
 

Chapter 5 

Applications of Dynamic Programming 

 

 

The versatility of the dynamic programming method is really only appreciated by expo-

sure to a wide variety of applications. In this chapter we look at applications of the 

method organized under four distinct rubrics. In Section 1, we consider problems in which 

the choice is discrete, typically involving binary decisions at each stage. Section 2 consid-

ers a special class of discrete choice models called optimal stopping problems, that are 

central to models of search, entry and exit. Section 3 considers applications in which the 

choice variable is continuous. In this section we look at classic models of consumption and 

investment decision-making. Finally, Section 4 extends the continuous choice setting to 

one in which a fixed transaction cost must be borne each time the agent acts. The classic 

application in this area is to inventory problems, but we also study problems of capital 

replacement and durable goods.  

 Chapter 4 pressed the reader to think seriously on each occasion about whether con-

ditions ensuring the validity of the dynamic programming approach are met. Specifically, 

boundedness of the state space and the value function were seen to be crucial elements in 

justifying the methodology. In this section, these concerns remain as important as ever. 

However, particularly where the necessary conditions can be easily confirmed, this chap-

ter will frequently skip the essential steps of checking the validity of the key dynamic pro-

gramming assumptions. In the interests of readability, we are sometimes going to be a 

little too casual here.  
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1. Discrete Choice Problems 

The analysis in chapter 4 focused on dynamic programming problems where the choice 

variable was continuous – how much to invest, how much to consume, etc. But dynamic 

programming is very versatile, and the technique is also very useful for analyzing prob-

lems in which the choice variable consists of a small number of mutually exclusive op-

tions. In these cases, the Bellman equation may look a little different from those we have 

seen already. Consider a binary choice problem in which one of two actions, A and B, 

may be taken. Let x denote a random state variable, and let I be an indicator variable 

such that I=A indicates that choice A has been made and I=B indicates that choice B 

has been made. Then, the Bellman equation can be written as 

 { }
{ , }

( ) max ( , ', ) ( '; ) ( ' | , )
I A B

V x u x x I V x I dF x x Iβ
=

= + ∫ . (1.1) 

Equation (1.1) allows the choice of A or B to affect the current period’s payoff, the future 

value function and the conditional distribution of 'x . It is also common practice to split 

out the payoffs into separate parts according to the decision made. Thus, (1.1) may also 

be written as 

 {( ) max ( , ', ) ( '; ) ( ' | , ),V x u x x A V x A dF x x Aβ= + ∫  

                                               }( , ', ) ( '; ) ( ' | , )u x x B V x B dF x x Bβ+ ∫  

While this might not seem to be much of an improvement, most problems will not be so 

general and it usually be possible to simplify the notation considerably. For example, if 

choice A is to accept a payoff and end the dynamic problem and choice B is to postpone 

the payoff, we could write  

 { }( ) max ( ), ( ') ( ' | )V x u x V x dF x xβ= ∫ , 

where the dependence of the first term on choosing A and the second term on choosing B 

will be apparent from the context. 
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Cake-Scoffing with Taste Shocks. 

To begin, we consider yet another variation of the cake-eating problem already analyzed 

in various guises in Chapter 4 (see, especially, example 4.1 from that chapter). We assume 

now that the cake must be eaten in its entirety in one period. The taste shock, z, may 

take on only two values, 0<zl<zh. and let plh be the probability of tastes switching from zl 

to zh and let phl equal the probability of switching from zh to zl (this problem belongs to a 

class of stochastic one-shot decisions called optimal stopping problems, which are analyzed 

more generally in Section 2). 

 The value function can be written in two parts as 

 [ ]{ }( ) max ( ), ( ) (1 ) ( )l l lh h lh lV z z u x p V z p V zβ= + − , 

 [ ]{ }( ) max ( ), ( ) (1 ) ( )h h hl l hl hV z z u x p V z p V zβ= + − , 

where in each case the first term in braces is the payoff from immediate consumption and 

he second term is the value of postponing consumption. 

 Consider the choice when z=zh. Immediate consumption implies ( ) ( )h hV z z u x= . 

Clearly, if it is not optimal to eat the cake now it will never be optimal to eat the cake 

when z=zh. Then, either the cake will never be eaten, which would give a return of zero, 

or it will be eaten when z=zl, which would give a return of 0< ( ) ( )l hz u x z u x< . Thus it 

must be optimal to eat the cake immediately when z=zh, so that ( ) ( )h hV z z u x= . The 

more substantive question rises when z=zl. Substituting ( ) ( )h hV z z u x=  into ( )lV z , we get 

 [ ]{ }( ) max ( ), ( ) (1 ) ( )l l lh h lh lV z z u x p z u x p V zβ= + − . 

The payoff from not eating the cake is 

 ( ) ( ) (1 ) ( )N N
l lh h lh lV z p z u x p V zβ  = + −   , (1.2) 

which can be solved for  

 ( )( )
1 (1 )

N lh h
l

lh

p z u xV z
p

β
β

=
− −

. 

The payoff from not waiting is simply ( ) ( )E
l lV z z u x= , and so the agent will not eat the 

cake in state z=zl as long as ( ) ( ) ( )N E
l l lV z V z z u x> = . This resolves to waiting as long as 
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1

l lh

h l

z p
z z

β
β

<
− −

. 

For a given difference in the taste shocks, waiting is more likely the higher the discount 

factor and the greater the probability that the shock will switch from zl to zh.  

 A minor modification of the problem assumes that a fraction, δ, of the cake must be 

removed and thrown away each period, so that the size of the cake evolves according to 

' (1 )x xδ= − . Then, the Bellman equations are 

 [ ]{ }( , ) max ( ), ( ,(1 ) ) (1 ) ( ,(1 ) )l l lh h lh lV z x z u x p V z x p V z xβ δ δ= − + − − , 

 [ ]{ }( , ) max ( ), ( ,(1 ) ) (1 ) ( ,(1 ) )h h hl l hl hV z x z u x p V z x p V z xβ δ δ= − + − − . 

Again, it is optimal to eat the cake immediately if z=zh, so ( , ) ( )h hV z x z u x= . The value 

of not eating the cake when z=zl is 

 ( , ) ( ) (1 ) ( ,(1 ) )N N
l lh h lh lV z x p z u x p V z xβ δ = + − −   . (1.3) 

This is where we now hit a problem. When the cake does not decay, so that δ=0, the ar-

gument of VN is identical on both sides of (1.3) (see also eq. (1.2)), and solving for VN for 

involved the trivial act of collecting terms. But with δ>0, the arguments of VN are no 

longer equal and this simple option is not available. To make progress, we need to try a 

different tack. One, which we follow here, is to assume a functional form for utility, and 

then solve by the method of undetermined coefficients. 

 Assume that ( ) ln( )u x x= , so that we may write 

 ( , ) ln(1 ) ln( ) (1 ) ( ,(1 ) )N N
l lh h lh h lh lV z x p z p z x p V z xβ δ δ = − + + − −   . (1.4) 

Now, the within-period payoff takes the form A+Bln(x), so it is reasonable to assume 

that the value function takes the same form, for some unknown coefficients A and B. 

Substituting this guess into (1.4), we have 

 ln( ) ln(1 ) ln( )lh h lh hA B x p z p z xβ δ β+ = − +  

                                                        ( )(1 ) ln(1 ) (1 ) ln( )lh lhp A B p B xβ δ β+ − + − + − , 

and matching coefficients gives 



APPLICATIONS OF DYNAMIC PROGRAMMING  175

 
1 (1 )

lh h

lh

p zB
p

β
β

=
− −

 

and 

 ( )ln(1 ) (1 )
1 (1 ) lh h lh

lh
A p z p B

p
β δ β
β

−= + −
− −

. 

Thus, not eating the cake is optimal if 

 ln( ) ln( )lA B x z x+ > , 

where A and B are constants just defined, and only A depends on δ. In fact, as A is de-

creasing in δ, an increase in the rate of decay makes immediate eating more likely. Note 

also that, A=0 when δ=1, so the earlier result it immediately recovered. However, for 

0δ ≠ , the term ln(x) is not eliminated from the inequality so the choice to eat or not eat 

the cake depends on the size of cake remaining.  

 

EXERCISE 1.1 (Cake scoffing with random spoiling). Assume now that in each 

period, the cake goes bad and must be discarded with probability q. Derive the op-

timal policy.  

 

A COUPLE MORE EXAMPLES WILL BE ADDED HERE 

2. Optimal Stopping Problems 

A special class of problems involving a discrete choice are those in which there is a single 

decision to put an end to an ongoing problem. The stock option and cake scoffing prob-

lems in Section 1 are examples of this type of problem. Other examples include  

• A student must decide when to give up trying to solve a homework problem. 

• A firm must decide when to exit an industry. 

• A firm decides when to stop working on the development of a product and to 

launch it 
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• An unemployed worker decides when to accept a job from a sequence of offers 

made. 

Such problems are collectively known as optimal stopping problems. We analyze some in 

this section. The first three problems, concerned with exercising a stock option, searching 

for the lowest price, and accepting the highest bid, will introduce some features common 

to most optimal stopping problems. We then turn to more substantive problems in labor 

markets and industry dynamics.  

 

Stock Options (Ross [1983:4]) 

Let pt denote the price of a given stock in period t. Assume that 1 1t t tp p x+ += + , where 

xt is an independently and identically distributed random variable with distribution F(x)  

and mean zero (i.e. the stock price follows a random walk). Suppose you have an option 

to buy the stock at price c and you have T periods to exercise the option.  

 The Bellman equation is 

 { }1( ) max , ( ) ( )t tV p p c V p x dF xβ += − +∫ , (2.1) 

with boundary condition 

 { }( ) max , 0TV p p c= − . (2.2) 

Equation (2.1) gives a choice between exercising the option this period, and receiving p−c, 

or waiting another time period to await a fresh realization for the stock price. Equation 

(2.2) states that in period T either the option is exercised or it becomes worthless. Note 

that, as this is a finite horizon problem, time subscripts on the value functions are impor-

tant. 

 Although no explicit solution for the value function exists, we can characterize the 

solution strategy. In order to do so, we will make use of the following properties: 

 

LEMMA 2.1. (a) ( )tV p p−  is decreasing in p. (b) ( )tV p  is increasing in p. (c) ( )tV p  is 

decreasing in t. 
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PROOF. We will prove part (a). Parts (b) and (c) are intuitive. In particular, having less 

time until the option expires cannot make one better off. The proof of part (a) is by in-

duction. Assume 1( )tV p p+ −  is decreasing in p. We can then show that ( )tV p p−  is also 

decreasing in p:  

 { }1( ) max , ( ) ( )t tV p p c V p x dF x pβ +− = − + −∫  

             { }1max , ( ) ( ) ( )tc V p x dF x p xdF xβ += − + − −∫ ∫  

             { }1max , ( ) ( ) ( )tc V p x p x dF xβ + = − + − + ∫ . 

In the second line, we subtracted the term ( )xdF x∫ . This is the mean of x and is zero by 

assumption. For each x, 1( ) ( )tV p x p x+ + − +  is decreasing in p by assumption. Thus, 

( )tV p p−  is decreasing in p if 1( )tV p p+ −  is. The proof is then completed upon noting 

that 

 { }( ) max , 0TV p p p c p− = − −  

              { }max ,c p= − −  

is decreasing in p.  • 

 Now, it is optimal to exercise the option in period t if 1( ) ( )tp c V p x dF xβ +− ≥ +∫ . 

But if this is the case, then (2.1) also tells us that ( )tV p p c= −  or, equivalently, that 

( )tV p p c− = − . The left hand side of this equation is decreasing in p by part (a) Lemma 

2.1. Moreover, when ( )tV p p c− > − , equation (2.1) tells us that 1( ) ( )tV p x dF xβ + +∫  

p c> −  and it is not optimal to exercise the option. Thus, there exists a strike price, *
tp , 

such that for any *
tp p<  the option is not exercised and for any *

tp p≥  the option is 

exercised. Part (c) of Lemma 2.1 shows that this strike price is decreasing in t.  

 One can also establish the classic result that the value of an option is increasing in 

the variance of the stock price, although we shall only illustrate the idea here and leave 

the formal proof as an exercise. The bold line in Figure 2.1 illustrates the value of an op-

tion on a stock with a constant price p. For p c≤ , the option has zero value, while it is 
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equal to p−c for p c≥ . Thus, the value function is convex. Now imagine that x can take 

on the value +u with probability ½ and –u with probability ½, such that p+u>c. Then, 

as Figure 1 illustrates, V(p;u) is clearly going to be increasing in u. This is an illustration 

of the general result, from Jensen’s inequality, that for convex functions 

[ ] ( )( ) [ ]E V x V E x≥ . 

 

FIGURE 2.1  

 

 Although we are not been able to explicitly solve the model, several key properties 

have been derived. First, there exists a minimum strike price for each period, and this 

strike price is decreasing with the passage of time. We have illustrated the idea that, be-

cause V(p) is a convex function, uncertainty raises the value of the stock option. This 

idea is of course no different from the fact that risk averse people with concave utility 

functions are willing to pay for insurance to reduce uncertainty, while risk takers with 

convex utility are willing to pay to gamble and increase uncertainty. 

 

EXERCISE 2.1 We did not formally show that the value of the stock option is in-

creasing in the variance. This exercise asks you to do so. Assume F(x) is the 

pc ptpt − u pt + u

V(pt)

pc ptpt − u pt + u

V(pt)
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normal distribution with mean zero and variance σ2. Prove that ( )2;tV p σ  is in-

creasing in σ2. 

 

When p=p*, the payoffs from exercising and not exercising the option are identical, and 

we can write 

 ( )* *
1 ( )t t tp c V p x dF xβ +− = +∫ , 

or 

 ( )* *
1 ( )t t tp c V p x dF xβ += + +∫ . (2.3) 

The critical value, *
tp , is defined by two components. The first is simply the cost of exer-

cising the option and, if dynamics did not matter it would be worth exercising the option. 

The second term, therefore, is the option value. Equation (2.3) is a version of what is 

known generically as the fundamental reservation price equation for optimal stopping 

problems. In this case, the equation is not too useful because it contains the unknown 

value function. However, we already know that 1 0tV + ≥ , so we can verify from (2.3) that 
*
tp c> . In the next example, we will be able to derive a fundamental reservation price 

equation that does not involve the value function. 

Searching for the Lowest Price 

Consider an agent interested in purchasing a single unit of a good whose price varies from 

store to store. At each store visited, the individual is quoted a price, 0p ≥ , a random 

draw form the distribution F(p). Sampling a price costs c. Stigler (1961) suggested that 

the individual should sample n stores and then buy from the lowest price quoted. After 

visiting n stores, the expected value of the minimum price is 

 [ ] 1

0

( ) ( ) 1 ( ) nm n n pf p F p dp
∞

−= −∫ . (2.4) 
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Equation (2.4) gives the expected value of a price, ( )pf p dp∫ , conditional on all other 

prices exceeding this one (the term [ ] 11 ( ) nF p −− . As any one of the n prices could be the 

largest, the whole expression is multiplied by n. An integration by parts (which we leave 

to the reader to do as an exercise) yields 

 [ ]
0

( ) 1 ( ) nm n F p dp
∞

= −∫ . (2.5) 

The expected reduction in price from increasing n by one unit is therefore 

 [ ] [ ] 1

0 0

( ) ( ) ( 1) 1 ( ) 1 ( )n ng n m n m n F p dp F p dp
∞ ∞

+= − + = − − −∫ ∫  

                                [ ]
0

1 ( ) ( )nF p F p dp
∞

= −∫ , 

which declines with n at a decreasing rate. Therefore n should be chosen so that 

 ( 1) ( )g n c g n+ < < . 

Stigler showed that if all customers follow this rule, each store faces a well-defined down-

ward-sloping demand curve, the exact properties of which depend on the search cost, c, 

and the distribution F. 

 The sample-size rule proposed by St8gler is not very appealing. Even if the agent 

receives a price quote p<c, so that no further search could have positive value, he contin-

ues to search until n stores have been sampled. A more attractive rule would be one that 

indicates on the fly when search should stop. Let us imagine that the agent visits each 

store in succession at the rate of one per period. Then, given that the price quoted in the 

current period is p, the individual can choose either to stop now and purchase, or to sam-

ple again. If he stops now he receives u−p, where u is the utility of consumption. If he 

continues he enters the next period as an active searcher. This is now a dynamic pro-

gramming problem with Bellman equation 

 
0

( ) max , ( ) ( )V p u p c V p dF pβ β
∞    = − − +     
∫ . 
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The second term in braces is a constant independent of the current quote, because prices 

are i.i.d. draws. The first term in braces is obviously declining in p. Because V(p) attains 

a maximum of u when p=0, there must exist a unique p* such that the agent is indiffer-

ent between stopping and continuing. This is illustrated in Figure 2.2. Any price greater 

than p* stimulates further search, while any price less than p* induces a purchase. 

 

FIGURE 2.2. The reservation price for the consumer search problem 

 

The optimality condition implies that p* satisfies 

 
0

* ( ) ( )u p c V p dF pβ β
∞

− = − + ∫  

          
*

0 *

( ) ( ) ( ) ( )
p

p

c V p dF p V p dF pβ β β
∞

= − + +∫ ∫ . (2.6) 

Now, any price quote under p* is accepted, so ( )V p u p= −  for all *p p≤ . Any price 

quote over p* yields a value that is independent of the quote. Let this value be v. As we 

have defined p* as the maximum price that is accepted, it must be the case that 

*v u p= − . Therefore, (2.6) can be written as  

s

sp*
p

0

( ) ( )c V p dF pβ β
∞

− + ∫

s

sp*
p

0

( ) ( )c V p dF pβ β
∞

− + ∫
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*

0 *

* ( ) ( ) ( *) ( )
p

p

u p c u p dF p u p dF pβ β β
∞

− = − + − + −∫ ∫  

          
* *

0 0

( ) ( ) ( *) 1 ( )
p p

c u p dF p u p dF pβ β β
 
 = − + − + − − 
  

∫ ∫  

          
*

0

( *) ( * ) ( )
p

u p c p p dF pβ β
 
 = − − + − + − 
  

∫ . 

Therefore,  

 
*

0

* ( * ) ( )
1

p

p u c p p dF pβ
β

 
 = − − + − −   

∫ , (2.7) 

which is the fundamental reservation price equation for this problem. Even when a price 

quote less that u is received, the agent may continue searching in the hope that a lower 

quote arrives later. The second term in (2.7) provides the present value of maintaining 

the option to continue searching. 

 The reservation price principle of the optimal stopping problem remains true even if 

quotes previously rejected can be recalled. Let P denote the smallest quote received prior 

to the current period. Then, the Bellman equation with recall reads 

 
0

( ) max min( , ), ( ) ( )V p u P p c V p dF pβ β
∞    = − − +     
∫ , 

so if ( ) ( )u p c V p dF pβ β− ≥− + ∫  the current offer is accepted and if 

( ) ( )u P c V p dF pβ β− > − + ∫  a past offer is accepted. But these inequalities have the 

same value on the right hand side and, as there is a discounting cost to waiting, the first 

time a quote provided a surplus exceeding ( ) ( )c V p dF pβ β− + ∫  it would have been ac-

cepted immediately. Thus, the ability to recall earlier bids does not change the optimal 

solution at all.   
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Asset Selling 

An even simpler problem concerns an agent with an asset he is trying to sell. Assume he 

receives offers at the rate of one per period. Denote these offers by p0, p1, . . . , which are 

random i.i.d. draws from the closed interval [ ],L Hp p . If an offer is rejected, the agent 

must wait until the next period to get another offer.  

 The Bellman equation is 

 ( ) max , ( ) ( )
H

L

p

p

V p p V p dF pβ
    =      

∫ . 

The first term in braces is the value of accepting the current offer. The second term is the 

return from rejecting the offer and waiting for another draw next period. Clearly, the op-

timal policy is to accept p if [ ]( )p E V pβ≥ . As [ ]( )E V p  is a constant independent of p 

again, (to the i.i.d. assumption), this again implies there is a reservation price, p*, below 

which the offer is rejected and above which it is accepted. If there is an interior solution, 

the reservation price satisfies [ ]* ( ')p E V pβ= . We will see in a moment that p* is always 

less than pH, so the only alternative for a non-interior solution is if * Lp p= . Hence, 

 * max , ( ) ( )
H

L

p

L
p

p p V p dF pβ
    =      

∫  

     
*

*

max , ( ) ( ) ( ) ( )
H

L

pp

L
p p

p V p dF p V p dF pβ β
    = +     

∫ ∫ . 

Any offer over p* is accepted, yielding V(p)=p. Any price below p* yields a value inde-

pendent and equal to p*.  Therefore, 

 
*

*

* max , * ( ) ( )
H

L

pp

L
p p

p p p dF p pdF pβ β
    = +     

∫ ∫  

     
*

max , * ( *) ( )
Hp

L
p

p p F p pdF pβ β
    = +     

∫ . (2.8) 
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The solution to this equation solves the optimal stopping problem. We can easily verify 

that the solution is unique. Differentiating the second term on the right-hand side of (2.8) 

with respect to p* yields 0 ( *) 1F pβ β< < < . As F is a cumulative distribution function, 

we also expect it to be a continuous function. Hence, (2.8) is a contraction, mapping val-

ues from the closed bounded interval [ ],L Hp p  back into itself. The solution is depicted in 

Figure 2.3 which plots the right hand side of (2.8) as the convex locus aa.1 As * Hp p→ , 

the right-hand side of (2.8) approaches βpH. Thus, it will never be optimal to reject an 

offer greater than βpH. As * Lp p→  it approaches βE(p). If β is not too small, there is an 

interior solution, as indicated. For β sufficiently small, the locus aa lies below the 45o line 

for the entire range [ ],L Hp p . In that case * Lp p=  and it is optimal to accept the first 

offer made. The locus shifts upward when β increases, so more patient people set a higher 

reservation price. 

 
FIGURE 2.3 The reservation price for the asset selling problem 

 

                                            
1 The second derivative of (2.8) is /( *) 0F pβ ≥ , so the function is convex. 

45o
pL

βpH

βΕ(p)

p* pH

a

a

45o
pL

βpH

βΕ(p)

p* pH

a

a
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 Noting that 
*

*
( ) 1 ( )H

L

p p

p p
dF p dF p= −∫ ∫ , a little rearrangement of (2.8) yields the 

fundamental reservation price equation 

 ( )
*

* * ( )
1

Hp

p

p p p dF pβ
β

= −
− ∫ . 

The right-hand side records the value of rejecting an offer: it is the value of maintaining 

the option to secure an improved offer in the future. 

 The simplicity of the solution technique for this and the previous problems serially  

rests in part on the assumption of i.i.d. draws. In many settings it will be reasonable to 

assume that bids and quotes are serially correlated, and these may quantitatively change 

the reservation price. However, even when bids are correlated so that 'p  is dependent on 

p, the optimal stopping policy is still to accept the first bid exceeding a constant thresh-

old, p*. To see this for the asset selling problem, note that the optimality condition can 

be written as 

 * ( ) ( | *)
H

L

P

p

p V p dF p pβ= ∫ , (2.9) 

where the conditional distribution captures the serial correlation (for positive serial corre-

lation, ( | *)F p p  is decreasing in p* for any p). Clearly the solution to (2.9) does not in-

volve any current or recent realizations of the sequence of bids. The only substantive 

change with serial correlation concerns the value function for offers below p*. In the i.i.d. 

case, V(p)=p* for all *p p≤ . In the case of positive serial correlation, a low current offer 

makes low offers more likely in the near future, and this makes the agent worse off. Thus, 

V(p)<p* for p<p*, and the gap between p* and V(p) gets larger the lower is p.  

Commentary 

Before turning to more substantive problems involving labor market applications and in-

dustry dynamics, it is useful at this stage to take stock of what we have learned. The op-

timal stopping problems we have studied have some common features, although we have 

drawn out different features for each one: 
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• There is a unique reservation price that triggers an end to the problem.  

• The Bellman equation is a convex function of the state variable. 

• The value of the Bellman equation is increasing in the variance of the state vari-

able. That is, even though agents may be risk averse or risk neutral in general, risk is 

valuable in the context of optimal stopping. This result comes from applying Jen-

sen’s inequality to the convexity of the value function. 

• Serial correlation in the state variable may have quantitative effects on the reser-

vation price but it does not alter then reservation price principle of optimal stop-

ping. 

• The ability to recall previous value of the state variable has no quantitative effect 

on the reservation price. 

 At this point it is helpful to introduce an important caveat to the reservation price 

principle. In each problem studied so far, we have assumed that agents know the distribu-

tion form which the state variable is drawn. The reservation price principle does not gen-

erally survive an extension of these types of problems to situations where the agent must 

also learn the distribution. Rothschild (1974), who has studied this problem, provides a 

simple example. Imagine a consumer searching for the lowest price does not know the 

distribution of prices. His prior is that either the price is always $3, or that it is $2 with 

probability 0.01 and $1 with probability 0.99. If the consumer receives an offer of $3, he 

will accept because he now believes that all price quotes will be identical and further 

search is pointless. If he receives an offer of $2 then (assuming search costs are not too 

high) he will not accept because the odds that the next offer is only $1 is now perceived 

to be very high. Thus, the consumer accepts bids of $1 and $3, but not $2, and the 

unique reservation price property has vanished. 

 It is also no longer true that the presence or absence of recall is unimportant. If no 

recall is possible, the last offer observed will always be the one accepted. However, if re-

call is possible, then exploration might be valuable. For example, imagine you are search-

ing for an apartment along a long road. You do not know the location of good and bad 
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apartments, so you drive along the road observing from your car. You keep driving after 

seeing some acceptable places until you see you have entered a bad neighborhood. You 

then backtrack to select an apartment you saw earlier.  

 However, you may prefer not to backtrack if evaluating the quality of an apartment 

is very costly. imagine you have to make an appointment to see each apartment and this 

is the only way to evaluate its quality. Although you may remain unaware of the distribu-

tion of apartments, the high cost of exploration may induce you to accept the first 

apartment that meets your minimum res4rvation quality. This reservation quality will 

depend, of course, on your prior about the distribution; but the point is that you may not 

explore even though you know that your prior could be wrong. This example is consistent 

with formal results obtained by Rothschild, who shows that the reservation price property 

of the optimal stopping problem survives only if search costs are large enough; if they are 

small, the agent will undertake active exploration to learn about the true distribution. 

 Further exploration of problems with an unknown distribution takes us further into 

the theory of search and learning than is merited at this point. In the remainder of this 

section, therefore, we look at two substantive applications of optimal stopping. The first 

is concerned with labor market job search. The second with firms’ decisions about indus-

try exit. In both applications, we will maintain the assumption that the population dis-

tribution of the state variable is known. 

Job Search 

A particularly well-mined application of optimal stopping problems concerns search in the 

labor market. We consider some simple examples here. An infinitely-lived individual 

maximizes 

 0
0

t
t

t
E yβ

∞

=
∑ , 

where yt=w if employed at job w and yt=c if unemployed. The agent received one job offer 

with probability φ in each period, and no offers with probability 1−φ. The offer consists of 

a wage, [ ]0,w w∈ , which is a random draw from the distribution F(w). If the offer is ac-

cepted, the job is assumed to last forever. If the offer is rejected, the agent earns c for 
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that period, and must wait until the next period to have a chance p of receiving another 

offer.  

 Let V(w) be the value of having an offer with wage w, let v denote the value of being 

unemployed without an offer. Then, the Bellman equation is 

 [ ]( ) max , ( ') (1 )
1

wV w c EV w vβ φ φ
β

   = + + −  −  
, (2.10) 

where 

 [ ]( ') (1 )v c E V w vβ φ φ = + + −  . (2.11) 

The first term on the right-hand side of (2.10) is the discounted present value of earning 

w in each period forever, and it represents the value to the worker of accepting the cur-

rent offer. The second term is the value to the worker of rejecting the offer. The worker 

immediately receives the unemployment benefit c. In the subsequent period, he receives 

with probability φ a random offer, 'w , yielding expected value [ ]( ')E V w .2 With probabil-

ity 1−φ, no offer is received and this has the value v. Equation (2.11) clarifies what v is. It 

consists of earning c as an unemployed worker, and then in the next period either receiv-

ing a random offer or not receiving a random offer. That is, the value of not receiving an 

offer is the same as the value of turning down an offer. 

 No choice is involved with (2.11), so we can simply rearrange it to obtain 

 [ ]( ')
1 (1 ) 1 (1 )

cv E V wβφ
β φ β φ

= +
− − − −

, 

and substitute back into (2.10): 

 
[ ]( ')

( ) max ,
1 1 (1 ) 1 (1 )

E V ww cV w
βφ

β β φ β φ
   = +  − − − − −  

. (2.12) 

As before, we anticipate a unique reservation wage, w*, defining the minimum wage nec-

essary for the agent to accept an offer. Assuming an interior solution, the reservation 

wage satisfies 

                                            
2 Because this is a stationary problem, V(w) on the left hand side and ( ')V w  on the right hand 

side must be the same function. 
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[ ]( ')

1 1 (1 ) 1 (1 )
E V ww c βφ

β β φ β φ
= +

− − − − −
. 

Clearly, for *w w≤ , V(w) is constant because the size of a rejected offer has no bearing 

on future returns. But, we know that ( *) * /(1 )V w w β= − , so ( ) * /(1 )V w w β= −  for all 

*w w≤ . For *w w≥ , of course, the offer is accepted and ( ) /(1 )V w w β= − . Thus, we 

have 

 
*

0 *

* * ( ) ( )
1 1 (1 ) 1 (1 ) 1 1

w w

w

w c w wdF w dF wβφ
β β φ β φ β β

  = + +  − − − − − − −  
∫ ∫ . (2.13) 

Noting that 
*

0
* ( )

w
w dF w∫ =

*
* * ( )

w

w
w w dF w−∫ , (2.7) can be written as 

 
( ) *

* * ( *) ( )
1 1 (1 ) (1 ) 1 (1 )

w

w

w c w w w dF wβφ
β β φ β β φ

  = + + −  − − − − − −  
∫ , 

or 

 
*

* ( *) ( )
(1 )

w

w

w c w w dF wβφ
β

= + −
− ∫ . (2.14) 

 This is the fundamental reservation price equation. The right-hand side again re-

cords the value of rejecting an offer. It is the sum of the compensation, c, received while 

unemployed and the option value of staying unemployed to secure an improved offer. It is 

easy to calculate that the right hand side of (2.14) is decreasing in w*, reaching a mini-

mum of c when *w w= . The unique fixed point is shown in Figure 2.4. Note also that a 

reduction in φ rotates the curve downward, reducing w*. That is, when offers are secured 

less frequently, the rational job hunter accepts worse offers. 

 Firms may also conduct searches for workers and in the interest of symmetry we 

consider a simple example here. Imagine a firm can locate at most one potential worker 

each period, who demands a wage W from the distribution G(W). If hired, the worker 

produces one unit of output at a price p, forever. In each period, there is a probability π 

that no potential worker is found. The Bellman equation for the firm is 

 [ ]( ) max , ( ') (1 )
1
p WJ W E J W jβ π π

β
  −  = + −   −  

, (2.15) 
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FIGURE 2.2 The Reservation Wage for Job Hunters 

 

where J(W) is the value of having a potential employee demanding W, and  

 [ ]( ') (1 )j E J W jβ π π = + −   (2.16)  

is the value of not having found a potential employee. Solving (2.16) for j and substitut-

ing into (2.15) yields 

 
[ ]( ')

( ) max ,
1 1 (1 )

E J Wp WJ W
βπ

β β π
  − =   − − −  

. 

Again assuming an interior solution, the reservation wage (this time a maximum wage)  

 

satisfies 

 
[ ]( ')*

1 1 (1 )
E J Wp W βπ

β β π
− =
− − −

. 

Following by now familiar arguments, ( ) ( *)/(1 )J W p W β= − −  for any *W W≥ , and 

( ) ( )/(1 )J W p W β= − −  for any *W W≤ .  Thus, 

45o

c

w* w

a

d

b( )
1

c E wβφ
β

+
−

45o

c

w* w

a

d

b( )
1

c E wβφ
β

+
−
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*

0 *

* *( ) ( )
1 1 (1 ) 1 1

W

W

p W p W p WdG W dG Wβπ
β β π β β

∞ − − − = + − − − − −  
∫ ∫  

            
( ) ( )

*

* * ( )
(1 ) 1 (1 )

W

p W W W dG Wβπ
β β π

∞ 
 = − + − − − −   

∫ . 

Some rearrangement gives 

 ( )
*

* * ( )
(1 )

W

W p W W dG Wβπ
β

∞

= − −
− ∫ , (2.17) 

which can be compared with the fundamental reservation wage equation (2.14) for work-

ers. Notice here that the option value of continued search implies that firms offer a wage 

below the marginal product of labor. The tighter the job market, in the sense that poten-

tial employees are harder to find, the greater the wage the firm is willing to offer. 

 Optimal stopping models of job search have dominated equilibrium models of unem-

ployment and wage determination over the last 20 years. We have developed here a labor 

supply curve that provides a reservation wage w* below which workers will remain unem-

ployed, and a reservation wage W* above which firms will not hire workers. Only if 

* *w W≤  is there an opportunity to match unemployed workers with vacancies. How-

ever, it is not obvious that this inequality will hold. In fact, much of the literature on job 

search has been concerned with how variations in job turnover rates, bargaining institu-

tions, and numerous other aspects of the labor market affect the joint determination of 

equilibrium wages and unemployment. Studying this literature further takes us too far 

afield from the main task at hand in this chapter. Mortensen and Pissarides (1999) pro-

vide an excellent review of the theory.  

Firm Exit 

Among a short list of important papers on the evolution of industrial structure are two 

outstanding applications of optimal stopping by Jovanovic (1982) and Hopenhayn (1992). 

In Jovanovic’s paper, firms are not sure of their abilities upon entering. Time slowly and 

noisily reveals to the firms just how good they are, and the least-able firms eventually 

discover that their expected costs are too high and decide to exit. In Hopenhayn’s model, 
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all firms are equally able, but each firm experiences a sequence of serially correlated 

shocks to productivity that affect their expected costs in subsequent periods. Firms suf-

fering a sequence of sufficiently undesirable shocks to productivity will choose to exit. In 

both papers, the exit decision is embodied in a fully-specified equilibrium model of the 

market. For the purposes of the example here, however, we will concentrate on the opti-

mal stopping problem. The language used in describing the firm’s problem borrows from 

Jovanovic rather than Hopenhayn. However, as will become apparent, the transition be-

tween one model and the other can be undertaken in a few short steps.  

 Production costs for output level q are given by c(q)x, where c is a strictly increas-

ing, convex, differentiable function satisfying /lim ( )q c q→∞ =∞ . The variable x measures 

firm efficiency and is a strictly positive random variable, fluctuating from period to pe-

riod. Decisions will be made on the basis of the conditional expectation of x, which we 

denote by y. That is, [ ]1|t t ty E x I −= , and as x is strictly positive so is y. In both mod-

els, y is a serially correlated random variable, although for different reasons, and in both 

models we will call y expected efficiency. 

 Firms are price-takers. Given a constant price p, which we normalize to p=1, the 

firm chooses output to maximize expected profits in any given period: 

 ( )( ) max
q

y q c q yπ = − , (2.18) 

which yields the first-order condition 

 /1 ( )c q y= . (2.19) 

Let the solution to (2.19) be denoted by ( )q y . One can easily calculate from (2.19) that 
/ / //( ) / 0q y c yc= − < , so optimal output is decreasing in expected efficiency. Substitut-

ing the solution into (2.18), we have 

 ( )( ) ( ) ( )y q y c q y yπ = − , 
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yielding /( ) 0y cπ = − <  and // / /( ) 0y c qπ = − > , where the envelope theorem was used in 

evaluating the first derivative. Thus, expected profits are a decreasing convex function of 

expected efficiency.3  

 It should be noted that we have treated profit maximization as a static problem. 

Because profits depend only on the value of the single state variable, y, this treatment is 

valid only if the choice variable does not affect the evolution of the state variable. In both 

models, as we will later see, y turns out to be a purely exogenous random variable, so the 

static profit maximization approach is valid. 

 Let ( ' | )F y y  denote the distribution of next period’s expected efficiency given this 

period’s expected efficiency. It is assumed that ( ' | )/ 0F y y y∂ ∂ ≤  for all y. The dynamic 

problem facing the firm is to decide if and when to exit the industry. If the firm stays in 

the industry through the next period it will earn profits ( ')yπ  and maintain the option to 

continue thereafter. If it decides to leave the industry at the end of the current period, it 

will earn W, where W represents the sum of the value of selling the firm’s assets on the 

secondary market and the entrepreneur’s value in an outside activity. Thus, with a dis-

count factor of β, (1−β)W is the opportunity cost per period of remaining in the industry. 

 The Bellman equation for the firm is 

 [ ]( ) ( ) max , ( ') ( ' | )V y y W V y dF y yπ β= + ∫ , (2.20) 

where the conditional distribution is assumed to have the Feller property. The maximiza-

tion problem is only with respect to the binary choice of continuation versus exit because 

expected profits have already been maximized and there is no linkage between π(y) and 

( ')V y . The problem is therefore a pure optimal stopping problem. 

 We can analyze the key characteristics of this optimal stopping problem exploiting 

the theorems of Chapter 4. First, we show that there is a unique solution to (2.20). Note 

                                            
3 The explanation for convexity is exactly the same as the reason why profit functions are convex in 

price, which you will recall from microeconomic theory. 
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first that π(y) is bounded because p=1 is bounded and y is strictly positive.4  As π(y) is 

continuous, then so is 0 ( )T t
tt yβ π=∑  for any T and any feasible sequence { } 0

T
t ty = , and so, 

in turn, are 0 0( ) ( )T t T
ttV y y Wβ π β== +∑  and [ ]0max , ( )W V y  Finally, as F has the Feller 

property, continuity is preserved in the integration. Thus, the operator T defined in (2.20) 

transforms bounded continuous functions into bounded continuous functions.  

 We can next readily verify that T is a contraction mapping. We do this directly by 

means of the supremum norm, rather than by Blackwell’s theorem. Let ( ) ( )f y g y≠  de-

note any two bounded continuous functions. Then 

 [ ] [ ]( ') ( ') max , ( ') ( ' | ) max , ( ') ( ' | )Tf y Tg y W f y dF y y W g y dF y yβ− = −∫ ∫  

                       
[ ] [ ]max , ( ') max , ( ') ( ' | )W f y W g y dF y yβ= −∫  

                       
[ ] [ ]max , ( ') max , ( ')W f y W g yβ≤ −

 

                       ( ') ( ')f y g yβ≤ −  
                       ( ') ( ')f y g y< − . 

The first inequality is because ( ' | )F y y  has the Feller property and maps the functions f 

and g into the same bounded intervals. The second inequality comes from the following 

argument. Consider any 'y  such that ( ') ( ')f y g y≥ . Then: ( ') ( ')W f y W g y≥ ⇒ ≥ ⇒  

[ ] [ ]max , ( ') max , ( ') 0 ( ') ( ')W f y W g y f y g y− = ≤ − ; ( ') ( ')f y W g y≥ ≥  ⇒  [ ]max , ( ')W f y  

[ ]max , ( ') ( ') ( ') ( ')W g y f y W f y g y− = − ≤ − ; (iii) ( ') ( ')f y g y W≥ ≥  ⇒  [ ]max , ( ')W f y −  

[ ]max , ( ') ( ') ( ')W g y f y g y= − . Thus, if the supremum ( ') ( ')f y g y−  is found at a point 

where ( ') ( ')f y g y≥ , the inequality is proved. But for any two functions h1 and h2, 

                                            
4 These limits on p and y, in conjunction with the continuity of /c  and the assumption that 

/lim ( )q c q→∞ = ∞ , imply that there exists a finite q satisfying /( ) 1/c q y= . As q is finite, so are 

revenues. 
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1 2h h− 2 1h h= −  by the symmetry of distance functions, and the same arguments can 

therefore be applied for any ( ') ( ')g y f y≥ .5  

 So now we have established that T is a contraction mapping and that there is a 

unique solution to (3), we can explore some of the properties of this solution. It turns out 

that these depend critically on the properties of the conditional distribution ( ' | )F y y . We 

have already mentioned that both Hopenhayn and Jovanovic introduce some persistence 

in y by assuming that ( ' | )F y y  is weakly decreasing in y. Given this assumption, we can 

now show that V(y) is strictly decreasing in y. Recall that, as T is a contraction mapping, 

( ) lim ( )n
nV y T g y→∞=  for any bounded continuous function g(y). Well, let’s assume that 

g(y) is decreasing in y.6 Then it will be the case that max[ , ( )]W g y  is weakly decreasing in 

y , and that that max[ , ( ')] ( ' | )W g y dF y y∫  is also decreasing in y . To see this last one, 

let a be the minimum value for y, let y* be the value of y such that ( )g y W= . Then, as 

g(y) is decreasing in y, [ ]max , ( )W g y W=  for any *y y≥ , and [ ]max , ( ) ( )W g y g y=  for 

any *y y≤ . That is, 

       
*

*

max[ , ( ')] ( ' | ) ( ' | ) ( ) ( ' | )
y

a y a

W g y dF y y W dF y y g y dF y y
∞ ∞

= +∫ ∫ ∫            

                                        ( )
*

*
'1 ( * | ) ( ) ( ' | ) ( ') ( ' | ) '

y
y

ya
a

W F y y g y F y y g y F y y dy= − + −∫   

                                        ( )
*

'1 ( * | ) ( *) ( * | ) ( ') ( ' | ) '
y

y
a

W F y y g y F y y g y F y y dy= − + −∫  

                              
*

'( ') ( ' | ) '
y

y
a

W g y F y y dy= −∫ . (2.21) 

                                            
5 You do not need to go through this argument each time. It is well known that the max operator 

drops out of such supremum functions so you can go from the third to the fourth line without com-

ment. 
6 If we chose a function g(y) that is increasing in y, we would still end up with a function V(y) that 

is decreasing in y, but we would just have a hard time proving it. 
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Differentiating with respect to y yields 

 
*

'max[ , ( ')] ( ' | ) ( ' | ) ' 0
y

y y
a a

d W g y dF y y g F y y dy
dy

∞

= − ≥∫ ∫ . 

Finally, as π(y) is strictly decreasing in y, Tg(y) is strictly decreasing. We can repeat this 

to see that Tng(y) is strictly decreasing in y for any n. But as letting n→∞ yields the 

fixed point V(y), we have proved that V(y) is decreasing in y.7 

 So the value of being an active firm is strictly decreasing in y. But as exit is prefer-

able when ( )W V y≥ , there is a unique y, say y*, above which exit is chosen. Now, as 

output is decreasing in y, we have proved that there is a minimum firm size, say q*, below 

which a firm chooses to exit. 

 Let us take a brief digression here. Although it is perhaps less useful in this case, we 

can construct the fundamental reservation equations for this model. Replace the arbitrary 

function ( ')g y  in (2.21) with ( ')V y  so we can write 

 [ ]( ) ( ) max , ( ') ( ' | )
a

V y y W V y dF y yπ β
∞

= + ∫  

        
*

'( ) ( ') ( ' | ) '
y

y
a

y W V y F y y dyπ β
 
 = + − 
  

∫ , 

using (2.21) for the second line. At y*, V(y*)=W, so we may write 

 
*

'( *) ( ') ( ' | *) '
y

y
a

W y W V y F y y dyπ β
 
 = + − 
  

∫  

or 

                                            
7 It is worth drawing attention to this remarkable proof, so the central trick is not overlooked. The 

contraction mapping theorem tells us that ( ) lim ( )n
nV x T g x→∞=  for any appropriately bounded 

and continuous function g(x). So the trick is to choose a function that has the right properties to 

help pin down the properties of V(x). We saw in Chapter 4 an example in which we used this result 

to explicitly solve a model. Here the procedure is no help in solving the model, but it has turned 

out to be helpful in establishing a central property of the model. 
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*

'
( *) ( ') ( ' | *) '

1 1

y

y
a

yW V y F y y dyπ β
β β

= −
− − ∫ , (2.22) 

which is the fundamental reservation price equation. We have already seen that 

'( ') 0yV y < . Thus, the reservation value required for continued activity is greater than the 

discounted present value of receiving ( *)yπ  forever. However, in this case, the fundamen-

tal equation does not yield an obviously intuitive result until we rearrange it slightly to 

get 

 
*

'( *) (1 ) ( ') ( ' | *) ' 0
y

y
a

y W V y F y y dyπ β β− − = ≤∫  (2.23) 

Here (1−β)W can be interpreted as the per-period fixed cost of being active in the indus-

try. Equation (2.23) states that the firm does not exit until it is making possibly substan-

tial losses. The firm does not exit as soon as losses fall to zero because it wants to pre-

serve the option value of receiving the positive profits that would be secured by a run of 

good draws for y in the future. 

 We mentioned at the beginning of this subsection that there were important differ-

ences between the Hopenhayn and Jovanovic versions of the optimal stopping problem. 

We turn to that distinction now. Hopenhayn assumes that efficiency, x, is a random vari-

able that fluctuates from period to period but exhibits persistence. That is, if ( ' | )G x x  is 

the conditional distribution of 'x , then G is decreasing in x. Clearly if we expect x to be 

low today, we will also expect it to be low tomorrow. But this is no more than saying that 

the conditional distribution of expected efficiency, ( ' | )F y y , is decreasing in y. Thus, we 

have already analyzed the heart of Hopenhayn’s optimal stopping problem, and we can 

use this to think about survival probabilities. Consider a firm of current size q>q*, where 

q depends negatively on y. The probability that ' *y y>  next period is increasing in y 

and therefore decreasing in q. Hence, the smaller a firm is today, the more likely it is to 

exit tomorrow. Equivalently, the probability of survival is increasing in current size and, 

moreover, size is a sufficient statistic for survival. 

 The difficulty with Hopenhayn’s result is that the empirical evidence suggests a more 

complex empirical relationship between survival and observable firm characteristics. 
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Dunne, Robert and Samuelson (1989), in particular, have shown that firm age also mat-

ters: conditional on size, younger firm are more likely to exit and conditional on age 

smaller firms are more likely to exit.. But in Hopenhayn, once one conditions on size, age 

does not matter. 

 In contrast, Jovanovic’s model creates a role for age as well as size. Jovanovic also 

assumes that x is a random variable but, unlike Hopenhayn, there is no persistence in the 

shocks; x is subject an to i.i.d. shock in each period. However, the mean of x varies from 

firm to firm, and firms do not know their own mean. Put another way, they do not know 

how efficient they are on average, but must learn it from a sequence of noisy signals. 

Specifically, assume that x=g(η), where g is a strictly increasing, strictly positive function. 

The parameter η is given by t tη θ ε= + , where tε  is a draw from a normal distribution 

with mean zero and variance 2
εσ . The firm does not know its θ. Upon entry it only knows 

that it will be a draw from a normal distribution with mean θ  and variance 2
θσ . The 

firm observes its costs each period, and this allows it to update its beliefs about what θ is. 
The calculations will not be shown here; instead we shall just note here that after T peri-

ods the firm’s beliefs about its θ are that it is a draw from a normal distribution with 

mean 1
1

T
ttTη η−

== ∑  and variance ( ) ( )2 2 2 2 2ˆ / Tε θ θ εσ σ σ σ σ= + . That is, the age of the 

firm and its past mean efficiency are all we need to know to describe the firm’s beliefs 

about its average efficiency. We also see that the variance declines with age, as the firm 

becomes more confident about what its true efficiency is. The conditional distribution for 

expected efficiency can therefore be written as ( ' | , )F y y T . Intuitively, if the firm has 

received a lot of signals causing it to believe x is high, it will also believe that 'x  will be 

high. Thus ( ' | , )F y y T  is decreasing in y, as maintained up to now. But the variance of 

the subjective beliefs about θ, and thus the variance of y, is greater for younger firms.  
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FIGURE 2.5. 

 

This says nothing more than the fact that a firm with little information is likely to revise 

its beliefs significantly when it receives more information.  

 So now consider a firm with expected efficiency y>y*. The younger firm is more 

likely to revise y drastically, and hence is more likely to draw a ' *y y> . However, what 

this means for the relationship between survival and age turns out to be a more compli-

cated story. We have already established that π(y) is a convex, decreasing function. But 

then V(y) is also convex, as drawn in Figure 2.5, and this implies that the stopping point 

y* depends monotonically on age. In Figure 2.5, V(y) corresponds to the value of continu-

ing in the industry for one more period regardless of the optimal decision. An older firm, 

with a relatively small variance on expected efficiency has a stopping efficiency of 1*y . A 

younger firm with a greater variance has a stopping efficiency 2 1* *y y> . Thus, given a 

current expected efficiency y, it is true that any 'y y>  is more likely to be attained by a 

younger firm. However, offsetting this is the fact that the 'y  that must be attained to 

induce exit is further away for the younger firm. That two effects of age offset each other 

implies that one cannot make general statements about how age affects survival (See Fig-
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ure 2.6). However, one can make the claim that among firms that exit, younger firms will 

be smaller. 

3. Continuous Choice Models 

Consumption Problems 

Investment Problems 

 

 

y y*1

y*2

y/

y/

Young Firm

Old Firm

y y*1

y*2

y/

y/

Young Firm

Old Firm

FIGURE 2.6. Density of y/ condition on y. Shaded area gives probability

that the firm will exit next period. The probability may be larger or

smaller for the young firm. 
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4. Transaction Costs 

(S,s) Inventory Problems 

Vintage Capital  

The Used Car Market 

Empty Factories 

5. Time Inconsistency 
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Notes on Further Reading 
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