
 

Chapter 4 

Introduction to Dynamic Programming 

 

 

An approach to solving dynamic optimization problems alternative to optimal control was 

pioneered by Richard Bellman beginning in the late 1950s. Bellman emphasized the eco-

nomic applications of dynamic programming right from the start. Unlike optimal control, 

dynamic programming has been fruitfully applied to problems in both continuous and 

discrete time. It is generally more powerful than optimal control for dealing with stochas-

tic problems, and it does not always require some of the differentiability and continuity 

assumptions inherent to optimal control. Dynamic programming can also deal with prob-

lems that arise concerning time inconsistency, in ways that are difficult to deal with in 

optimal control.  

 In this chapter we lay out the ground work for dynamic programming in both de-

terministic and stochastic environments. We will see how to characterize a dynamic pro-

gramming problem and how to solve it. We will also present a series of theorems that are 

extremely useful for characterizing the properties of solution for the many cases in which 

an explicit analytical solution cannot be obtained. Subsequent chapters present numerous 

applications of the methods developed here. 

1. Deterministic Finite-Horizon Problems 

Consider the following finite-horizon consumption problem: 
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 ( )1t t tk f k c+ = − . (1.2) 

Capital depreciates at the rate of 100 percent per period. Equation (1) is maximized sub-

ject to the further constraint that  

 ( )10 t tk f k+≤ ≤ ,    0 t T≤ ≤ ,  k0 given, (1.3) 

which states that capital can neither be negative nor exceed output. Substituting (1.2) 

into (1.1) yields 
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( )( )
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t t
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t t
k t
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+ =

+
=

−∑ , (1.4) 

so we have changed the problem from maximizing by choice of consumption in each pe-

riod to one of choosing next period’s capital stock.1 One approach to solving this problem 

is by brute-force optimization. This is possible because there are a finite number, T, of 

choices to make. To see this, maximize (1.4) with respect to kt+1 to obtain the first-order 

condition2 

 ( )( ) ( )( ) ( )/ 1 / /
1 1 2 1 0t t

t t t t tu f k k u f k k f kβ β ++ + + +− − + − = , 

or 

 ( )( ) ( )( ) ( )/ / /
1 1 2 1t t t t tu f k k u f k k f kβ+ + + +− = − . (1.5) 

This firs-order condition must be satisfied for each t=0,1, . . . , T−1. It is clear that the 

optimal solution for kT+1 is zero, since it only appears in the term ( ) 1T Tf k k + −  . Equa-

tion (1.5) thus represents T equations in T unknowns. The variables k0 and kT+1 appear in 

two of these equations, but we already know what they are.  

 To interpret (1.5), replace ( ) 1t tf k k +−  with ct to get 

 ( ) ( ) ( )/ / /
1 1t t tu c u c f kβ + += . (1.6) 

                                            
1 This is not necessary to do, but it often makes the problem easier to deal with algebraically. 
2 We are assuming that f(k) and u(c) have the forms necessary to ensure an interior solution, so we 

do not need to worry about the Kuhn-Tucker inequality constraints. (What are these assump-

tions?) 
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The left-hand side is the marginal utility of consumption in period t. The right-hand side 

consists of the product of present value of the marginal utility consumption in period t+1 

and the marginal productivity of capital. One unit of consumption foregone in period t 

increases the capital stock in period t+1 by one unit, and this raises output in period t+1 

by an amount equal to the marginal product of capital. Converting this to utility meas-

ures and discounting back to period t, (1.6) states that the marginal unit in consumption 

must have equal value across two adjacent periods. 

 We will soon be interested in extending this model to allow for an infinite planning 

horizon. The difficulty is that the terminal condition kT+1=0 goes away, leaving us with T 

equations and T+1 unknowns. However, it turns out that there is an alternative approach 

to solving this finite-horizon problem that is useful not only for the problem at hand, but 

also for extending the model to the infinite-horizon case. This is the dynamic program-

ming approach.  

 Suppose we obtained the solution to the period-1 problem, 
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−∑ , 

k1>0 given. Whatever the solution to this problem is, let ( )1 1V k  denote the value ob-

tained from period 1 onwards. Note that the value depends on the initial capital stock. It 

then follows that the period-0 problem can be written as 

 ( ) ( )( ) ( ){ }
1

0 0 0 1 1 1max
k

V k u f k k V kβ= − + . 

In fact, for any t we can define an analogous equation 

 ( ) ( )( ) ( ){ }
1

1 1 1max
t

t t t t t t
k

V k u f k k V kβ
+

+ + += − + , (1.7) 

subject to ( )10 t tk f k+≤ ≤ , kt given, for t=T, T−1, . . . , 0. Equation (1.7) is a particular 

application of Bellman’s Principle of Optimality: 

 

Theorem 1.1 (Bellman’s Principle of Optimality). An optimal policy has the property that, 

whatever the initial state and initial decision are, the remaining decisions must con-

stitute an optimal policy with regard to the state resulting from the initial decision.  
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Bellman and Dreyfus (1962), among others, provide a proof of the principle, but it is so 

intuitive that we won’t bother to show it here. 

 The recursive sequence in (1.7) begins in the final time period with ( )1 0T TV k+ = . 

Note that solving (1.7) sequentially will yield exactly the same set of equations as (1.5). 

In period T, we have 

 ( ) ( )( ){ }
1

1max
T

T T T T
k

V k u f k k
+

+= − , (1.8) 

which implies that kT+1=0. In period T−1 we have  

 ( ) ( )( ) ( ){ }1 1 1max
T

T T T T T T
k

V k u f k k V kβ− − −= − + , 

which gives the first-order condition 

 ( )( ) ( )//
10 T T TTu f k k V kβ−= − − +  

    ( )( ) ( )( ) ( )/ / /
1T T T Tu f k k u f k f kβ−= − − + , 

where the second line comes from differentiating (1.8). Repeatedly solving (1.7) for each 

time period yields the system of T equations in (1.5). 

 

EXERCISE 1.1 (Cake eating). Suppose you have a cake of size xt, with x0 given. In 

each period, t=1, 2, 3, . . , T, you can consume some of the cake and save the 

remainder. Let ct be your consumption in period t and let ( )tu c  represent the 

flow of utility from this consumption. Assume that u() is differentiable, strictly 

increasing and concave, with /
0lim ( )c u c→ =∞ . Let lifetime utility be repre-

sented by 0 ( )t
t u cβ∞
=∑ . Characterize the optimal path of consumption { } 0

T
t tc = , 

(a) by the direct method, (b) by the method of dynamic programming. 
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2. Deterministic Infinite-Horizon Problems 

So how does the dynamic programming approach help us in the infinite-horizon case? 

Consider again the period-1 version of the consumption problem, but now written for an 

infinite planning horizon: 

 
{ }

( )( )
1 0

1
1

max
t t

t
t t

k t

u f k kβ∞
+ =

∞

+
=

−∑ . (2.1) 

Assume for the moment that a solution to this problem exists. Let the maximized value 

of the objective function be V1(k1). Then, according to Bellman’s principle of optimality, 

the period-0 problem can be written as 

 ( ) ( )( ) ( ){ }
1

0 0 0 1 1 1max
k

V k u f k k V kβ= − +  (2.2) 

subject to 1 00 ( )k f k≤ ≤ , with k0 given. Note that we could re-index time in (2.1) by re-

placing t with s+1 to obtain  

 ( )1
0

( )s
s s

s

u f k kβ β
∞

+
=

−∑ .  (2.3) 

It then becomes clear that V0(k0) and V1(k1) must be exactly the same function because 

(2.1) and (2.3) differ only by notation. That is, if a solution exists, it must satisfy 

 ( ) ( )( ) ( ){ }
1

0 0 1 1max
k

V k u f k k V kβ= − + . 

Because time does not matter directly in this problem, we can drop the subscript nota-

tion and let 'k  denote next period’s value of k: 

 ( ) ( )( ) ( ){ }
'

max ' '
k

V k u f k k V kβ= − + , (2.4) 

subject to 0 ' ( )k f k≤ ≤ , k0 given.  Equation (2.4) is usually referred to as the Bellman 

equation of dynamic programming. The first-order condition for this maximization prob-

lem is 

 ( ) ( )/ /( ) ' 'u f k k V kβ− = , (2.5) 
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which is not too helpful as it stands because we do not know the function ( )'V k . How-

ever, we can use the envelope theorem to make some more progress. Differentiate the 

value function in (2.4) with respect to k, yielding3 

 ( ) ( )/ / / / / '( ) ( ) ' ( ) ( ) ' ( ') dkV k u f k k f k u f k k V k
dk

β = − + − − +   . 

         ( )/ /( ) ' ( )u f k k f k= − . (2.6) 

The term in square brackets is equal to zero from the first-order condition (2.5) (this is 

the application of the envelope theorem). Update (2.6) by one period, 

 ( ) ( )( ) ( )/ / /' ' '' 'V k u f k k f k= − , 

and substitute into (2.5) to obtain 

 ( )( ) ( )( ) ( )/ / /' ' '' 'u f k k u f k k f kβ− = − . (2.7) 

In terms of date subscripts, we have 

 ( )( ) ( )( ) ( )/ / /
1 1 2 1t t t t tu f k k u f k k f kβ+ + + +− = − , 

which is the solution (1.5) we arrived at before for the finite horizon case. 

 

EXERCISE 2.1 (Cake eating forever). Extend the cake-eating example (1.1) to an 

infinite planning horizon.  

(a) Derive the Bellman equation and use it to characterize the optimal policy. 

(b) Assume that utility is given by u(ct)=ln(ct). Use the method of undeter-

mined coefficients to show that the value function takes the linear form 

( ) ln( )V x A B x= + . 

(c) Show that the optimal policy is to eat a constant fraction 1−β of the cake 

in each period. 

                                            
3 This requires, of course, that V(k) be differentiable. It turns out that if u is differentiable then 

V(k) is also differentiable under quite general conditions. The result was established by Benveniste 

and Scheinkman (1979), so (2.6) is sometimes referred to in the literature as the Benveniste-

Scheinkman condition. 
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(d) What is the optimal policy when u(c)=c? 

 

 In other infinite-horizon dynamic programs, it may not be reasonable to assume that 

time does not matter, and so the time subscripts on the problem are fundamentally im-

portant. For example, in the consumption problem we have just seen, the resource con-

straint could take the form 

 ( )1t t t tk A f k c+ = − , 

where At is a technology parameter that fluctuates with time. In this case, the value func-

tion depends on time, which we denote in the following way: 

 ( )( ) ( ){ }1
'

( ) max ' 't t t
k

V k u A f k k V kβ += − + . 

Despite the apparent added complexity, the general approach to finding the optimal pol-

icy remains the same. The first-order condition is 

 ( ) ( )//
1( ) ' 't tu A f k k V kβ +− = . 

The envelope theorem tells us that 

 ( )/ / /( ) ( ) ' ( )t t tV k u A f k k A f k= − . 

Updating by one period, 

 ( )( ) ( )/ / /
1 11( ') ' '' 't ttV k u A f k k A f k+ ++ = − , 

and substituting into the first-order condition yields 

 ( )( ) ( ) ( )( ) ( )/ / / /
1 1' ' '' 't t t tu A f k k A f k u A f k k A f kβ + +− = − . (2.8) 

With the exception of At and At+1, this is exactly the same as the result obtained in (2.7).  

 

The next exercise is a somewhat more complicated application of these ideas 

 

EXAMPLE 2.2 (Eekhout and Jovanovic [2002]). Firms produce output, y, using human 

capital, k, according to the production function ( )ty A k k= . The term At(k) is a produc-

tivity parameter that changes over time, and captures knowledge spillovers to the firm 

from its competitors. The greater a firm’s own level of human capital, the less it has to 
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learn from others. Hence, it is assumed that /( ) 0tA k < . Firms face a cost of adjustment 

to k that is proportional to output. Given k units this period, the firm can have 'k  units 

next period at a cost of ( )'/yc k k . It is assumed that / 0c >  and // 0c > . 

(a) Derive the Bellman equation for this problem. 

        ( )1
'

'( ) max 1 ( ) 't t t
k

kV k c A k k V k
k

β +
      = − +         

. 

Because At(k) may vary from period to period, the time subscripts on the value 

function are important. 

(b) Derive a difference equation in k that characterizes the optimal policy. 

The first-order condition is 

      ( )//
1

' ( ) 't t
kc A k V k
k

β +
  =  

 

 The envelope theorem says 

     
/

/ /' ' ' ( )( ) ( ) 1 1
( )

t
t t

t

k k k A k kV k A k c c
k k k A k

            = + − +                
. 

 Updating by one period and substituting back into the first-order condition gives 

     ( )
/

/ / 1
1

( ') '' '' '' '( ) ' 1 1
' ' ' ( ')

t
t t

t

A k kk k k kc A k A k c c
k k k k A k

β +
+

                = + − +                       
, (2.9) 

 which implicitly defines a second-order difference equation in k. 

(c) Let 

 
/( )t

t

kA k
A

ε =  

denote the absolute value of the elasticity of At with respect to k. Let 1 /k t tx k k+=  denote 

the growth factor for human capital, and let 1 /A t tx A A+=  denote the growth factor for 

productivity. Assume that ε, xk and xA are constant for all t. Derive a stationary solution 

relating the elasticity ε to xk. 
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Substitute ( ) ( )/
11 ' '/ 'ttA k k A kε ++=  into (2.9), divide throughout by At(k); replace 

( )1 ' / ( )t tA k A k+  with xA, and let ''/ ' '/ kk k k k x= = :  

      
( )

( )

/1

1
1

k k
A

k

x c x
x

c x
β

ε

  −   = −
−

. (2.10)  

(d) Why is it reasonable to assume βxAxk<1? 

Output is y=A(k)k. If A and k grow too fast, the present value of output will become 

infinite. Constraining xA and xk ensures that the present value of output diminishes 

to zero for periods far enough in the future. 

(e) Show that, if ε is large enough, dxk/dε<0. Interpret this finding. 

Direct differentiation of (2.10) gives 

 
( )2// //

2

(1 )1
1 (1 )k

k A

c c cd c x
dx c x c
ε

β

  − +     = − −    − −   
.  

Rearranging and making use of (2.10) allows us to write 

 
2 //

2
/

1

1 1(1 ) (1 )

k
x A

k k
A A

x
dx x
d cx x

x xc

β
ε

ε ε
β β

−
=         − − − − + −           

. 

As  βxAxk<1 the term in square brackets is unambiguously positive, as is the numerator. 

Thus, if ε>1, dxk/dε<0. There are two effects of human capital growth. First, for given A, 

output is increased. Second, A is reduced as it becomes more difficult to absorb knowl-

edge from other firms. If the latter effect is large enough (i.e. if ε is large enough), the 

firm reduces its investment in human capital, preferring to free ride on the knowledge 

developed by other firms. Eekhout and Jovanovic use this insight to develop an equilib-

rium model of inequality.        • 
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 Although we can usually make good progress in characterizing optimal policies de-

fined implicitly by equations such as (2.7) and (2.8), in most cases it will not be possible 

to obtain an explicit solution for the optimal policy. This is unfortunate because we would 

usually like an explicit solution in order to solve for the value function. When explicit 

solutions are not available we must take a more indirect route to ask some of our basic 

questions, including 

• Can we prove formally existence and uniqueness of the value function? 

• Can we prove there is a unique optimal policy for the choice or state variable? 

• What other properties of the value function can be derived? 

We will address these questions in the remainder of the section. It should be noted that, 

in the interests of tractability, we will be stating theorems that may be more restrictive 

than necessary. The standard treatment of the following material at its most general level 

is to be found in Stokey and Lucas (1989), a rather difficult and time-consuming book. 

A Contraction Mapping Theorem for Bounded Functional Equations 

Recall from Chapter 3 the following contraction mapping theorem for fixed point expres-

sions: 

 

THEOREM [ch. 3] 3.7 (Contraction mapping theorem). Let f(x) denote a continuous func-

tion which maps a value x from a closed, bounded interval into a closed, bounded in-

terval. If f(x) is a contraction mapping, then there exists exactly one fixed point 

* ( *)x f x= . 

 

To explore uniqueness and existence of a solution to the Bellman equation, we will replace 

xt and xt-1 in our difference equations, with functions, f(x) and g(x). That is, we write  

 ( )( ) 'g x Tf x= , (2.11) 

where T denotes some operation on the first function f that yields the second function g. 

Equation (2.11) is called a functional equation, because from it we want to solve for the 
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function g(x) for all values of x rather than for any particular value of x. For example, in 

the consumption problem we have 

 ( ) ( )
'

( ) max ( ) ' '
k

V k u f k k V kβ= − + . (2.12) 

In (2.12), the operator T is the act of multiplying V by β, adding ( )( ) 'u f k k−  to it, and 

then maximizing the resulting function by choice of 'k . We would like find a unique func-

tion V(k) that satisfies the recursive representation in (2.12) for all k. This may be very 

difficult so, before we proceed, we would like to know if one exists. Fortunately, the con-

traction mapping theorem also applies to such functional equations.  

 Although we will leave out the technical details associated with the theorem, we do 

need to introduce a new distance function, known as the supremum norm and denoted by 

x y− . Let f(x) and g(x) denote two functions of [ , ]x a b∈ , then the supremum norm, 

f g−  denotes the maximum absolute difference between the two functions observed as x 

takes on different values in the closed interval [a,b]. An operator on a function is a con-

traction mapping whenever applying the operator to two such functions brings them 

closer together for any admissible values of x. Using the supremum norm as our measure 

of distance, if T is a contraction mapping then ( ) ( ) ( ) ( )Tf x Tg x f x g x− < − .4 This will 

require that the functions are continuous. Additionally, for the supremum norm to exist, 

the functions f(x) and g(x) must have well-defined maxima and minima, and the contrac-

tion mapping theorem applies to sets of functions that have them. That is, the contrac-

tion mapping theorem applies to sets of continuous functions mapping closed bounded 

intervals into closed bounded intervals. For such sets, the supremum norm always exists.5 

 The simplest way to ensure that a maximum exists is to bound the one-period pay-

offs in some way. For example, in (2.12) above, there could be some maximum value, 

u <∞ , of the utility function regardless of how much capital the consumer has. Given 

                                            
4 The idea here is that as the supremum norm goes to zero the two functions get closer and closer 

together and eventually become the same function. 
5 A set of functions with these properties is called a "complete metric space." We don't need to get 

into where this name comes from, but if you come across the term now you know what it means. 
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discounting, it then follows that /(1 )V u β< − <∞  so V is bounded from above. Even 

so, we still need to ensure that V(k) can actually attain its maximum, and this requires 

that k must be able to attain the value that maximizes V(k) of that attains ( )u k . Imagine 

that this is at the boundary of the interval from which k is drawn. Then we need to en-

sure that k can actually attain the value at this boundary. That is, we need to ensure 

that the interval for k includes its own boundary. Put another way, k must be drawn from 

a closed, bounded interval. For example, there might be some maximum feasible amount 

of k, say k , such that ( )( )'u f k k u− ≤ <∞  for any ' 0,k k ∈    . If k is bounded, then 

assuming that u is continuous everywhere ensures that u is bounded. One also needs to 

worry about the lower bound. Imagine, for example, that u(c)=ln(c). Then (0)u → −∞  

and V will not be bounded below. However, this is often not a practical concern because 

we have a maximization problem. In the consumption problem, for any k>0, we will al-

ways want to ensure that c>0 for all t. Hence, as u=ln(c) is continuous and c can be 

bounded above zero, u(c) is bounded below and so is V.  

 Assuming such bounds leads to the following existence and uniqueness theorem: 

THEOREM 2.1 (Contraction mapping theorem for bounded returns). Let C[a,b] be the set 

of all continuous functions mapping values from a bounded closed interval into a 

bounded closed interval. Let f(x) and g(x) be two arbitrary functions from this set. 

Now consider an operator, T, on that function, such that g(x)=Tf(x). If T is a con-

traction mapping then there exists exactly one function satisfying ( ) ( )f x Tf x= . 

 

PROOF.  We will not prove existence, which is tricky, but uniqueness is easy. Suppose 

there were two functions f*(x) and g*(x), satisfying f*(x)=T f*(x) and g*(x)=T g*(x) for 

all x. Then, as T is a contraction we have * ( ) * ( ) * ( ) ( )Tf x Tg x f x g x− < − . But as 

f*(x)=T f*(x) and g*(x)=T g*(x), this implies * ( ) ( ) * ( ) * ( )f x g x Tf x Tg x− = −  

* ( ) ( )f x g x< − , a contradiction. Thus there cannot be two fixed points.    • 

 

 The contraction mapping theorem is, of course, a special type of fixed point theorem. 

In fact, another name for it is the Banach fixed point theorem. The main difficulty is that 
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deciding whether the operator T is a contraction mapping directly is likely to be a very 

hard problem. And that is why it is so nice to be helped out by a handy little theorem 

from Mr. Blackwell: 

 

THEOREM 2.2 (Blackwell's contraction mapping theorem). (a) The operator T is a con-

traction if it has the following two properties: 

• (Monotonicity). If ( ) ( )f x g x≤  for all x, then ( ) ( )Tf x Tg x≤  for all x. 

• (Discounting). Let a be a positive constant. There exists some (0,1)δ ∈  such 

that ( )( ) ( )T f a x Tf x aδ+ ≤ + . 

(b) If T is a contraction mapping, and the other assumptions of Theorem 2.1 are sat-

isfied, the unique fixed point of the functional equation ( ) ( )g x Tf x= , which we will 

denote by * ( ) * ( )f x Tf x= , can be found by repeatedly applying the operator T to the 

function f. That is, * ( ) lim ( )n
nf x T f x→∞= . 

 

PROOF. If ( ) ( )f x g x≤  for all admissible values of x, then ( ) ( ) ( ) ( )f x g x f x g x≤ + − , be-

cause ( ) ( )f x g x−  is a distance function and therefore is non-negative. If monotonicity 

holds, we have ( )( ) ( ) ( ) ( )Tf x T g x f x g x≤ + − , and if discounting holds this inequality 

further implies ( ) ( ) ( ) ( )Tf x Tg x f x g xβ≤ + −  for some β<1. Subtracting Tg(x) from both 

sides of the inequality, we have ( ) ( )Tf x Tg x− ≤  ( ) ( )f x g xβ − . This inequality holds for 

any admissible x, including the value that makes for the largest difference between Tf(x) 

and Tg(x). Thus, applying the supremum norm, ( ) ( ) ( ) ( )Tf x Tg x f x g xβ− ≤ − , which is 

the definition of a contraction mapping.     • 

   

It is easiest to show what this theorem means by example. Example 2.2 is particularly 

simple. Example 2.3 continues the consumption problem. Both examples deal with the 

existence question in part (a) of the theorem. 

 

EXAMPLE 2.2. Let C be the set of all continuous and bounded functions on the closed 

interval [0,1] and equipped with the supremum norm. Let the functional equation be 
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given by g(x)=0.5f(x), where f and g are any two function drawn from the set C. We will 

first use Blackwell's theorem to show that the operator T in Tf(x)=0.5f(x) is a contraction 

mapping (it is obvious that this is the case, because ( ) ( )Tf x Tg x− = 0.5 ( ) ( )f x g x−  

( ) ( )f x g x< − , but we will go ahead and use the theorem anyway. 

• Step one is to verify that the candidate functions f and g satisfy the requirements 

of Theorem 2.1. They do by assumption in this example, but we will normally have 

to verify that this is the case (for example, if f and g are both utility functions, we 

will have to check that they are bounded). 

• Step 2 is to check Blackwell's monotonicity condition. Consider a pair of functions 

such that ( ) ( )f x g x≥  for all [0,1]x ∈ . Then, it must be the case that 

0.5 ( ) 0.5 ( )f x g x≥  in the same domain, and thus that ( ) ( )Tf x Tg x≥  for all [0,1]x ∈ . 

Thus, monotonicity holds. 

• Step 3 is to show that discounting holds. ( )( ) 0.5( ( ) )T f a x f x a+ = +  

0.5 ( ) 0.5f x a= + ( )Tf x aδ< +  for any (0.5,1)δ ∈ . Thus, discounting holds. 

• We therefore conclude that T is a contraction mapping and that there exists a 

fixed point function satisfying f(x)=Tf(x) for all x. Part (b) tells us how to find this 

function, as * ( ) lim ( ) lim 0.5 ( ) 0n n
n nf x T f x f x→∞ →∞= = = . Thus, the only 

bounded function f*(x) that satisfies f(x)=Tf(x) for all [0,1]x ∈  is the zero function, 

f*=0 for all x.    • 

  

EXAMPLE 2.3. Continuing our consumption example, 

 ( ) ( )/

/ /( ) max ( )
k

V k u f k k V kβ= − + . 

First, we assume that f and u are such that u is bounded below u . Then, as V cannot 

exceed the discounted present value of receiving u  forever, it follows that 

/(1 )V u β≤ − <∞ , so V is bounded and therefore it has a maximum. Next, we show 

monotonicity, which states that if there exist two functions V(k) and Q(k) such that 

( ) ( )V k Q k≥  for all k, then TV TQ≥  for all k. This is straightforward to establish be-
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cause of the maximization involved in the problem. Let 'Qk  denote the optimal choice of 

k/ when it is the function Q(k) that is being maximized. Then, because we are in fact 

maximizing V(k), it must be the case that 

 ( ) ( )
'

( )( ) max ( ) ' '
k

T V k u f k k V kβ= − +  

            ( ) ( )( ) ' 'Q Qu f k k V kβ≥ − +  ,      because 'Qk  is not the maximum of V 

            ( ) ( )( ) ' 'Q Qu f k k Q kβ≥ − + ,       because ( ) ( )' 'Q QV k Q k≥  

            ( )( )T Q k≡ . 

Thus, monotonicity holds. Finally, we need to show that discounting holds. This is again 

easy, in this case because we have discounting in our problem. Let a be some positive 

constant. Then 

 ( ) ( ) ( )( )
'

( ) ' max ( ) ' '
k

T V a k u f k k V k aβ+ = − + +  

                  ( )'TV k aβ= + . 

Hence, we have shown that there exists a unique solution to the functional equation.      • 

 

 It should be apparent from this example that the monotonicity and discounting con-

ditions of Blackwell’s theorem can virtually be confirmed by casual inspection of the 

model. In essence, if you have a dynamic maximization problem with discounting of fu-

ture returns, then Blackwell’s theorem will apply to any problem in which the undis-

counted returns are bounded and the state variable can take on any value in a closed 

bounded interval. 

 Finally, the theorem also gives us a way to solve the dynamic programming problem, 

which may be useful in certain settings. Define an arbitrary function Q(k) and apply the 

contraction repeatedly to obtain ( ) lim ( )n
nV k T Q k→∞= . This function so obtained will 

satisfy the fixed point functional equation ( ) ( )V k TV k=  and be the unique solution to 

the dynamic programming problem. But how useful is this solution technique? In practice 

it often is not very useful, because no one really has enough time to do an infinite amount 

of algebra! However, for problems with specific functional forms, it can work if you can 
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make a guess of the general form the solution will take. Then, after a few iterations you 

may see a pattern arising, allowing you to jump the remaining (infinite number of) steps . 

A Theorem for Unbounded Returns 

In Example 2.2 we just assumed that u(c) was bounded. But what if it is not? In princi-

ple, capital can grow without bound and so can utility, and then it is not obvious that the 

value function will be bounded (which is, after all, what we really care about). The prob-

lem is that boundedness is an essential component of Theorem 2.2. Stokey and Lucas 

(1989) discuss this case in some detail (see their Theorem [4.14]). We provide here a more 

restrictive theorem that will, for many applications, suffice.  

 

THEOREM 2.3 (A theorem for unbounded returns). Consider the general dynamic program 

           { }
'

( ) sup ( , ') ( ')
x

TV x h x x V xβ= + .6 

Assume that the term ( )1
0

,t
t t

t

h x xβ
∞

+
=
∑  exists and is finite for any feasible path 

{ } 0t tx ∞
=  given x0. Then, if  T is a contraction mapping, there is a unique solution to 

the dynamic optimization problem. 

 

 Theorem 2.3 restricts the admissible one-period payoffs to sequences that cannot 

grow too rapidly relative to the discount factor. As 10 ( , )t
t tt h x xβ∞

+= <∞∑  by assump-

tion, then ( )0 10max ( , )t
t ttV x h x xβ∞

+== ∑  is also bounded. Thus, ( )0V x  has a maximum 

and the remainder of the theorem can be applied. The only difficulty with Theorem 2.3 is 

this: you need to solve the dynamic programming problem to find the path of the state 

variable, yet you don’t know if the solution technique works until you have shown that 

                                            
6 The term ‘sup’ refers to supremum. Until we know that the value function is bounded, we cannot 

be sure that the maximum value exists. If V is unbounded, we can get arbitrarily close to infinity, 

but we cannot actually attain it. The term supremum applies to such cases. Once we know that the 

value function is bounded, we can replace ‘sup’ with ‘max’.  
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the path of the one-period payoff function is finite in present value terms. The way out of 

this impasse can be shown by example: 

 

EXAMPLE 2.4. We return to the consumption example again, this time without assuming 

that returns are bounded. Assume that ( )f k kα=  for some α<1 and u(c)=ln(c). Then, as 

( ) ( ) ( )1ln lnt t t tu c c k kα
+= = − , and 1t t tk k cα

+ = −  we can make two observations. First, 

the most rapidly that the capital stock can grow is to choose zero consumption at each 

point in time. This implies an upper bound to the capital stock given by 

 1
1 0ln ln lnt

t tk k kα α ++ ≤ ≤ . (2.13) 

Second, the largest one-period pay-off is found by consuming all the output, so that 

 ( ) ( ) ( ) ( )1ln ln ln lnt t t t t tu c c k k k kα α α+= = − ≤ = . (2.14) 

So, if we combine the most rapid growth in capital (2.13) with the largest payoff in either 

period (2.14), we have 

 ( ) 1
0ln lnt

t tu c k kα α +≤ ≤ . 

It then follows that 

 ( ) ( ) 0
0

0 0

ln
ln

1
tt

t
t t

k
u c k

αβ α αβ
αβ

∞ ∞

= =
≤ = <∞

−∑ ∑  (2.15) 

for any finite k0. Note that the actual sequence of payoffs must be less than this in present 

value. We have combined in (2.15) a sequence of utilities from consuming everything with 

a sequence of capital stocks from consuming nothing, and one cannot have both simulta-

neously. So any feasible sequence of payoffs must be bounded in present value, and this 

implies that the value function must also be bounded. The function ( )V k  therefore has a 

maximum, and the reminder of the theorem can be applied as before.    • 
  

EXERCISE 2.2. An agent can produce two goods, x and y according to the produc-

tion functions x
t tx l=  and y

t ty l= . The agent is endowed with one unit of labor 

time in each period, so 1x y
t tl l+ = . Good x cannot be stored, but good y is in-

definitely storable. Production of good x is immediate, so that quantities of x 
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produced in period t are consumed in period t. Production of good y takes time, 

so that production of y in period t cannot be consumed until period t+1 at the 

earliest. Utility in each period is given by x y
t t tu c c= , and the agent maximizes 

the discounted lifetime utility over the infinite horizon, with a discount factor 

β<1.  

(a) Show that the value function is bounded. [Hint: construct an infeasible se-

quence of returns that must exceed any feasible sequence]. 

(b) Now assume that stored y depreciates at the rate δ per time period. Show, 

this time using a more direct approach, that the value function is bounded for 

this case. 

 

A corollary to Theorem 2.3 in Stokey and Lucas (1989) also gives us a way to solve for 

the value function regardless of whether we can show that T is a contraction mapping: 

 

THEOREM 2.4 (Solving models with unbounded returns). Consider the general dynamic 

program 

        { }
'

( ) sup ( , ') ( ')
x

TV x h x x V xβ= + , 

and, for any given x0, let ( )0 1
0

ˆ( ) max ,t
t t

t
V x h x xβ

∞
+

=
= <∞∑ . Then, if ˆ ˆ( ) ( )TV x V x≤  

for all admissible x, and ˆ( ) lim ( )n
nV x T V x→∞=  yields a well-defined finite-valued 

function, then V(x) is the unique solution to the dynamic programming problem. 

 

Theorem 2.4 says that we can find the solution to the dynamic optimization problem by 

first defining a function that we know gives a value for any x that is greater than the so-

lution. Then, repeatedly applying the operator T to this function, we see if we converge 

onto a well-defined finite-valued function. This will work as long as ˆ ˆ( ) ( )TV x V x≤ .   

 This theorem offers a solution technique under different assumptions than we saw for 

from Theorem 2.2. The earlier theorem stated that if T were a contraction mapping, you 

could start with any value function and iterate to find the unique solution. But doing so 
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would only work if T is a contraction mapping. Theorem 2.4 states that all you need is 

that T returns a function that is smaller at each value of x. But this will only work if you 

know you are starting with a function that is larger for each value of x.  

 

EXAMPLE 2.5. We will apply Theorem 2.4 to the consumption example with ( )f k kα=  

u(c)=ln(c). From Example 2.3, define ˆ( ) ln /(1 )V k kα αβ= − , and recall that the opera-

tor is defined by 

 ( ) ( )
0 '

ˆ ˆ( ) sup ln ' '
k k

TV k k k V kα β
≤ ≤

= − + . 

          ( )
0 '

ln 'sup ln '
1k k

kk kα αβ
αβ≤ ≤

= − +
−

. (2.16) 

The maximum of this expression if found upon setting 'k kααβ= , so that on substitut-

ing back into (2.16) we get  

 ˆ( ) ln(1 ) ln( ) ln
1 1

TV k kαβ ααβ αβ
αβ αβ

= − + +
− −

. 

As (0,1)αβ ∈ , ln(1 ) 0αβ− <  and ln( ) 0αβ < , so clearly ˆ ˆ( ) ( )TV k V k< , as Theorem 2.4 

requires. Now, apply the operator a second time: update the equation, replacing k with 

'k , multiply by β, add ( )ln 'k kα − , and again take the maximum with respect to 'k : 

 ( )2

'
ˆ( ) max ln ' ln(1 ) ln( ) ln '

1 1k
T V k k k kα αβ αβ αβ αβ

αβ αβ
     = − + − + +   − −   

, 

which again gives the optimality condition 'k kααβ= . Substituting back yields 

 2 ˆ( ) (1 ) ln(1 ) ln( ) ln
1 1

T V k kαβ αβ αβ αβ
αβ αβ

 
 = + − + + − − 

. 

Repeating this process n times7, we get 

 
1

0

ˆ( ) ln(1 ) ln( ) ln
1 1

n
n i

i

T V k kαβ αβ αβ αβ
αβ αβ

−

=

      = − + +     − −   
∑  

                                            
7 This is very tedious and its easy to make algebraic mistakes. However, after two or three rounds 

you will spot a pattern that allows you to write Tn. 
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11 ln(1 ) ln( ) ln

1 1 1

n
kβ αβ ααβ αβ

β αβ αβ

+  −  = − + + − − − 
, 

which converges as n → ∞  to 

 1ˆlim ( ) ( ) ln(1 ) ln( ) ln
1 1 1

n

n
T V k V k kαβ ααβ αβ

β αβ αβ→∞

 
 = = − + + − − − 

. (2.17) 

By Theorem 2.4, this represents the solution to our fixed point problem. Of course, now 

that we know what V(k) is, we can easily solve for the optimal policy upon noting that 

 ( )
'

1( ) max ln ' ln(1 ) ln( ) ln '
1 1 1k

V k k k kα αβ αβ αβ αβ
β αβ αβ

     = − + − + +   − − −   
, 

and the first-order condition yields 'k kααβ= .     • 

  

No one said that explicitly solving dynamic programming problems would be easy! There 

is, however, an alternative way to solve the problem in Example 2.4, using a technique 

with which you are already familiar: the method of undetermined coefficients. 

 

EXAMPLE 2.6. We will solve the consumption problem from Example 2.5 using the 

method of undetermined coefficients. We guess a solution of the form 

 ( ) lnV k A B k= +  

for constant A and B to be determined (from equation [2.17] we know this guess is cor-

rect). Given this guess, the next task is to derive the optimal policy. The Bellman equa-

tion must take the form 

 ( ){ }
'

ln max ln ' ln '
k

A B k k k A B kα β β+ = − + + , (2.18) 

so the first-order condition yields 

 '
1

Bk k
B

αβ
β

  =    + 
. (2.19) 

Next, substitute (2.19) into (2.18) to obtain 

 ln ln 1 ln ln ln
1 1

B BA B k k A B B k
B B

β βα β β αβ
β β

      + = − + + + +     + +   
. 
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This expression must hold for any k. Hence, matching coefficients on lnk, we get 

 
1

B α
αβ

=
−

. 

Matching coefficients on the constants, we get 

 
1 1

ln ln
1 1 1

B
A B

B B
ββ

β β β

        = +      − + +    
 

    
1

ln(1 ) ln( )
1 (1 )

αβαβ αβ
β αβ
 
 = − + − − 

. 

Hence, 

 1( ) ln ln(1 ) ln( ) ln
1 1 1

V k A B k kαβ ααβ αβ
β αβ αβ
 
 = + = − + + − − − 

, 

which is the same as in (2.17).     • 

 

 So now we have two ways that we may be able to use to find an explicit solution to 

a dynamic programming with specific functional forms. The first is to iterate an infinite 

number of times using the operator ˆ( )TV k . The second is to guess the functional form 

and use the method of undetermined coefficients. In most cases, neither of these ap-

proaches is easy. The infinite iteration approach is algebraically tedious and requires a bit 

of luck: you need to spot a pattern developing before things gets too messy. The benefit 

of this approach is that you don’t have to guess the form of the solution in advance, al-

though you do have to find a function ˆ( )V k  satisfying ˆ( ) ( )V k V k>  for all k.  The second 

method is algebraically easier, but it requires luck (and experience) in guessing the func-

tional form. In Example 2.5, we correctly guessed that lnV A B k= +  only because we 

had already seen the solution. Without that rather large help, how many guesses would 

you have tried before hitting on the right functional form? 

 

EXERCISE 2.3 Consider the two-good production problem of Exercise 2.2, without 

depreciation of the stored good. Guess that the solution takes the form 

     ( )V y A B y= +  
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for unknown constants A and B. Find the parameters A and B as a function of the 

discount factor. Show that the production of x is inversely related to the discount fac-

tor.  

Conditions for Uniqueness of the Policy Function 

The contraction mapping theorem gives conditions for existence and uniqueness of the 

value function. However, it need not generate a unique policy function. In this section, we 

provide a theorem that gives the conditions under which the policy function is also 

unique.  

 The general dynamic programming problem, 

 ( ) ( ){ }
'

( ) max , ' '
x

V x f x x V xβ= + , 

has the first-order condition 

 ( ) ( )/
' , ' ' 0xf x x V xβ+ = . (2.20) 

For this to constitute a uniquely-defined maximum, we would naturally turn to the sec-

ond order condition, 

 ( ) ( )//
' ' , ' ' 0x xf x x V xβ+ < . (2.21) 

So, one thing we need for uniqueness is clearly that the function f be strictly concave. So 

the only difficulty is checking the conditions under which ( )// ' 0V x < . Conditions under 

which V is concave are easy to come by. It is also very generally true that we can differ-

entiate V once (and hence that our whole solution technique is valid). However, V may 

not be twice differentiable, so a statement such as (2.21) may not have much meaning. 

However, even in this case we can provide conditions for concavity of V, and (2.20) will 

continue to define a unique maximum.  

 It turns out that if f is strictly concave then V will also be a strictly concave func-

tion with one additional assumption, that the set X from which x and x/ are drawn is 

strictly convex. Before we state the theorem formally and prove it, it might be useful to 

offer the following reminder of the meaning of concavity of a function and convexity of a 

set. A function f is strictly concave if, for any valid inputs into the function, { }0 0, 'x x  and 
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{ }1 1, 'x x , and any third set of inputs { }, 'x xθ θ  satisfying 0 1(1 )x x xθ θ θ= + −  and 

0 1' ' (1 ) 'x x xθ θ θ= + −  for any (0,1)θ ∈ , then 

 ( ) ( ) ( )0 0 1 1, ' , ' (1 ) , 'f x x f x x f x xθ θ θ θ> + − . 

(Plot this for a concave function with a single argument). A set X is convex if, for any x0 

and x1 belonging to the set, then xθ also belongs to the set. Intuitively, the boundary of a 

convex set is a concave function, and a convex set has no holes. By far the most impor-

tant and common convex set we will deal with in economic modeling is a bounded inter-

val of real numbers: if two numbers belong in an interval then so does a weighted average 

of them. 

 

THEOREM 2.5 (Concavity of the value function and uniqueness of the policy function). 

Given the general dynamic programming problem ( ) ( ){ }
'

( ) max , ' '
x

V x f x x V xβ= + , if 

f is a strictly concave function, the set X of admissible values for x is convex, and the 

optimal sequence for { } 0t tx ∞
=  involves an interior solution in every period, then (i) 

V(x) is a strictly concave function, and (ii) the optimal policy is unique. 

PROOF. Let 0 1(1 )x x xθ θ θ= + − , and assume that x0 and x1 are admissible values for the 

state variable. Then, as the set of admissible values is convex, xθ is also admissible and we 

can write 

    ( ) ( ) ( ){ }/, ' 'TV x f x x V xθ θ θ θβ= +  

               ( ) ( )( ) ( ) ( )( )0 0 0 1 1 1, ' ' (1 ) , ' 'f x x V x f x x V xθ β θ β> + + − +  (strict concavity of f) 

               ( ) ( )0 0 1 1, ' (1 ) , 'TV x x TV x xθ θ= + − , 

so the operator is also strictly concave. This proves part (i). To prove part (ii), note that 

the sum of two strictly concave functions is also strictly concave. Hence, 

( ) ( ), ' 'f x x V xβ+  is strictly concave. Moreover (and this will be familiar from standard 

optimization problems), if a strictly concave function has a maximum, the maximum is 

unique. Hence, the maximum identified by (2.18) is unique if f is strictly concave.    • 
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Further Properties of the Value Function 

Two more useful properties can be established when we have a unique solution to the 

dynamic programming problem. We state these without proof. 

 

THEOREM 2.6 (Further properties of the value function). (i) If the one-period payoff func-

tion ( ), 'f x x  is monotonically increasing in the current value of the state variable, x, 

then V(x) is also monotonically increasing in x. (ii) If there exists a parameter, α, 

such that ( ), ';f x x α  is monotonically increasing [decreasing] in α, then V(x;α) is also 

monotonically increasing [decreasing] in α.. 

PROOF. We will provide a proof of part (i), which is easy. Let 'ix  denote the optimal 

value of next period's state when today's value is xi, and consider two values for today's 

state, 1 2x x< . Then, 

 ( ) ( ) ( )1 1 1 1, ' 'V x f x x V xβ= +  

         ( ) ( )2 1 1, ' 'f x x V xβ< + . 

         ( ) ( )2 2 2, ' 'f x x V xβ≤ +  

         ( )2V x= . 

The first inequality is because 1 2x x<  and f is strictly increasing in x. The second is be-

cause the value function obtained on responding optimally to a current value x2 must ex-

ceed any value function obtained by responding suboptimally.   • 

 

 This section has developed a lot of concepts. Becoming comfortable with their use 

requires practice and will take time. It will therefore be useful to see the concepts in ac-

tion. To that end, we close this section with an example that makes use of much of the 

material developed here. 

 

EXAMPLE 2.7 (Convex investment costs). In this example I describe a general investment 

problem, and then see what I can say about its properties. The example highlights the 
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use of the theorems in making precise statements about quite general problems. In this 

case, also, checking that the value function is bounded is a little difficult. 

 The cost of investment, c(i), is strictly increasing, strictly convex and differentiable 

with c(0)=0. The firm produces output according to the production function f(k), with 

k≥0 and f(0)=0, and where f is differentiable, strictly increasing and strictly concave. The 

production function further satisfies /
0lim ( )k f k→ = +∞ , so we can restrict attention to 

interior solutions, and /lim ( ) 0k f k→∞ = . Capital must be purchased one period ahead of 

its use, and it depreciates at the constant rate (0,1)δ ∈ . The price of output is p, the 

discount factor is (0,1)β ∈ , the interest rate is r, and used capital can always be sold at 

the price q. 

 The firm's problem is 

 
{ }

( ) ( ){ }
1 0

1max (1 )
t t

t
t t t

k
pf k c k kβ δ

∞
+ =

+− − −∑ , 

and the associated Bellman equation is 

 ( ) ( ) ( ){ }
/

( ) max ' (1 ) '
k

V k pf k c k k V kδ β= − − − + . (2.22) 

 To show existence and uniqueness of a solution, I first need to show that (2.22) maps 

bounded continuous functions into bounded continuous functions. This is a little tricky in 

this case, and I have to think about the nature of the optimal solution before I actually 

solve the model. Note that capital bought in period t  can be resold in period t+1 for a 

price (1−δ)q. Thus capital will only be accumulated as long as /( ) (1 )V k qδ> − . I need to 

show that this inequality cannot hold for any quantities of capital, but I am going to have 

to do it in a roundabout away. I claim that the following inequality holds: 

 ( )
/

/ ( )'
1
pf kV k

β
<

−
. (2.23) 

If this claim is true, I can show that V(k) is bounded. I will then characterize the solution 

to the model assuming it is true, and use this characterization to verify the claim later. 

Given (2.23), continued investment in capital requires that  

 / (1 )(1 )( ) qf k
p

β δ− −> . (2.24) 
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However, /lim ( ) 0k f k→∞ = , so there must exist some k <∞  such that (2.24) is no 

longer satisfied. Thus, k is bounded between zero (by assumption) and k <∞ . As the 

functions f and c are continuous, boundedness of capital implies that the one-period re-

turn is bounded, while discounting then implies that the value function is bounded. Thus, 

(2.22) maps bounded continuous functions into bounded continuous functions. Then, by 

Theorem 2.1 (contraction mapping theorem for bounded returns), if the operator defined 

by (2.22) is a contraction mapping, the function V (k) is uniquely determined. 

 I can therefore use Theorem 2.2 (Blackwell's Theorem) to verify existence and 

uniqueness of a fixed point. Monotonicity and discounting are both satisfied for this 

model, the former because the operator involves maximization, and the latter because we 

are discounting future returns by the factor β<1 (these claims can be verified by exactly 

following the steps in Example 2.2). Consequently, there is a unique value function satis-

fying (2.22).  

 The one-period return, ( ) ( )' (1 )pf k c k kδ− − −  is a strictly concave function of k/ 

(because c is convex, −c is concave). Hence, by Theorem 2.5, ( )'V k  is strictly concave, 

and the policy function obtained from the first order condition defines a unique invest-

ment strategy. The first-order condition is given by 

 ( ) ( )/ /' (1 ) 'c k k V kδ β− − = . (2.25) 

Before applying the envelope theorem, I will use the first-order condition to show unique-

ness of the policy function directly. As c is differentiable and strictly convex, the left hand 

side of (2.25) is continuous and strictly increasing in 'k . As ( )'V k  is at least once differ-

entiable and strictly concave, the right hand side of (2.25) is continuous and strictly de-

creasing in 'k . Thus, there exists a unique 'k  satisfying (2.25). Moreover, the left hand 

side of (2.23) is decreasing is k for any 'k . I have now shown that optimal policy, 'k , is 

increasing in k. (You might like to draw the graph to verify these arguments).  

 The envelope theorem gives 

 ( ) ( ) ( )/ / /(1 ) ' (1 )V k pf k c k kδ δ= + − − − . (2.26) 

Updating one period, 

 ( ) ( ) ( )/ / /' ' (1 ) '' (1 ) 'V k pf k c k kδ δ= + − − − , 



DYNAMIC PROGRAMMING  144

and substituting into the first-order condition yields 

 ( ) ( ) ( )/ / /' (1 ) ' (1 ) '' (1 ) 'c k k pf k c k kδ β δ β δ− − = + − − − , 

a second-order difference equation that fully characterizes the unique time path of the 

optimal investment strategy. 

 Finally, I need to use these results to verify claim (2.23). Substitute (2.25) into 

(2.26) to eliminate c/:  

 ( ) ( ) ( )/ / /(1 ) 'V k pf k V kδ β= + − . 

I do not need to worry about the case where 'k k>  because if it were ever optimal to 

reduce the capital stock the desired quantity could be sold immediately at a price q. 

Hence, restricting attention to the case where, 'k k≤ , concavity of the value function 

implies that ( )/ /' ( )V k V k≤ . That is, 

 ( ) ( ) ( )/ / /' (1 ) 'V k pf k V kδ β≤ + − , 

so that 

 ( ) ( ) ( )/ /
/ '

1 (1 ) 1
pf k pf k

V k
δ β β

≤ <
− − −

, 

as claimed in (2.23).  

 Although there is relatively little structure to the model, we have been able to estab-

lish some important properties. To do so, we made use of Theorems 2.1, 2.2, and 2.5. 

Having established that the one-period return function was bounded, Theorems 2.3 and 

2.4 for unbounded returns were not relevant. We found that the one-period return is in-

creasing in the capital stock. By Theorem 2.6, then, the value of a firm is also increasing 

in the size of its capital stock. Moreover, we have shown that the value of next period's 

capital stock is increasing in the size of the stock this period. Thus, there is persistence in 

firm size – if a firm were to receive a positive shock to its capital stock today, that shock 

would persist for some time. We have also shown that there is an upper limit to the 

amount of capital that a firm will accumulate, and hence that there is an upper bound to 

firm size and value. This finding tells us that, as long as demand is sufficiently large, no 



DYNAMIC PROGRAMMING  145

one firm would get to dominate any industry exhibiting diminishing returns and convex 

adjustment costs.   • 

3. Dynamic Programming and Optimal Control 8 

Although dynamic programming most often is carried out in discrete-time settings, it can 

also be used in continuous time. In this section we show the equivalence of dynamic pro-

gramming and optimal control solutions to continuous-time, deterministic, dynamic opti-

mization problems coincide.  

 Consider the following familiar continuous-time investment problem for a firm: 

 ( )
( )

0

max ( ), ( ),
T

x t
u k t x t t dt∫ , 

subject to 

 ( )( ) ( ), ( ),k t f k t x t t=� ,    0(0)k k= . (3.1) 

Define ( )0 0, ( )V t k t  as the best value for the firm that can be attained at time t0 given 

that the capital stock at time t0 is k(t0). This function is defined for all [ ]0 0,t T∈  and any 

feasible k(t0). That is,  

 ( ) ( )
0

0 0, ( ) max ( ), ( ),
T

x
t

V t k t u k t x t t dt= ∫ , (3.2) 

subject to (3.1). Note that ( )0, ( ) 0V T k t =  by definition. 

 Break up the integral in (3.2) into two parts, one covering the short interval 

[ ]0 0,t t t+∆ , and the other covering the interval ( ]0 ,t t T+∆ : 

 ( ) ( ) ( ) ( )
0

0 0

0 0 0 0, ( ) max ( ), ( ), , ( ) ( ), ( ),
t t T

x
t t t

V t k t u k t x t t dt V t k t u k t x t t dt
+∆

+∆

   = + +    
∫ ∫ , 

                                            
8 This section can be omitted without loss of continuity. 



DYNAMIC PROGRAMMING  146

By Bellman's Principle of Optimality, the investment path x(t), ( ]0 ,t t t T∈ +∆ , must be 

optimal for the problem beginning at time 0t t+∆ . That is, 

( ) ( ) ( )
0

0 0
0 0

0 0
( ), ( ),

, ( ) max ( ), ( ), max ( ), ( ),
t t T

x t t t t x t t t t T
t t t

V t k t u k t x t t dt u k t x t t dt
+∆

≤ ≤∆ +∆ < ≤
+∆

       = +         
∫ ∫ , 

subject to (3.1). Put another way,  

 ( ) ( ) ( )
0

0
0

0 0 0 0
( ),

, ( ) max ( ), ( ), , ( )
t t

x t t t t
t

V t k t u k t x t t dt V t t k t k
+∆

≤ ≤∆

    = + +∆ +∆     
∫ , (3.3) 

which states that the value of the optimal policy is equal to the return to choosing an 

optimal policy over the interval [ ]0 0,t t t+∆  plus the return from continuing optimally 

thereafter. 

 As t∆  is assumed to be small, then the following approximations are reasonable (as 

they will be exact in a moment when we let t∆ → ∞ ). 

 ( ) ( )
0

0

0 0( ), ( ), ) ( ), ( ),
t t

t

u k t x t t dt u k t x t t t
+∆

≈ ∆∫ , 

 
0

0

0
1 ( )

t t

t

x t dt x
t

+∆

≈
∆ ∫ . 

That is, as t∆  is a small interval, then we can approximate the two integrals by assum-

ing that u and x are constant over the interval. 

 Now, in discrete time modeling we would let 1t∆ = , and assume that within each 

period of length 1, the chosen policy must be constant. Doing so yields 

 ( ) ( ) ( ){ }
( )

, ( ) max ( ), ( ), 1, ( 1)
x t

V t k t u k t x t t V t k t= + + + , (3.4) 

where u now measures the payoff during a single period from choosing investment x(t) 

and beginning with capital stock k(t). This is the key functional equation for discrete time 

that we have already seen. But what I want to do right now is to think about the con-

tinuous-time problem and relate it to optimal control. In fact, we can go from (3.3) to 
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optimal control with the simple assumption that ( ), ( )V t k t  is twice differentiable. The 

assumption allows us to take a Taylor expansion of (3.3) around t=t0: 

( ) ( ) ( ){
0

0 0 0 0 0 0 0( )
, ( ) max ( ), ( ), , ( )

x t
V t k t u k t x t t t V t k t≈ ∆ + ( ) ( ) }0 0 0 0, ( ) , ( )t kV t k t t V t k t k+ ∆ + ∆ . 

Subtract ( )0 0, ( )V t k t  from both sides and divide through by t∆ : 

 ( ) ( ) ( ){ }
0

0 0 0 0 0 0 0
( )

0 max ( ), ( ), , ( ) , ( )t k
x t

ku k t x t t V t k t V t k t
t

∆= + +
∆

. 

Finally, we let 0t∆ → , yielding 

 ( ) ( ) ( ){ }
( )

0 max ( ), ( ), , ( ) , ( ) ( )t k
x t

u k t x t t V t k t V t k t k t= + + � , (3.5) 

where we can now, without inaccuracy, drop the zero subscript on current time. Let λ(t) 

denote the costate variable from optimal control. We know that λ(t) has the meansing of 

the marginal value of the state variable, and hence that λ(t)=Vk(k(t),t). Using this fact in 

(3.5), we have 

 ( ) ( ) ( ){ }
( )

, ( ) max ( ), ( ), , ( ) ( ) ( )t
x t

V t k t u k t x t t V t k t t k tλ− = + + �  

                ( ) ( ){ }
( )

max ( ), ( ), ( ) ( ), ( ),
x t

u k t x t t t f k t x t tλ= + . (3.6) 

Equation (3.6) is known as the Hamilton-Jacobi-Bellman equation, and represents the 

fundamental partial differential equation obeyed by the optimal value function. Note, that 

the right hand side of (3.6) must be maximized by choice of – in the language of optimal 

control – the control variable, x(t). But the right hand side is simply the Hamiltonian of 

optimal control, and its first-order condition is 

 0x xu fλ+ = . (3.7) 

The optimality condition for λ(t) is also readily derived. Equation (3.6) must be true even 

if k(t) is modified. Thus, we can differentiate (3.6) with respect to k(t) to get 

 tk k k kV u f fλ λ− = + + . (3.8) 

where the term ( )tk ktV V tλ− = − = − � . Now, noting that the total derivative of ( , ( ))kV t k t  

with respect to time is 
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( ), ( )

( ) ( )k
kt kk kt kk kt k

dV t k t
t V V k t V V f V f

dt
λ λ= = + = + = +� � , (3.9) 

 we can combine (3.8) and (3.9) to get 

 k k k kf u f fλ λ λ λ− + = + +� , 

or  

 k ku fλ λ+ = − � . 

Hence, if V(k,t) is twice differentiable, then optimal control and dynamic programming 

give equivalent optimality conditions. 

4. Stochastic Dynamic Programming 

One of the most attractive features of dynamic programming is the relative ease with 

which stochastic elements can be incorporated. We therefore now extend the methods of 

section 2 to incorporate stochastic features into our models. The extension is in principle 

straightforward: one adds a judiciously-placed random variable such that at time t past 

realizations are known but future realizations are not. Thus, the current value function 

depends upon the distribution of future values of the random shock, and the way in 

which the shock affects future returns. This uncertainly is handled with the expectations 

operator. 

 Consider, for example, the cake-eating problem of Exercise 1.1. In this problem, the 

natural source of uncertainty concerns random variations in the agent’s preferences. For 

example, it may be that utility in each period is given by 

 ( ) ( )t t tv c z u c= . 

where zt is a random variable. The correct formulation for the Bellman equation in this 

problem depends upon what we assume is known about the random process. One as-

sumption is that the realized value of zt is known when period-t consumption is chosen, in 

which case we write 

 ( ) ( ) ( ){ }1max
t

t t t t tc
V x z u c E V xβ +

 = +    , 
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(recall that x is the size of cake remaining). An alternative assumption is that the taste 

shock for the current period is not known at the time the consumption decision is being 

made, in which case we write 

 ( ) ( ) ( ){ }1max
t

t t t t tc
V x E z u c V xβ +

 = +   . 

and this time we cannot take the expectations operator inside to the second term. In both 

cases, Et denotes the expectation of the value function conditional upon information that 

is known when period-t decisions are made. It is up to the modeler to be clear about 

what belongs in the period-t information set, because different assumptions may lead to 

drastically different behavior. 

 The cake-eating example adds shocks to the returns in each period but, conditional 

on the consumption choice, the evolution of the state variable is deterministic. A second 

common way to introduce stochastic elements is to suppose that the payoff function is 

deterministic once the value of the state variable is given, but the evolution of the state 

variable is subject to random shocks. Consider a stochastic version of the simple infinite-

horizon consumption problem with capital accumulation (equation [2.1]): 

 ( )( )0 1
1

max t
t t t

t

E u z f k kβ
∞

+
=

−∑ . 

Here, output is subject to random productivity shocks, zt, so that ( )1t t t tk z f k c+ = − . 

However, once ct and kt are given, the one-period return is fixed. We assume here that zt 

is known at the time ct is chosen, so that next period’s capital stock is also known. How-

ever, next period’s value function remains stochastic because it will depend upon the re-

alization of zt+1.Thus, the Bellman equation is: 

 ( ) ( ){ }max ( ) '
c

V k u c E V kβ  = +    

        ( ){ }max ( ) ( )
c

u c E V zf k cβ  = + −  . (4.1) 

Because 'k  can be controlled directly once zt is known, we could make a substitution of 

'k  for c: 

 ( ) ( ){ }
'

max ( ( ) ') '
k

V k u zf k k E V kβ  = − +   . 
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This substitution would not be possible if z were not known when c is chosen. 

 We have now written two stochastic dynamic programs, but we have made no at-

tempt to solve them. It turns out that the solution principle is no different for stochastic 

problems than it is for deterministic problems although, as we will see, the expectations 

operator often makes life rather more difficult. Before thinking about solutions, however, 

we need to delimit the sorts of problems we are prepared to tackle. and we need to con-

sider what assumptions are necessary to ensure that the dynamic programming approach 

will yield meaningful and unique solutions.  

Markov Decision Problems 

We will restrict our attention as always to dynamic optimization problems in which the 

stream of payoffs enter additively. More important, we will restrict the types of stochastic 

processes we consider to a special class of stochastic processes known as Markov Proc-

esses. 

 

DEFINITION (Markov Process). A random process whose future probabilities are determined 

by its most recent value. A stochastic process x(t) is Markov if for every n and 

1 2 nt t t< < <" , we have  

      { }1 1Pr ( ) | ( ), , ( )n n nx t x x t x t−≤ … { }1Pr ( ) | ( )n n nx t x x t −= ≤ . 

If x(t) takes on only discrete values, then such a process is called a Markov chain. If 

x(t) is a continuous random variable and is Markov, then the process is known as a 

Markov sequence. The nth element in the sequence has a conditional distribution 

satisfying 

      ( ) ( )1 1 1| ( ), , ( ) | ( )n n n nF x x t x t F x x t− −=… . 

 

Markov processes have the property that the current value of the random process is all 

you need to know to characterize the distribution of the next element in the sequence. 

History does not matter in the sense that, if the current value is zt, it does not matter 

how you got there. 
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 A dynamic optimization problem in which stochastic elements are Markov processes 

and in which the stream of payoffs enter additively, is known as a Markov decision proc-

ess. The enormously simplifying feature of Markov decision processes is that the value 

function and the optimal policy can be expressed as a function of the most recently ob-

served random variables and the current value of the state variable alone. 

Necessary Assumptions 

Recall from Section 2 that our main concern for the validity of the dynamic programming 

approach is that the value function is a continuous function mapping a bounded closed 

interval into a bounded closed interval. We can ensure that the value function has the 

necessary properties if (i) the one-period return function is continuous and is bounded, 

either in every period or in present value terms, and (ii) the state variable comes from a 

bounded closed interval [a,b]. The task for stochastic dynamic programming is to ensure 

the necessary properties of the value function continue to hold when we take expectations 

over the exogenous random variable. Fortunately, this is usually the case.  

 Consider first the case in which z can only take on a finite number of discrete values, 

zi with associated probabilities pi(x,y,z). which may depend on the values of the state and 

control variables, and the exogenous shock. Then, if the value function is continuous and 

bounded in an interval for any feasible x and z in this interval, its expectation 

( , , ) ( ', )i ii
p x y z V x z∑  must also lie in the same interval. This can be verified directly 

upon noting that the summation term that gives the expectation is simply a weighted 

average of values that lie in the interval.  

 It is a little harder to verify this for property for continuous distributions. The usual 

tactic is simply to assume that the property holds. That is, if ( )' |F z z  is the distribution 

of 'z  conditional on z, and ( ', ')V x z  is a continuous and bounded function taking values 

in a given interval, then it is assumed that [ ]( ', ') |E V x z z =  ( )( ', ') ' |V x z dF z z∫  is also 

a continuous function taking values in the same interval. When the conditional distribu-

tion function ( )' |F z z  has this property, we say that it has the Feller property. In prac-

tice, what this means is that the distribution of z must be stable and continuous: small 
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changes in z should only lead to small changes in ( ' | )F z z  for any 'z . This is not a re-

strictive assumption. In fact it is difficult to come up with an economically-meaningful 

example that does not have the Feller property 

 So, let us put the Feller property out of mind except to note that, if it holds, then 

our usual solution tactics work, and the properties of the value function already obtained 

continue to hold. In particular: 

• The contraction mapping theorem continues to hold (Theorem 2.1);  

• We can continue to use Blackwell’s Theorem to see whether the Bellman equation 

is a contraction mapping (Theorem 2.2); 

• If the one-period return is strictly concave and increasing in x, then so is the value 

function (Theorems 2.5 and 2.6). 

 The only new feature is that we now have a random shock z in the picture. If the 

one-period return is strictly increasing in z, can we say the same for V(x,z)? The answer 

is yes, if the conditional expectation, ( ' | )F z z  also satisfies a certain monotonicity prop-

erty: 

 

THEOREM 4.1 (Monotonicity in the exogenous random variable). Consider the value func-

tion 

       ( , ) ( , * ( , ) ) ( ', ') ( ' | )V x z f x y x z z V x z dF z zβ= + ∫ . 

If ( , )f zi  is strictly increasing in z for any x, and ( )' |F z z  is nonincreasing in z for 

any 'z , then ( , )V zi  is strictly increasing in z. 

 

PROOF. Consider the integral term ( ', ') ( ' | )V x z dF z z
∞

−∞∫ . Integrate by parts, to obtain 

'( ' ') ( ', ' | ) ( ', ') ( ' | ) 'zV x z F x z z V x z F z z dz
∞

∞

−∞
−∞

− ∫      

                                         '( ', ) ( ', ') ( ' | ) 'zV x V x z F z z dz
∞

−∞

= ∞ − ∫  
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Differentiating with respect to z yields 

 '( ', ') ( ' | ) 'z zV x z F z z dz
∞

−∞

−∫ . 

As Fz <0, the integral term is increasing in z as long as the value function V is increasing 

in 'z . Now, if this last condition is true then, with f increasing in z by assumption, the 

left hand size is increasing in z.    • 

  

 The assumption that ( )' |F z z  is decreasing in z for any 'z  simply says that the 

probability that 'z  is less than a certain number is not increased when z increases. Put 

another way, shocks to z are assumed not to exhibit negative serial correlation. In the 

integral, this assumption puts heavier weight onto large values of 'z , which (if V is in-

creasing in z) raises the value of the integral term. This is consistent, in turn, with the 

left hand side of the value function being increasing in z.  

 

EXAMPLE 4.1 (Cake-eating with taste shocks). Consider the Bellman equation for the sto-

chastic cake-eating example, 

 ( ) ( ) ( ){ }, max ,
c

V x z zu c E V x zβ  = +    

           ( ) ( )
0

max ', ' ( ' | )
z

c
zu c V x z dF z zβ
    = +     

∫ . 

The utility function is assumed to be strictly increasing, continuous and strictly concave. 

It is assumed that [0, ]z z∈  and c cannot exceed the size of the cake. These assumptions 

imply that the one-period return cannot exceed ( )zu x . We further assume that ( )' |F z z  

has the Feller property and is nonincreasing in z for any 'z . Because the evolution of the 

size of the cake is not stochastic, we can assume that the agent chooses 'x  directly. That 

is 

 ( ) ( )
'

0

( , ) max ' ', ' ( ' | )
z

x
V x z zu x x V x z dF z zβ

    = − +     
∫  
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The first-order condition is 

 ( )/
'

0

( ') ', ' ( ' | )
z

xzu x x V x z dF z zβ− = ∫ . 

The envelope theorem gives 

 /( , ) ( ')xV x z zu x x= − . 

Updating one period and substituting into the first-order condition gives 

 / /

0

( ') ' ( ' '') ( ' | )
z

zu x x z u x x dF z zβ− = −∫ , 

or 

 / /

0

( ) ' ( ') ( ' | )
z

zu c z u c dF z zβ= ∫ , 

which says that the marginal utility of consumption today must equal the discounted ex-

pected marginal utility of consumption tomorrow.    • 

 

EXAMPLE 4.2 (Consumption with stochastic productivity). The Bellman equation for the 

capital problem introduced at the beginning of this chapter is 

( ){ }( ) max ( ) 'cV k u c E V kβ  = +   , where ' ( )k zf k c= − , and z is not known when c is 

chosen. In this example, we will assume that z is known, so that, given z and c, 'k  is de-

terministic. We write the Bellman equation as 

 ( ) ( ) ( )
'

, max ( ) ' ' |
k

V k z u zf k k EV k zβ = − +   

          ( ) ( )
'

max ( ) ' ', ' ( ' | )
k

u zf k k V k z dF z zβ
    = − +     

∫ , 

The first-order condition is  

 /
1( ( ) ') ( ', ') ( ' | ) 0u zf k k V k z dF z zβ− − + =∫ , 

where the subscript denotes the derivate with respect to the first argument. The envelope 

theorem gives 
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 ( ) / /
1 , ( ( ) ') ( )V k z u zf k k zf k= − . 

Update by one period, 

 ( ) / /
1 ', ' ( ' ( ') '') ' ( ')V k z u z f k k z f k= − , 

and substitute into the first-order condition: 

 / / /( ( ) ') ( ' ( ') '') ' ( ') ( ' | )u zf k k u z f k k z f k dF z zβ− = −∫ , 

which can also be written as 

 / / /( ) ( ') ( ') ' ( ' | )u c f k u c z dF z zβ= ∫ . 

Because /( ')f k  is known, it can be taken outside of the expectation operator. The mar-

ginal utility of consumption today must equal the expected discounted present value of 

the product of the marginal utility of consumption tomorrow and the marginal rate of 

transformation between consumption and capital tomorrow.  

 It is not usually possible to obtain an explicit solution for this model. But consider 

the special case where ( ) ln( )u c c=  and 'k zk cα= − . Then the first-order condition is 

 ( ) 11 '' ( ' | )
'

zk dF z z
c c

ααβ −= ∫  

We guess a solution to this equation of the form c zkαφ= , for a value of φ to be deter-

mined. If the guess is correct, then the first-order condition satisfies 

 ( ) 11 '' ( ' | )
'( ')
zk dF z z

zk z k
α

α ααβ
φ φ

−= ∫  

         ( ' | )
'

dF z z
k
αβ
φ

= ∫  

         
'k

αβ
φ

= , 

which solves for 'k zkααβ= . Now, using the transition equation 'k zk cα= −  along with 

the guess c zkαφ=  and the provisional solution 'k zkααβ= , we obtain 

zk fzk zkα α ααβ− = , which solves for 1φ αβ= − . Hence the optimal policy is 

(1 )c zkααβ= − .   • 
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5. Approximations, Algebraic and Numerical  

Most dynamic programming problems cannot be solved explicitly. Although we can often 

obtain a number of interesting properties of the solution we would usually like to have a 

deeper characterization of the model. There are two approaches one could take. One is to 

approximate the functions under analysis by means of Taylor expansions. The other is to 

numerically solve the model for particular parameter values. This section provides a brief 

introduction to these methods. 

 

This section not available this semester. 

Notes on Further Reading 
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