Introduction to SAS, 2

· If - then command

In the data step, it is often useful to do something only if a condition is true. For example, we might want to delete every observation for which the variable salary is missing. In this case, we would write:

Data stuff;

 <<various data step commands to read in data>>

 if salary EQ . then delete;

<< proc commands >>

If we wanted to delete every observation for which salary was > 100000, we would write:

Data stuff;

 <<various data step commands to read in data>>

 if salary GT 100000 then delete;

<< proc commands >>

We can often use the if – then command to define new variables. Suppose we want a variable sal2 which is equal to salary when salary is not missing, but equal to zero when salary is missing:

Data stuff;

 <<various data step commands to read in data>>

 sal2 = salary;

 if salary EQ . then sal2 = 0;

<< proc commands >>

Suppose we want to define a variable, called level, describing a person as “High” income “Middle” income or “Low” income, based on their salary. We could use:

Data stuff;

 <<various data step commands to read in data>>

 level = “Low”;

 if salary GT 20000 and salary LT 60000 then level = “Middle”;

 if salary GT 60000 then level = “High”;

<< proc commands >>
· BY command

Many sas command can be run on different subsets of the same data by using the by command. For example, if we had some data on wages for men and women and we had a dummy variable Female which equals 1 for women and 0 for men, then we could run a regression of wages on age for men and women separately by:

proc reg;

 model wage = age;

 by female;

This would cause SAS to run 2 separate regressions, one using all the observations where female=1, and another using all the observations where female=0.

This does not just work with 0,1 (dummy) variables. If we had in the dataset a variable state and we ran:

proc reg;

 model wage = age;

 by state;

We would get 50 different regressions, one for each state.

For whatever reason, SAS requires that the observations be sorted according to the by variable, so the commands I just described would not quite work by themselves (unless the data were to be arranged by sex or state already). In general, you have to run:

proc sort;

 by female;

proc reg;

 model wage = age;

 by female;

There is an example attached in which means are run separately for foreign and domestic cars.

· New datasets from old

Sometimes, it is not enough to just run one command on separate subsets of the data. Sometimes, we want to manipulate the data completely differently, depending on the value of some variable. To do this we need to make a brand new dataset.

Suppose we already have a dataset defined, call it workers. (This means that somewhere above in the program we have a line: data workers; We want a new dataset which contains only males. To make this, first we tell SAS “Hey, I want to make a new dataset and call it males” To do this we type: data males;. Then we tell SAS where to get the data from to fill up this dataset (recall, before we told SAS about a file to get the data from). Here, we tell SAS to fill up “males” with the data from “workers” To do this, we type: set workers;.

Now, we want to get rid of all the females from “males” so that we have only males. The command to do this is called delete. All we have to do is type in: if female EQ 1 then delete;. (in these if-then statements, you can use EQ for equals, NE for not equal to, LT for less than, GT for greater than, GE for greater than or equal to, LE for less than or equal to; you can also use AND and OR to make more complicated statements) This throws out all the data points with female=1. So, to get a dataset composed entirely of male workers:

data workers;

 <<statements to read in data>>

<<some procs, maybe to analyze workers data>>

data males;

 set workers;

 if female EQ 1 then delete;

<<some procs, maybe to analyze male workers data>>
The attached example creates two new datasets out of the cars data. The two new datasets are called “domestic” and “foreign” One contains only domestic cars and the other contains only foreign cars. Take a look at the means that are printed out when we use proc means; by dom; Compare these to the two separate means that are printed out when we use just proc means for the domestic cars and proc means for the foreign cars.

· graphing

It is a good idea to take a look at data you are about to analyze by making various graphs with it. The easiest kind of graph is a scatterplot. This is just a plot of the data with one variable on the Y-axis and another variable on the X-axis. One SAS procedure which makes graphs of this kind is called proc gplot. The example attached plots price and weight. Let’s look at the first time proc gplot is used:

proc gplot;

 plot price*weight;

 title1 underlin=2 "All cars, 1978";

The first line tells SAS that you want to make a plot. The second line tells SAS what variables to plot. This line is in the form plot Y-axis*X-axis. So the example tells SAS to plot price on the Y axis and weight on the X axis. These two lines are enough, but it is nice to have a title on our graphs, so let’s put one there. The next line puts the title “All cars, 1978” on our graph. In addition, since we would like the title of the graph underlined, we put “underlin=2” before the text of the title. If we had left off the “underlin=2” part, there would have been a title, but it would not have been underlined.

Notice one other thing. Once we assign a title, every procedure after that one has the same title, until we change it again. If you don’t want your title to carry over to every later procedure, that is easy to fix. In the next procedure, just include a line title; and there will be no title at all from then until you put in a new title

