that while the server is using the standard RTP port (554), it is being sent a very specific port on the
client (1257). This port is used for Macromedia Shockwave, so it makes it clear to an observer or
researcher that the stream is being played through a Shockwave Flash interface, or that the player is

being instantiated through Shockwave Flash interface calls.

— 100000 Flow

L In

Bytes
— 50000

oo —wspee e v G —eprene el I e ps s o e s [rmsensy —wpnvens JllSeo o s el
rrrr[rrrrjrrrryrrrorrorr[rrrrrrrr[rrro [t rrr T T 0

Os 10s 20s 20s 40s 50s 60s
Red- Incoming to Client Black-Outbound from Client
CNN Radio Live
There is nothing remarkable about this stream compared to the other live media streams. The primary
difference is that there seems to be very predictable breaks in the streaming audio, as opposed to Radio
Paradise where the client continually received data from the server. However, under closer

examination, it turns out that the breaks in the graph are just an artifact of the graphing tool.

18,605 18.80s 19.00s 19.205 19.40s 19.60s 19.80s
Red- Incoming to Client Black-Outbound from Client
CNN Radio Live Zoom In
This does not mean there is not a pattern however, with how the packets are sent, when zooming in to
use a much smaller scale it is clear the packets are sent about one second apart. When zooming in to an
even smaller scale (intervals of .001, not pictured due to length of graph), it is confirmed that packets
are only sent every 1.10 to 1.20 seconds. This is still in contrast to Radio Paradise, which sends on almost

continuous basis.

Summary and tools for identification
e CNN Radio uses the RTP protocol (port 554) server side, and sends the packets to the Shockwave
port (port 1257) on the client.
e There is a quick spike at the beginning of the connection, significantly larger than the buffering
seen in Radio Paradise, followed by continuous transmission with very small breaks(1.10 to 1.20

seconds), as the media plays.

Part III- Applying Profiling Techniques Learned to Flow Data

The third part of our project is trying to apply what we learned from the second part, to flow data. We

first detail a list of characteristics that were observed in watching packet flow data, and divide them

based on how useful they are when looking at flow data. We then provide a description of what we

expect the flow data records would look like, based on these characteristics. Finally, we apply the

characteristics gathered to a real anonymized flow data, data set, looking for media services and

detailing problems that arise when looking for specific media services within flow data.

Summary Data

Based on the profiling techniques in part two, we can create a summary table for each of our protocols,

to help try and determine which would be easiest to look for in the flow data.

Legend: Useful for flow analysis profiling (-) Not useful, or of limited utility, for flow analysis
profiling
YouTube YouTubeHD

Data is sent at approximately .45 Mbps, but
data transfer rate is regulated by software on the
server and is not part of the protocol, so this might
not be consistent.

(-)Uses port 80 to transmit data, so blends in with
HTTP traffic.
Same TCP connection stays open for length of

transmission.

Data is sent at approximately 1.4 Mbps, but
data transfer rate is regulated by software on the
server and is not part of the protocol, so this might
not be consistent.

(-)Uses port 80 to transmit data, so blends in with
HTTP traffic.
Same TCP connection stays open for length of

transmission.

Hulu

Data transfer rate appears average a constant
.75 Mbps, as the media is streamed even if the
client has more bandwidth available.

Uses port 1935, Flash using RTMP, but there is a
significant volume of Flash traffic making utility of
this questionable.

Same TCP connection stays open for length of

Hulu HD

Data transfer rate appears to average a
constant 2.2 Mbps, as the media is streamed even
if the client has more bandwidth available.

Uses port 1935, Flash using RTMP, but there is a
significant volume of Flash traffic making utility of
this questionable.

Same TCP connection stays open for length of

transmission.

transmission.

Discovery Channel
(-)Uses port 80 to transmit data, so blends in with
HTTP traffic.
(-) Very busy first 5 seconds of traffic.

Streams data from port 80 to 3 ephemeral
ports on the client, creating 3 flows with similar

size and duration.

CNN Live Video

Uses two streams to send data, the first using
port 554 using RTSP. The second stream then
sends the data over UDP.
(-)/(+)Very busy first ten seconds on RTSP
transmission. Remaining transmission over UDP is

a consistent 100KB/sec.

Pandora
SSL login before song plays.
Creates a separate flow for every song sent.
Server uses port 554, to serve data to a client.
New song delivered every 3 to 7 minutes,
depending on length of song.
Server serves song as quick as possible, usually

in less than 5 seconds.

Radio Paradise

Server uses port 554, to serve data to a client.
(-)Very busy for first second.
(-)Continuous transmission with no pauses as in

CNN radio.

CNN Live Radio
(-)Very busy for first second.
(-)/(+)After busy first second, data is sent at a
constant rate of 5 packets totaling 5KB, with a one
second pause between each group of 5 packets.
Server uses port 554, to serve data to a client.
The client uses port 1257, Shockwave specific,
to receive data from a server.
Same TCP connection stays open for length of

transmission.

Based on the above summary and considering only the traits that would be relevant to flow data, and
SiLK analysis, we would expect that when looking for these media services in flow data, the

characteristics would be as followed:

YouTube/YouTube HD- The server uses port 80 to deliver the content, so it blends in with other port 80
traffic. Additionally, the data transfer rate from the server is not built into the protocol, since it simply
uses well-formed TCP, as a result this rate may not stay consistent. Each YouTube video watched will
have a different TCP session, and each flow from YouTube should have a relatively short length

compared to the length of the video, since the video is sent using file delivery not streaming.

Hulu/Hulu HD- The server uses port 1935 to deliver the content, which is rarer than port 80 traffic, so it
is helpful for profiling. The data transfer rate for the service has a better chance of remaining consistent
with what was observed, because the protocol used has support for the server setting the maximum
data transfer rate. The video is streamed, so the length of the flow should be close to the length of the

video being watched.

Discovery Channel- The server uses port 80 to deliver the content over HTTP. However, the Discovery
Channel requires a proprietary player so there is evidence that video is streamed over time, as opposed
to file delivery. The length of the flow will be proportional to the length of the video(a 10 minute video,
should have close to a 10 minute. flow). The server serves the data to the client from port 80, but to
three ephemeral ports on the client. This means that for every one video served by Discovery, there will
be three streams sent to the client, all from the same port on the server to three different ports on the
client. These three streams will all be approximately the same length, and close (within 15%) of the
same size. This will create three separate flows in the SiLK toolset. Currently SiLK does not support any

type of clustering algorithm which would make it easier to look for these three flows.

CNN Live Video- The server uses TCP port 554 to initially stream data, and then uses UDP to continue
streaming the data. This would create two separate flow records for each video watched. The UDP flow

is being streamed in “real-time”, at a rate of approximately 100 KB/sec.

Pandora- The server first established a control channel using SSL. Then, for each song Pandora plays, a
separate TCP connection is created, with the server sending the data from port 554 to an ephemeral
port on the client. The song is sent as a file delivery, so the flow length will be relatively short compared

to the length of the song (for example a 4 minute song might be delivered in 8 seconds.)

Radio Paradise- The server serves data using port 554 to an ephemeral port on the client. This service
uses streaming, so the length of the flow should be equal to the length the user listens to the radio

station.

CNN Live Radio- The server serves data using port 554 to an ephemeral port on the client. This is
streaming audio, so the length of the flow should be equal to the length of time the user listens to the

stream. The average flow rate is 5KB/sec.

Application to Real Flow Data

Due to the fact that flow data concentrates more on the overlying TCP or UDP connection rather than
packet capture, it seemed at first that flow data would not play a large role in identifying the behavior
patterns previously mentioned in this paper. After examining flow data, this hypothesis proved true, but
some interesting information was obtained anyway — although it would be difficult to predict what
specific media service was being used based on flow data, it was possible to determine with relatively
high accuracy that a client machine was accessing media services in general. Let’s take a closer look at
some examples, which were taken from anonymized European ISP data on 9 September 2008. An
important caveat of this data is that it was sampled at 1:100, so when determining size or bit rate, we
had to multiply the flow record by one hundred to get a projected value. While this value should be
fairly accurate for longer flows, for shorter flows it has more of a margin of error, since there is so much

extrapolation involved.
Pandora

As stated in the previous sections, Pandora’s connection behavior shows that it simply downloads each
song an a compressed format, one song at a time. It downloads a song, plays it, and towards the end of
that song downloads another so that playback can continue without interruption. Pandora also gives the
user the option to “veto” a song that isn’t appealing, therefore stopping playback immediately and

sending a new song down (which would mean another download). In examining flow data, a pattern

emerged:
Source | Destination Size in
Source IP Destination IP Start End Seconds
Port Port MB
107.133.229.221 | 58.190.251.249 | 554 2185 5:10:06 5:10:19 00:13.0 4.43
AM AM

107.133.229.221 | 58.190.251.249 | 554 2305 5:15:38 | 5:16:12 | 00:34.0 3.15
AM AM

107.133.229.221 | 58.190.251.249 | 554 2333 5:16:29 | 5:16:37 | 00:08.0 2.03
AM AM

The table above shows three connections between a client and server on port 554, which is the known

port that Pandora communicates on. The first flow starts at 5:10:06 AM and lasts for about 13 seconds,

where 4.43 MB are downloaded. This is the typical download of an MP3 file, which is about 1MB per

minute of compressed music. So, the user just downloaded a song that is about 4.5 minutes long. The

flow ends, and there is no connection for about 4.5 minutes (when the song is about to end). The next

connection starts to download the next song. Another connection begins only a few seconds after that,

probably due to the user either choosing to skip the current song or switching to another Pandora radio

station. Of course, this behavior won’t confirm a Pandora connection without verifying the IP address,

but the type of connection can be isolated (we know that the user is listening to some type of streaming

media service).

Radio Paradise

Radio Paradise’s behavior looks completely different than Pandora. Unlike Pandora, which is an on-

demand service, Radio Paradise (and other similar Internet Radio services) stream music in a broadcast

fashion on a bit-rate.

Source|Destination
Source IP Destination IP Start End Seconds KBits/s
Port Port
112.7.36.105 119.219.7.30 [554 |1378 9/9/08 3:32 |9/9/08 5:51 (8372 80
112.7.36.105 118.136.22.19 |554 |4231 9/9/08 4:54 |9/9/08 5:53 (3547 79
112.7.36.105 | 118.136.33.37 |554 |1269 9/9/08 5:29 (9/9/08 5:53 (1446 71
112.7.36.105 | 58.190.66.237 |554 |1045 9/9/08 2:16 |[9/9/08 4:35 (8328 93
112.7.36.105 | 58.190.66.237 |554 |1052 9/9/08 4:36 (9/9/08 5:53 |4645 79

112.7.36.105 | 97.224.22.148 554 |50331 9/9/08 1:57 |9/9/08 5:53 [14190 87
112.7.36.105 | 97.224.55.150 554 |1312 9/9/08 3:04 |9/9/08 5:53 [10142 82
112.7.36.105 |118.136.32.217 554 4048 9/9/08 2:22 |9/9/08 5:53 [12676 85
112.7.36.105 |118.137.227.20 554 |1507 9/9/08 2:29 (9/9/08 5:53 [12202 89
112.7.36.105 |118.138.62.206 554 4611 9/9/08 5:06 (9/9/08 5:53 [2820 71
112.7.36.105 |119.219.160.39 554 |2258 9/9/08 4:53 |9/9/08 5:53 (3640 75
112.7.36.105 |58.190.231.127 554 49190 9/9/08 1:42 |9/9/08 2:45 (3757 106
112.7.36.105 |118.136.190.161 554 (1203 9/9/08 2:37 (9/9/08 5:53 11794 86
112.7.36.105 |118.138.207.155 554 2548 9/9/08 3:51 (9/9/08 5:53 [7348 86
112.7.36.105 |119.219.124.133 554 1651 9/9/08 0:43 (9/9/08 1:18 2111 98

The table above shows many outgoing connections from a server on a known streaming media port,
554. These connections last from a few minutes to a few hours, which is typical for Internet radio usage.

Additionally, the bitrates are all about 75-100 Kbps, which reflects online audio streaming.

Another Video Protocol?

As more flow data was analyzed, more patterns started to emerge. As previously hypothesized, the
exact source or media protocol was difficult to pinpoint, but it was clear that there was some kind of
media delivery taking place. This is shown in yet another media pattern that was discovered, this time

showing video.

Source|Destination

Source IP Destination IP Start End Seconds KBits/s
Port Port

57.49.241.85 | 97.224.79.23 554 [57200 9/9/08 4:29 |9/9/08 5:00 |1836 488

57.49.241.85 |118.136.163.193 |554 |1220 9/9/08 4:34 |9/9/08 5:02 (1688 482
57.49.241.86 | 119.219.244.47 |554 |2566 9/9/08 4:58 |9/9/08 5:02 (261 470
57.49.241.86 |119.219.182.229 |554 43715 9/9/08 4:34 |9/9/08 5:01 (1641 488
57.49.241.87 | 118.136.36.212 |554 |1329 9/9/08 4:35 (9/9/08 5:02 (1626 477
57.49.241.88 | 118.201.77.155 |554 53656 9/9/08 4:51 (9/9/08 4:57 (363 482
57.49.241.88 |97.224.215.251 |554 |2257 9/9/08 4:39 (9/9/08 4:51 (722 439
57.49.241.88 |118.136.165.221 |554 50750 9/9/08 5:08 (9/9/08 5:17 (537 415
57.49.241.88 |119.219.246.224 |554 53857 9/9/08 4:51 |9/9/08 5:21 (1791 448
57.49.241.89 | 119.219.77.51 |554 |1431 9/9/08 4:46 (9/9/08 4:46 (17 298
57.49.241.89 |97.225.234.153 |554 2106 9/9/08 4:35 |9/9/08 4:36 (84 443

The connections above show a subnet of servers delivering media to many different clients over port
554, which is a known streaming media port. These connections range from a few seconds to a few
minutes, and are at a bit-rate of about 500Kbps, which is the typical transmission rate for streaming
video. Services such as CNN and others use this port to deliver streaming video, and it is possible that

these connections are either live video or on-demand video that is delivered to clients.

With more flow data to analyze, it is extremely likely that even more interesting media patterns would
emerge. Despite this, the patterns cannot be attributed to exact behavior, as mentioned previously and
demonstrated when using packet capture data. Instead, flow data can just provide overarching insight
into the behavior of connections on the network. Since packet capture data is a bit more expensive in
terms of resources, perhaps a future scheme would include examining flow data and launching packet

capture data later if particular trends of interest are being discovered.

Conclusion and Enhancements to SiLK Tools

When using limited packet data, which is individual packet capture data but of only selected packet
fields, it is much easier to decode anonymized data. Decoding of information about the client can be
done by monitoring ephemeral port usage pattern, or using a passive tool to analyze the packet data.
Either of these methods can give insight into what operating system is being used by the client.
Decoding of information about the server can by looking at graphical representation of the
conversations between client and server. Many of the media services we looked at had unique graphical
representations, so it makes it easier to differentiate the media services. For decoding using graphical
representation, all the packet information needed is the source and destination IPs, which can be

anonymized as long as they are kept consistent, source and destination port, and the size of the packet.

When using flow data, it is much harder to decode anonymized data. Since flow data rolls-up all the
packets into one flow record, graphical analysis is not possible. As a result, it is harder to be positive,
which services are being accessed, and other characteristics have to be looked at to try and make a best

guess, based on specific characteristics.

When doing our research, we found two areas which could be incorporated into the SiLK toolset which
would make research easier, as well as give more certainty into the services used. First, there should be
an easier way to determine average bit rate of a flow. Right now, it is somewhat difficult and all of the
streaming services have a different average bit rate, ergo it would be useful to be able to see average bit
rate of a flow and use that as a differentiator for finding a media service. A second useful addition to the
SiLK tools, would be if the rw-tools supported some sort of clustering. This is evident in the Discovery
Channel streaming, where we know that the Discovery Channel serves data on port 80, to 3 ephemeral
ports on the client. Since these three streams are all established very close in time to each other, the
three ephemeral ports used on the client should all be close together, assuming is in an OS assigns
ephemeral ports linearly. However, right now there is no easy way using the rw-tools to search for 3
streams that have destination ports within +/- 5 ports of each other, and have a size within +/- 15% of

each other. There is currently no easy way to do this with the rw-tools.

	Introduction
	Part I- Population Profiling Tools and Techniques
	Summary

	Part II- Media Profiles
	Video on Demand Services
	YouTube and YouTube HD
	Traffic Analysis
	Summary and tools for identification

	Hulu Standard and High Definition
	Traffic Analysis
	Summary and tools for identification

	Discovery Channel
	Traffic Analysis
	Summary and tools for identification

	Live Video Services
	CNN Live Video
	Traffic Analysis
	Summary and tools for identification

	Audio on Demand Services
	Pandora
	Traffic Analysis
	 Summary and tools for identification

	Live Audio Services
	Radio Paradise
	Background
	Traffic Analysis
	Summary and tools for identification

	CNN Live Radio
	Background Information
	Traffic Analysis
	Summary and tools for identification

	Part III- Applying Profiling Techniques Learned to Flow Data
	Summary Data
	Application to Real Flow Data
	Conclusion and Enhancements to SiLK Tools

