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A differential equation is an equation of the form 

 
( )

( ) ( , , )
dx t

x t f x y t
dt

= = , 

usually with an associated boundary condition, such as 

 0(0)x x= . 

The solution to the differential equation, 

 0( ) ( , , )x t g y t x= , 

contains no differential in x. 

 The techniques for solving such equations can a fill a year's course. In this part of 

the course, we study some basic types, with special emphasis on 

• economic interpretation 

• types of equations common in the study of economic growth 

• characterization of arbitrary equations 

• stability of systems 

 

EXAMPLE 0.1 (Capital accumulation by a firm). The capital stock of a firm evolves ac-

cording to the linear equation of motion 

 ( ) ( ) ( )k t i t k tδ= − , 

 

 gross investment 

depreciation net 

investment 
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where i(t) is the rate of investment at time t and δ is the instantaneous rate of deprecia-

tion. To find the capital stock at any time t given an initial stock k(0)=k0 requires that 

we solve the differential equation.    • 

 

EXAMPLE 0.2 (Capital accumulation by a country). Let GDP per capita be given by the 

intensive-form production function 

 ( ) ( ( ))y t f k t= , 

and let investment satisfy the national income identity for a closed economy, 

 ( ) ( ( ))i t sf k t= . 

The equation for motion of capital is then  

 ( ) ( ( )) ( )k t sf k t k tδ= − , 

a nonlinear differential equation.     • 

 

EXAMPLE 0.3 (Labor market matching). Let L denote the number of workers in the labor 

force, u(t) the unemployment rate, and v(t) the vacancy rate (expressed as a fraction of 

L). Workers and vacancies are assumed to find each other by a random matching process 

whereby the total number of matches made in an interval of time ∆t is given by the 

matching function 

 ( , )M t M uL vL t∆ = ∆ . 

The matching function is increasing and concave in each of its arguments, and homoge-

neous of degree one. Let θ=v/u. The rate at which vacancies are filled, expressed as a 

fraction of the unemployed is  

 
( , )M uL vLM t t

uL uL
∆ = ∆  

          
( ,1)vL M

t
uL

θ⋅= ∆  

          ( )1,1M tθ θ−= ∆  

          ( )m tθ θ= ∆ , 
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where ( )1( ) ,1m Mθ θ−= . The flow into unemployment occurs at the rate λ. In the inter-

val  ∆t, the number of workers who become unemployed is therefore (1 )u L tλ − ∆ . Thus, 

the change in the number of unemployed is 

 ( ) ((1 ) ( )uL u L t m uL tλ θ θ∆ = − ∆ − ∆ . 

Divide by L t∆  and let 0t∆ → , yielding 

 ( ) (1 ( )) ( ) ( )u t u t m u tλ θ θ= − − . 

Solving this linear differential equation for the steady-state unemployment rate is easy. 

Set ( ) 0u t = , to obtain 

 
( )

u
m
λ

λ θ θ
=
+

. 

However, obtaining the value u(t) given some u(0) requires solving the differential equa-

tion.    • 

1. Linear Differential Equations 

To begin, you will need to know how to solve a particular type of differential equation, 

known as a constant coefficient first-order equation. These take the form 

 
( )

( ) ( ) ( )
dx t

x t a t bx t
dt
= = + .  

 

 

 

 

All differential equations have two types of solutions, forward solutions and backward 

solutions. 

Backward Solutions 

FIRST-ORDER 

a(t) is an additive 

 component of growth 

CONSTANT COEFFICIENT. 

 b is the exponential growth rate 
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If we know a past value of x(t), say x0, and the past values of a, a(s), [0, ]s t∈ , we can 

use them to find the current value of x(t): 

 ( )
0( ) ( )

t
bt b t s

o

x t x e a s e ds−= + ∫ .  

 

 

 

We can verify this is the solution by differentiating with respect to t: 

 ( )
0

0

( ) ( ) ( )
t

bt b t sx t bx e a t a s be ds−= + + ∫   

 

       ( )

0

( ) ( ) ( )
t

bt b t s
ob x t e a s e ds a t−

 
 = + + 
  

∫  

       = ( ) ( )bx t a t+ . 

There is an intuitive interpretation to the backward solution. The current value of x can 

be decomposed into the sum of the contribution of the initial value, which is x0 com-

pounded at the rate b, and all the individual increments a(s), each of which is also com-

pounded at the rate b for the interval t−s.  

 

EXERCISE 1.1 Verify that (1.4) is a solution to (1.1). 

 

EXAMPLE 1.1 (Capital accumulation by the firm). Recall from Example 0.1 the equation 

of motion for the capital stock of a firm: 

 ( ) ( ) ( )k t i t k tδ= − . 

The backward solution is  

 ( )

0

( ) (0) ( )
t

t t sk t k e i s e dsδ δ− − −= + ∫ , 

sum of components of x(t), all adjusted

for exponential growth 

Current 

value 

These two terms come from

applying Leibnitz' Rule of differ-

entiation. 
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which states that the current capital stock equals the initial capital stock plus the entire 

time path of investment, both adjusted for depreciation. The initial capital stock has de-

preciated at the rate δ for the interval of time t, while each addition to the capital stock 

from investment at time s has depreciated for the amount of time t−s.  • 

 

EXAMPLE 1.2  (Labor market matching).  From Example 0.3, we have 

 ( ) (1 ( )) ( ) ( )u t u t m u tλ θ θ= − −  

        ( )( ) ( )m u tλ λ θ θ= − + ,      u(0)=u0. 

If m(θ) were a constant, this would be a straightforward linear differential equation. But 

θ=v(t)/u(t). However, when we study matching models later in the course, we will find 

that θ is solved by a firm optimization problem, and the solution is a constant that does 

not depend on u(t)! Hence, anticipating this result, let θm(θ) be treated as a constant 

here. Then, the backward solution is 

 ( ) ( )( ) ( ) ( )
0

0

( )
t

m t m t su t u e e dsλ θ θ λ θ θλ− + − + −= + ∫  

       ( )
( )( )

( )
0

0
( )

tm t
m t e

u e
m

λ θ θ
λ θ θ λ

λ θ θ

− +
− += +

+
 

       ( ) ( )( )( ) ( )
0 1

( )
m t m tu e e

m
λ θ θ λ θ θλ

λ θ θ
− + − += + −

+
, 

which is a weighted average of the initial unemployment rate and the steady-state unem-

ployment rate derived in Example 0.3. Note that ( )( ) / ( )u t m uλ λ θ θ→ + =  as t → ∞ .     

• 

Forward Solutions 

If we know a future value of x(t), say x(T), for some T>t, and the future values of a, a(s), 

[ , ]s t T∈ , we can use them to find the current value x(t): 

 ( ) ( )( ) ( ) ( )
T

b T t b s t

t

x t x T e a s e ds− − − −= − ∫ .  

By differentiating, you can verify that this is a solution. 
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EXAMPLE 1.3 (Dynamic Budget Constraint). An infinitely-lived family has a point in time 

budget constraint 

 ( ) ( ) ( ) ( )a t y t c t ra t= − + . 

 

 

 

Given initial asset holdings a(0), the backward solution is  

 ( ) ( )

0

( ) (0) ( ) ( )
t

rt r t sa t a e y s c s e ds−= + −∫ .  

 The forward solution is of particular economic interest. Consider a family thinking 

about how much it can optimally consume over its infinite lifetime. The backward solu-

tion really gives no information about this. If more consumption is preferred to less, then 

the family will just consume more than it earns and increase its debt without bound. 

Logic would tell us that we must put a bound on how much the family can go into debt. 

The forward solution allows us to do so. Given a time horizon T, the forward solution is 

 ( )( ) ( )( ) ( ) ( ) ( )
T

r T t r s t

t

a t a T e y s c s e ds− − − −= − −∫ , 

which states that assets at time t are equal to the terminal assets discounted back to t, 

minus any savings between t and T that contributed to the size of the terminal assets. 

 Now, the family is infinitely-lived, so let T → ∞ : 

 ( )( ) ( )( ) lim ( ) _ ( ) ( )r T t r s t

T
t

a t a T e y s c s e ds
∞

− − − −
→∞

= −∫  (1.1) 

 It is straightforward to see that the optimal and feasible strategy must have 

lim ( ) 0t a t→∞ = . If lim ( ) 0t a t→∞ < , the family has incurred debt it never intends to pay, 

and no one would be willing to finance this borrowing. Hence lim ( ) 0t a t→∞ <  is not fea-

sible. The practice is called a Ponzi scheme, named for a fraudulent financier. On the 

other hand, if lim ( ) 0t a t→∞ > , the family continues to hold assets it never intends to use. 

change in  

asset holdings 
income from 

labor 

consumption 
interest earned on assets (if a>0) 

interest paid on debts (if a<0) 
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As these assets could be used to increase consumption, lim ( ) 0t a t→∞ >  cannot be opti-

mal. Thus, an economic solution, as opposed to simply a mathematical solution to the 

budget constraint problem, allows us to impose a priori the condition lim ( ) 0.t a t→∞ =  

But this condition implies 

 ( )lim ( ) 0r T t

T
a T e− −

→∞
= . (1.2) 

Substituting (1.1) into (1.2), we have 

 ( ) ( )( ) ( ) ( )r s t r s t

t t

c s e ds a t y s e ds
∞ ∞

− − − −= +∫ ∫ ,  

which has the nice interpretation that the discounted present value of the family's life-

time consumption is equal to the sum of its initial wealth and the discounted present 

value of its lifetime labor income. This is the solution to the family's budget constraint 

when it is behaving optimally  ( lim ( ) 0t a t→∞ ≤ ) and feasibly ( lim ( ) 0t a t→∞ ≥ ).  • 

 

EXERCISE 1.2. Solve the following differential equations 

 (a) ( ) 2 ( )tx t e x t−= −  ,     (0) 3/ 4.x =  

 (b) 2( ) 2 ( )tx t te x t−= − ,     (1) 0x = . 

 (c) ( ) (1 ( ))t tx t e t x t e= + − ,  (0) 0x = . 

 

 If x(t) is a continuous function of time (i.e. it does not have any jumps), the back-

ward and forward solutions are merely alternative ways of representing the same solution 

(although one may allow us to define constraints more readily, as in Example 1.2). The 

choice between them depends only on the information you have – the future or past val-

ues of a(s) and a future or initial value for x. However, if x(t) can make a discrete jump 

at any given point in time, these expressions will not be equal, and we must use the logic 

of the model to which the equations apply to decide between the forward and backward 

solutions. In economic and financial problems, the variable of interest frequently is able 

to jump at a point in time, and so the distinction between forward and backward solu-
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tions is often an important matter. We will illustrate this idea with a classic model about 

hyperinflation. 

 

EXAMPLE 1.4 (Hyperinflation). Cagan (1956) developed a model of hyperinflation de-

scribed by the following equations: 

 ( ) ( ) ( )m t p t tαπ− = − , (1.3) 

 

 

 ( )( ) ( ) ( )t p t tπ γ π= − . (1.4) 

 Equation (1.3) states the demand for real money balances depends negatively on the 

expected inflation rate; α is the semi-elasticity of real money demand with respect to in-

flation expectations. Equation (1.4) was the first statement of the theory of adaptive ex-

pectations. The change in expected inflation is proportional to the current mistake made 

in expectations. The parameter γ is the speed of adjustment of expectations.  

 Assume m(t) is constant except possibly for a one-time jump. Then, differentiating 

(1.3) gives ( ) ( )p t tαπ= . Using this in (1.4) and substituting into (1.3), we get 

 ( )( ) ( ) ( )
1

p t m t p tγ
αγ

= −
−

. (1.5) 

 Suppose now there is a once and for all rise in m, beginning from a position where 

m(t)=p(t) and ( ) 0p t = . The quantity theory of money leads one to expect that a posi-

tive jump in m would induce ( ) 0p t > . But this will only be true in (1.5) if αγ<1. This is 

Cagan’s famous condition for monetary stability. The stability condition states that a 

sensitive money demand is consistent with monetary stability only if expectations adapt 

sufficiently slowly. 

 Adaptive expectations are backward looking, so one way to think about p(t) is that 

it can be obtained from the backward solution to the differential equation. 

 ( ) ( )
1 1

p t p t mγ γ
αγ αγ

= − +
− −

 

 

ln(price level) 

expected inflation rate 

m held constant 

ln(money  demand) 
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The backward solution to this equation is 

 /(1 ) ( )/(1 )

0

( ) (0)
1

t
t t smp t p e e dsγ αγ γ αγγ

αγ
− − − − −= +

− ∫  

       ( ) /(1 )(0) tm p m e γ αγ− −= + − . (1.6) 

 Now, for arbitrary p(0), we require that the last term vanish as t → ∞  (the alterna-

tive is that it explodes). But this requires that −γ/(1−αγ)<0, or αγ<1. 

 The stability condition is clearly violated by rational expectations. With no uncer-

tainty, rational expectations implies that expected inflation must equal actual inflation, 

or ( ) ( )t p tπ = . That is, absent uncertainty rational expectations is equivalent to perfect 

foresight. Given Cagan’s equation (1.6), rational expectations implies γ → ∞  (expecta-

tions are not differentiable - ( ) 0tπ =  at all times; π(t) jumps whenever ( )p t  jumps). 

Now, letting γ → ∞  in (1.12), we get 

 ( ) /( ) (0) tp t m p m e α= + − , 

which explodes whenever (0)p m≠ . 

 The solution to this problem was provided by Sargent and Wallace (1973). One key 

implication of the backward solution is that p(t) is continuous. But why shouldn’t it 

jump? In fact, if agents are forward looking, as in rational expectations, shouldn’t the 

solution also be forward looking? The forward solution to our problem (with γ → ∞ ) is 

 ( )/ ( )1( ) lim ( ) ( )T t s t

T
t

p t p T e m s e dsα α

α

∞
− − − −

→∞
= + ∫ . 

 

 We need a terminal condition to pin down p(t). Sargent and Wallace proposed a 

terminal condition that price remain bounded as t → ∞ . Why? First, because we don’t 

observe exploding prices all the time, and second because this is the sort of condition re-

quired by an underlying individual optimization problem (consider the conditions im-

posed on assets in Example 1.2). Now, if p(T) remains bounded, then it must be the case 

that ( )/lim ( ) 0T t
T p T e α− −
→∞ = . Hence, the solution to the rational expectations model is 

 ( )/1( ) ( ) s t

t

p t m s e dsα

α

∞
− −= ∫  . 

now we allow m to vary over time. 
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and if ( )m t m=  for all t, we have ( )p t m= . Rational expectations requires that the 

price today jump to accommodate whatever people think the path of m will be. Such 

jumps are not possible in a backward solution, because the backward solution assumes 

that, once p(0) is given, its subsequent path is always differentiable (and you can't be 

differentiable if you’re not continuous!). The lesson here is that different economic as-

sumptions (i.e. adaptive versus rational expectations) impose very different boundary 

conditions on the differential equation, and this can have important consequences for the 

way a model behaves.    • 

 

EXERCISE 1.3 (An asset market model). Let p(t) denote the price of equity, let 

d(t) denote the dividend paid at time t, and let r denote the yield on a risk free 

bond. (a) What equation of motion yields the following forward solution for the 

price of equity: 

 ( ) ( )( ) lim ( ) ( )r T t r s t

T
t

p t p T e d s e ds
∞

− − − −
→∞

= + ∫  ? 

(b) Explain the economic intuition behind this equation of motion. (c) What as-

sumption about the forward solution implies that the price of equity is equal to 

the present value of current and future dividends? (d) What are the economic 

justifications for this assumption? 

General Linear Differential Equations 

So far we have discussed differential equations of the form 

 ( ) ( ) ( )x t a t bx t= + . 

We would also like to be able to solve more complicated equations of the form 

 ( ) ( ) ( ) ( )x t p t x t g t+ = . 

The following exercise will lead you to discover the technique for solving this variable 

coefficient problem. 
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EXERCISE 1.4 (Solving general linear equations). Consider equations of the form, 

( ) ( ) ( ) ( )x t p t x t g t+ = . (a) If g(t) is identically zero, show that the solution is 

 
0

( ) exp ( )
t

x t A p s ds
  = −    
∫ , 

where A is a constant determined by boundary conditions. (b) If g(t) is not iden-

tically zero, assume a solution of the form 

 
0

( ) ( )exp ( )
t

x t A t p s ds
  = −    
∫ , 

where A is now a function of t. Show that A(t) must satisfy the condition 

 
0

( ) ( )exp ( )
t

A t g t p s ds
  =    
∫ . 

(c) Find A(t) from this expression and then use your answer to write an expres-

sion for x(t). (d) Using the formulae just obtained, solve 

 
( )

( ) 3
x t

x t
t

+ = . 

2. Nonlinear Differential Equations 

 A single linear differential equation can always be solved (we may not be able to 

evaluate the integral, but then the solution stated with the integral expression is the solu-

tion). However, most economic problems are nonlinear: 

 ( ) ( , ) ( , )x t a x t f x t= − . 

 Special types of nonlinear equations have known explicit solutions. However, most 

economic problems that exploit these special cases tend to be quite contrived. For this 

reason, and also to save time, we will look at only a couple of examples, a little later in 

this section.  
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 There are no generally applicable techniques for solving nonlinear differential equa-

tions, and many of them cannot be solved. Analysis of nonlinear problems in economics is 

greatly facilitated by the following assumptions: 

• The problem is autonomous, which is to say that ()a ⋅  and ()f ⋅  do not depend 

on time except through the value of x(t). That is, the problem has the form 

 ( ) ( ( )) ( ( ))x t a x t f x t= − . 

• The problem is such that ( )x t x→ , a constant value. That is, the problem 

approaches a steady state. 

With these assumptions, a graphical analysis is straightforward in many cases. 

 

EXAMPLE 2.1 (Solow growth model). Output, y depends on the capital stock, k, according 

to the production function y=f(k). Given a constant investment rate, s, and a deprecia-

tion rate, δ, the evolution of capital is given by 

 ( ) ( ( )) ( )k t sf k t k tδ= −  (2.1) 

We make the usual neoclassical assumptions about the production function: /( ( )) 0f k t > , 
//( ( )) 0f k t < , /(0)f δ>> , and /lim ( ) 0k f k→∞ = . Then this problem has a unique steady 

state that is easily graphed by splitting the right hand side of (2.1) into two terms that 

are each plotted separately. 

 

 

 

 

 

 
FIGURE 2.1. From 2.1, if sf(k)<δk, then k will 

be rising; if sf(k)<δk, then k will be falling. 

Define k* as the point at which k is constant, 

which is clearly where sf(k)=δk. The point k* 

defines the steady state.  

sf(k)

δk

k0 k*

0>k

0<k

0=k



DIFFERENTIAL EQUATIONS  13

Note also that any initial value of k other than k* is always associated with a movement 

toward k*. That is, the steady state is also globally stable.    • 

 

EXAMPLE 2.2 (Multiple equilibria in the Solow model).  
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For most applications, of course, a purely graphical analysis is insufficient. We can usu-

ally obtain a useful analytical approximation to the differential equations by linearizing 

around the steady-state value. From a first-order Taylor expansion, we have: 

 

 ( )* * / * *( ) ( ) ( ) ( )k t sf k k sf k k t kδ δ ≈ − + − −    

 

         ( )/ * *( ) ( )sf k k t kδ = − −    

 

 

 

 

 

 Now let / *( )sf k bδ− = . Then, the linear approximation to the differential equation 

is 

 *( ) ( )k t bk bk t= − + . (2.2) 

This is a constant coefficient linear differential equation, which we can solve in our sleep. 

The obvious question, however, is how useful this equation will be. That depends upon 

the researcher’s purpose. The nonlinear equation (2.1) and its linear approximation (2,2) 

give very similar answers about how k 

behaves for values of k close to k*, 

but this similarity weakens the fur-

ther we move away from k*.  Figure 

2.2 illustrates by plotting ( )k t  as a 

function of k(t) for the nonlinear 

model and its linear approximation.  

 
FIGURE 2.2. Exact and linear approxima-

tions to ( )k t . 

=0 in the steady state. 

Implies k is increasing when k(t)<k* and

decreasing when k(t)>k* A negative constant: the slope of the  

curve in Figure 1, sf /(k*), must be 

less than the slope of the straight line,  

δ, at the steady state. 

k0 k*

k Nonlinear equation (negative slope 
comes from  f//<0. The exact shape 
depends on f/// about which no 
assumptions were made).

The linear approximation has the 
same slope as the exact function at 
k*, but may induce large errors a long 
way from k*
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 Because the error induced by linear approximation becomes significant as we move 

away from the steady state, any results based on the linear approximation can only be 

said to hold in a small neighborhood around the steady state. Recall our definition of 

global stability:  

• Global stability of a unique steady state implies that the system converges 

onto the steady state from any initial values. 

The best we can say when we are limited to linear approximations is that a system is 

locally stable: 

• Local stability of a unique steady state applies for small perturbations to the 

steady state. If we are close to the steady state values, the locally stable system 

will converge onto the steady state. We do not know what happens for initial 

values that are not in the neighborhood of the steady state. 

Clearly, local stability is necessary for global stability, but it is not sufficient. In contrast, 

global stability is sufficient for local stability. 

 

EXERCISE 2.1 (Stability of nonlinear equations).  For each of the following dif-

ferential equations, analyze the global stability of the steady state:  

 (a) ( )2( ) ( )x t b x t a= − ;   (b) ( )2( ) ( )x t b x t a= − − ;  

 (c) ( )3( ) ( )x t b x t a= − ;   (d) ( )3( ) ( )x t b x t a= − −  

 

EXERCISE 2.2 (Log-linearization). Consider the nonlinear capital-stock equation 

 ( ) ( ( )) ( )k t sf k t k tδ= − . 

A common analytical approach is to log-linearize the equation. To do so, one 

substitutes y(t)=lnk(t), and then linearizes around the steady state value of y. 

(a) Log-linearize this equation. (b) Interpret the result. Why might log-

linearization be preferable to linearization? 
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Nonlinear Equations with Exact Solutions 

One has to be lucky, but sometimes an economic model gives rise to a nonlinear differen-

tial equation that has an exact solution. We provide two examples here. 

In some special cases, a nonlinear equation can be transformed into a linear differential 

equation that can always be solved a substitution of variables: 

 

EXAMPLE 2.3 (A closed-form solution to the Solow Model).1  Consider the following ver-

sion of the Solow model: 

 1( )t t t tY K A Lα α−= ,         (0,1)α ∈  

 t t tK sY Kδ= − ,              0 0K > ,   (0,1)s ∈  

 0
nt

tL L e= ,                    0 0L >  

 0
gt

tA A e= ,                   0 0A >  

where n, g, and δ are non-negative parameters. This model present two difficulties. The 

first is that At and Lt are growing over time. Standard practice is to normalize variables 

by dividing by effective labor, AtLt, and then denoting the normalized variables with 

lower case letters: /t t t ty Y AL=  and /t t t tk K AL= . With this normalization, 

 t ty kα= , 

 ( )t t tk sk n g kα δ= − + + , 

with initial condition 0 0 0 0/k K A L= . 

 The second difficulty is that the equation of motion for normalized capital just de-

rived is nonlinear. Previously, we solved for the steady state in the general case 

( )t ty f k= . But we can do better with the particular functional form t ty kα= . In this 

case, the equation of motion is known as a Bernoulli equation and can be solved explicitly 

by a change of variables. Let t tz k α1−= . Then, 

 (1 )t t tz k kαα −= − , 

which can be used to obtain a differential equation in z: 

                                            
1  This section is taken from Jones (2000). 



DIFFERENTIAL EQUATIONS  17

 (1 )t tz s zα λ= − − , 

where (1 )( )n gλ α δ= − + + . This is a simple linear differential equation, which is readily 

solved. Moreover, the equation has a nice interpretation. As 1 / /t t t t t tz k k k k yα α−= = = , 

the equation represents the evolution of the capital-output ratio. The backward solution 

is 

 ( )0 1t t
t

sz z e e
n g

λ λ

δ
− −= + −

+ +
, 

yielding 

 ( ) 11
0 1t t

t
sk k e e

n g
αα λ λ

δ

1
−− − −  = + −   + + 

 

and 

 ( ) 1(1 )/
0 1t t

t
sy y e e

n g

α
αα α λ λ

δ
−− − −  = + −   + + 

. 

Income per effective worker is a weighted average of the initial and steady-state values. 

The parameter λ governs the rate at which the economy converges onto its steady state, 

and this will be of direct interest in a later application.    • 

 

A second class of nonlinear models are separable equations that take the form: 

 
( )

( )
( )

g t
x t

f x
= . 

That is, they can be written in terms of two distinct functions, one involving the endoge-

nous variable, the other involving time. These equations are interesting because they can 

often be solved by writing one side of the equation in terms of x and the other in terms of 

t.  Thus writing the equation in the form 

 ( ) ( )dxf x g t
dt
= , 

we can integrate both sides with respect to t 

 ( ) ( )dxf x dt g t dt
dt

=∫ ∫ , 
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or 

 ( ) ( )f x dx g t dt=∫ ∫ . 

Carrying out the integrations allows us to solve for x. 

 

EXAMPLE 2.4 (Logistic growth). The logistic growth equation takes the form 

 ( ) ( )( ( ))x t x t x tβ α= − . 

Separating the differential equation, 

 
( )

x
x x

β
α

=
−

, 

and writing the integral yields 

 1
( )

dx dt
x x

β
α

=
−∫ ∫ . 

Evaluating the integrals, including a constant of integration, k, yields 

 
1

ln
x

t k
x

β
α α

= +
−

, 

which can be rearranged to yield a solution for x. Boundary conditions allow one to solve 

for the constant of integration.    • 

  

EXERCISE 2.3 (Population growth). a) Suppose ( )x x xα β= + . Derive an ex-

plicit solution for x and show that it becomes infinite in finite time. 

b)  For the Gompertz growth equation,  

  ( ) ( )( ln ( ))x t x t x tβ α= − , 

(i) Solve the equation subject to x(0)=x0. 

(ii) Sketch the graph and its associated phase diagram. Derive the steady 

states and establish their stability or instability. 

 

EXERCISE 2.4 (R&D-driven growth). A well-known empirical regularity in in-

dustrial economics is that firm R&D is more or less proportional to size. Mak-
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ing use of this regularity write down a simple model of R&D-driven growth in a 

firm’s market share, s, that incorporates the following features: (i) market share 

is bounded between 0 and 1; (ii) if a firm does no R&D it will lose market share 

due to the R&D efforts of other firms; (iii) there are n firms; (iv) all firms have 

the same R&D ability. Solve (if possible) and characterize the solution of the 

model. What is (are) the steady state(s)? 

3. Systems of Differential Equations 

 In many problems relevant to the study of economic dynamics, we will be concerned 

with solving two or more differential equations simultaneously. Generally, these systems 

will also be nonlinear, and we will want to characterize their behavior using graphical 

techniques. However, just as for single nonlinear equations, local approximations around 

the steady state can be obtained by linearizing the system. It will therefore be easier to 

understand what is going on if we first consider the behavior of linear systems. 

 We will limit ourselves to systems of two equations, which allow for graphical analy-

sis. Systems of three equations can often be reduced to a system of two equations using a 

technique known as the time-elimination method (Mulligan and Sala-i-Martin [1992]). 

Systems of more than three equations are, fortunately, almost unheard of in our areas of 

study, and would usually need to be tackled with numerical methods. 

Linear Systems of Two Equations 

 Consider the following system: 

 ( ) 0.06 ( ) ( ) 1.4x t x t y t= − + , (3.1) 

 ( ) 0.004 ( ) 0.04y t x t= − + , (3.2) 

with boundary conditions x(0)=1 and 0.06lim ( ( )) 0t
t e x t−
→∞ = . 

 To analyze this system, we construct a phase diagram, a graphical tool which allows 

us to visualize the dynamics of the system. The first step in constructing the phase dia-

gram is to use the two equations to construct two curves plotting out stationary values 
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for x(t) and y(t). These curves plot all possible pairs of x and y such that 0x =  and all 

possible pairs of x and y such that 0y = .  

 Setting ( ) 0x t =  in (3.1), yields 

 0 0.06 ( ) ( ) 1.4x t y t= − +  , 

which gives 

 ( ) 0.06 ( ) 1.4y t x t= +  (3.3) 

 

Setting ( ) 0y t =  in (3.2) gives 

 ( ) 10x t = . (3.4) 

 

We can then plot these curves: 

 

 

 

 

 

 
 

 

FIGURE 3.1. Constructing the phase 

diagram, step 1. 

Only one value of x is consistent  

with an unchanging y. 

x
0

0=x

Intersection gives the steady state of 
the system

0=y

1.4

10

y

All pairs of {x,y} yielding a 

constant value of x. 
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 The next step is to think about the behavior of the system when it starts out at 

some point {x(0),y(0)} which is not at the steady state. Consider first the 0x =  locus. If 

y is greater than the value indicated by the 0x =  line for any given value of x (i.e given 

a value of x , y lies above the line), then equation (3.1) tells us that 0x <  (larger values 

of y reduce x ). For any point below the 0x =  locus, in contrast, x must be rising. These 

movements in x(t) are captured in Figure 3.2 by the horizontal arrows. They point to the 

left above the 0x =  locus, and to the right below it. Now consider the 0y =  locus. At 

any point on the graph to the right of the locus (i.e. for any x>10), we have 0y < ; to 

the left, 0y > . We can also plot these directions of movement on our emerging phase 

diagram: 

 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 3.2. Constructing 

the phase diagram, step 2. 

 

 We are now in a position to assess the stability of the system. To do this, we ask 

two questions. First, if the arrows suggest a clockwise or counterclockwise movement in 

all four quadrants, the system exhibits oscillations. These may be stable oscillations, 

wherein the steady state is eventually reached as the value of the system spirals in to-

ward it; they may be unstable oscillations where the variables spiral out away from the 

steady state; or the system may be a stable oscillatory system, wherein the variables cir-

x
0

0=x

x is declining

0=y

1.4

10

y

y is declining

Actual movement is some 
weighted average of these two.

1

2
3

4
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cle around the steady state forever at a distance that depends on initial conditions. To 

explore further requires analytical techniques which we touch on briefly later. In most 

economic problems, however, oscillatory behavior is infrequent.  

 When the arrows do not suggest a clockwise or counterclockwise movement in all 

four quadrants, we ask the following question: for how many of the four regions indicated 

do the arrows allow the system to move toward the steady state? If the answer is none, 

the steady state is unstable – the steady state cannot be reached from any initial values. 

One must be careful here, because (a) it is easy to overlook that {x=0,y=0} might be a 

steady state for variables that cannot take on negative values, and (b), the system may 

exhibit oscillating patterns ). If the answer is four, the steady state is globally stable – it 

can be reached from any starting values.  

 Finally, if the answer is two, the system is said to be saddle path stable (you will 

not see systems where the answer is one or three). The term saddle path stability comes 

from an analogy with a marble left on the top of a saddle. There is one point on the sad-

dle where, if placed there, the marble does not move. This point corresponds to the 

steady state. There is a trajectory on the saddle, running down the highest points from 

front to back, with the property that if the marble is placed at any point on that trajec-

tory, then it rolls toward the steady state. But if the marble is placed at any other point, 

it will fall to the ground.  

 All saddle path stable steady states have two trajectories passing through the steady 

state. One, the stable arm (or the saddle path; nerds also like to call it the stable mani-

fold), has direction of motion toward the steady state; the other, the unstable arm, has 

movement away from it. Figure 3.3 plots these along with several trajectories for initial 

values that do not originate on the saddle path. None of these reach the steady state, but 

rather all go off into space somewhere (again, there may be constraints on the trajectories 

if the variables cannot become negative). Different trajectories never cross paths. 

 Saddle path stability is a common feature of many economic models – especially 

models of economic growth. Note that we cannot reach the steady state unless the start-

ing values lie on the stable arm. If we do not start on the stable arm, either x or y go off 

to (plus or minus) infinity. This is unlikely to be a good representation of most economies 
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or industries. So there must be an ability to jump to the stable arm. In most problems, 

this is feasible because one of the initial values (either x or y) can be freely chosen by, 

say, the firm or household being modeled. For example, x(t) may be a household's assets, 

while y(t) may be its consumption at time t. Then, consumption can be freely chosen for 

any value of x(0). (Note that the boundary conditions in this example include an initial 

value for x(0) but not for y(0)). 
  
 

 

 

 

 

 

 

 

 

 

FIGURE 3.3. Constructing 

the phase diagram, step 3. 
 

 The key question is: why would consumption (or whatever variable) be chosen so as 

to make the model jump to the stable arm? The answer is that any other choice leads us 

away from the steady state and off toward infinite or zero values, and it turns out that 

any of these paths violates some important economic constraint in the model. Recall our 

economic analysis of the forward solution to the household's dynamic budget constraint in 

Example 1.2. There we required that lim ( ) 0t a t→∞ = , and the interpretation was that 

this was optimal and feasible behavior. In the present example, we have a condition 
0.06lim ( ) 0t

t e x t−
→∞ = . This type of limiting condition is known as a transversality condi-

tion (consider the case where the planning horizon is finite at T; the transversality condi-

tion tells us how the variables must behave as they cross T – hence the name). In most 

economic models, the only trajectory in a saddle-path stable system that satisfies a well-

x
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defined transversality condition is the one that follows the stable arm, or saddle path. 

Violation of the transversality condition invariably involves some sub-optimal or infeasi-

ble behavior. 

 At this point, we will have to limit ourselves with this partial discussion of transver-

sality conditions. In the module on optimal control, where we learn how to analyze ex-

plicit optimization problems, we will discuss the various types of transversality conditions 

that exist, how to select among them for different optimization problems, and how to 

incorporate them into the solution.  

Analytical Tests for Stability 

Naturally, there is an analytical way to test for stability. We shall study this now and, as 

before, we limit our attention to a system of two equations. With more equations the 

principles are the same but the details are more complex. 

 Consider the following pair of equations: 

 1 1( ) ( ) ( ) ( )x t a x t b y t p t= + + , 

 2 2( ) ( ) ( ) ( )y t a x t b y t g t= + + , 

where a1, a2, b1, and b2 are constants. Our analysis of the single equation system suggests 

the forms of the solutions. However, it turns out that the terms p(t) and g(t) have no 

bearing on the analysis of stability, so let us set them to zero, 

 1 1( ) ( ) ( )x t a x t b y t= + , 

 2 2( ) ( ) ( )y t a x t b y t= + . 

 The system that has dropped the terms p(t) and g(t) is known as the homogeneous 

version of the system. All systems of homogeneous linear equations have solutions that 

take the form 

 ( ) rtx t Ae= , 

 ( ) rty t Be= , 

for some values of A, B, and r. The task is to find these values. 

 Substituting the proposed solutions into the differential equations gives 
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 1 1
rt rt rtrAe a Ae b Be= +  

 2 2
rt rt rtrBe a Ae b Be= + . 

 There is a standard methodology for solving a such a pair of equations. Divide 

through by ert, collect terms and write in matrix notation. 

 
1 1

2 2

0
0

a r b A
a b r B

    −     =    −        
. 

Now, the values of A and B depend on initial conditions. But as the proposed form of the 

solution must be true for any initial conditions, the coefficient matrix on the left hand 

side must be singular. Equivalently, its determinant must be zero: 

 
1 1

2 2
0

a r b
a b r
−

=− . 

That is, 

 1 2 2 1( )( ) 0a r b r a b− − − = , 

which can be rearranged to reveal an explicit quadratic equation in r 

 

 2
1 2 1 2 2 2( ) 0r r a b a b a b− + + − = . 

This characteristic equation has two roots, 

 21 2
1 1 2 1 1 2 1

1 ( ) 4( )
2 2

a b
r a b a b a b

+= + + − − , 

and 

 21 2
2 1 2 1 1 2 1

1 ( ) 4( )
2 2

a b
r a b a b a b

+= − + − − . 

There are several possibilities for what these roots look like, and each of them has differ-

ent implications for the stability of the system. 

 • Both roots are real numbers: 

a) 2 1 0r r≤ < . The system is stable. 

b) 1 2 0r r≥ > . The system is unstable. 

This is known as the characteristic equa-

tion of the system. 
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c)  1 20r r> > . The system is saddle path stable. 

d) One of the roots is zero. There may or may not be an equilibrium depending 

on initial conditions. 

• Both roots are complex numbers because 2
1 2 1 1 2 1( ) 4( ) 0a b a b a b+ − − <  (a complex 

number has the form 1r a b= + − , where a is the real part). The presence of com-

plex roots gives rise to a variety of interesting behaviors 

a) Zero real parts: You get elliptical trajectories that just go around 

the steady state without approaching it . 

b) Negative real parts. The trajectories spiral in towards the steady 

state. The steady state is often known as a stable focus. 

b) Positive real parts. The trajectories spiral out from the steady 

state. The steady state is often known as an unstable focus. 

 

EXERCISE 3.1 (Stability of a linear system). Solve and assess the stability of the 

following differential equations: 

 (a) ( ) ( ) ( )x t x t y t= +  and ( ) 4 ( ) ( )y t x t y t= + ; 

 (b) ( ) 3 ( ) 2 ( )x t x t y t= − +  and ( ) 2 ( ) 2 ( )y t x t y t= +− ; 

 (c) 1( ) ( ) ( )
2

x t x t y t= − +  and 1( ) ( ) ( )
2

y t x t y t= − − . 

Non-Constant Coefficients 

We have completed an analysis with constant coefficients, but frequently our coefficients 

take the form a1(x,y), and so on. In general, one cannot evaluate the global stability of 

such a problem. However, one can evaluate its local stability. To do so for a system such 

as  

 1 1( ) ( , ) ( ) ( , ) ( )x t a x y x t b x y y t= +  
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 2 2( ) ( , ) ( ) ( , ) ( )y t a x y x t b x y y t= + , 

we substitute in the steady state values, {x*,y*}, 

 1 1( ) ( *, *) ( ) ( *, *) ( )x t a x y x t b x y y t= +  

 2 2( ) ( *, *) ( ) ( *, *) ( )y t a x y x t b x y y t= + , 

and then evaluate in the same way as for a constant coefficient problem. 

Systems of Nonlinear Equations 

So far we have analyzed single linear equations, single nonlinear equations, and systems 

of linear equations. When it comes to analyzing a pair of nonlinear equations, we do not 

come across any new conceptual problems. 

• We try to limit ourselves to autonomous problems. 

• We generally frame the problem so there is a steady state. Sometimes this requires 

a bit of reframing. Imagine, for example that the long-run solution to a growth prob-

lem has consumption, c(t), and capital, k(t), growing at the constant exponential 

rate λ. Then, we can define the variables ( ) ( ) tc t c t e λ−=  and ( ) ( ) tk t k t e λ−= . Rewrit-

ing the model in terms of c  and k  now gives us a model in which there is a steady 

state. 

• We can analyze the problem graphically using exactly the same methods as for lin-

ear systems. Construct the loci of values for which each variable is constant and as-

sess the direction of change for each variable in each section of the graph (there may 

be more than four distinct sections when the nonlinear loci intersect multiple times; 

see Exercise 3.2 below).  

• We can linearize the two equations and assess analytically the local dynamics and 

stability of system. 
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EXERCISE 3.2 (Stability of a nonlinear system). The following system has two 

steady states: 

 2( ) ( ) ( )x t x t y t− +  

 ( ) ( ) ( ) 1y t x t y t= − +  

a) Construct the phase diagram for this system to fully characterize the system's 

behavior. b) Find the roots of the linearized system and verify your graphical 

characterization of the local properties of the system.  

 

EXERCISE 3.3 (Solow model with human capital). Mankiw, Romer and Weil 

(1992) analyze the following version of the Solow model: 

 ( ) ( ) ( )y t k t h tα β= , 

 ( ) ( ) ( ) ( )kk t s y t n g k tδ= − + + , 

 ( ) ( ) ( ) ( )hh t s y t n g h tδ= − + + . 

where y is output per effective unit of labor, h is human capital per effective unit 

of labor, k is physical capital per effective unit of labor, and sh and sk are the 

savings rates for physical and human capital. g is the rate of technical change, n 

of population growth and δ the depreciation rate.   

a) How do the parameters of the model affect the steady state income level, y*? 

b) Draw the phase diagram for this model and analyze the stability of the steady 

state(s).  

c) Mankiw, Romer and Weil point out that the Solow model makes quantitative 

predictions about the speed of convergence to the steady state. Specifically, a log 

linear approximation around the steady state yields 

 ( )ln( ( )
( )(1 ) ln( *) ln( ( ))

d y t
n g y y t

dt
δ α β= + + − − − . 

Derive this expression formally, and interpret it. 
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Further Reading 

Solutions to differential equations are among the first things that I forget with lack of 

use. It is useful therefore, to have a book or two on hand as a reference. I learnt differen-

tial equations from Boyce and DiPrima (1986), and I still think it’s a very good book, 

especially for learning more advanced aspects of differential equations than we have cov-

ered in this brief review. For many of you, the material in these lecture notes will see you 

through your immediate needs. If differential equations become part of your standard 

toolkit for your own modeling, then studying a book such as Boyce and DiPrima is un-

avoidable. I also own a copy of Cliff’s Quick Review of differential equations [Leduc 

(1995)], which is an excellent little reference to look up things you knew but had forgot-

ten. It is not useful for looking up things you never knew. 
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