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Abstract 

There has been a proliferation of proposed mental modules in an attempt to account for different 
cognitive functions but so far there has been no successful account of their integration. ACT-R 
(Anderson & Lebiere, 1998) has evolved into a theory that consists of multiple modules but also 
explains how they are integrated to produce coherent cognition. We discuss the perceptual-motor 
modules, the goal module, and the declarative memory module as examples of specialized systems 
in ACT-R. These modules are associated with distinct cortical regions. These modules place chunks 
in buffers that project to the basal ganglia, which implement ACT-R’s procedural system, a 
production system that responds to patterns of information in the buffers. At any point in time a 
single production rule is selected to respond to the current pattern. This serial bottleneck in 
production-rule selection enables the coordination that results in an organized control of cognition. 
Subsymbolic processes serve to guide the selection of rules to fire as well as the internal operations 
of (some) modules and much of learning involves tuning of these subsymbolic processes. We 
describe empirical examples that demonstrate the predictions of ACT-R’s modules and also 
examples that show how these modules result in strong predictions when they are brought together 
in models of complex tasks. These predictions require little parameter estimation and can be made 
for choice data, latency data, and brain imaging data. 
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Psychology, like other sciences, has seen an inexorable movement towards specialization. This is 
seen in the proliferation of specialty journals in the field but also in the proliferation of special-topic 
articles in this journal, which is supposed to serve as the place where ideas from psychology meet. 
Specialization is a necessary response to complexity in a field. Along with this move to a 
specialization in topics studied, there has been a parallel move toward viewing the mind as 
consisting of a set of specialized components. With varying degrees of consensus and controversy 
there have been claims for separate mechanisms for processing visual objects versus locations 
(Ungerleider & Miskin, 1982), for procedural versus declarative knowledge (Squire, 1987), for 
language (Fodor, 1987), for arithmetic (Dehaene, Spelke, Stanescu, Rinel, & Tsivkin, 1999), for 
categorical knowledge (Warrington & Shallice, 1984), and for cheater detection (Cosmides & 
Tooby, 2000), to name just a few. 
 
While there are good reasons for at least some of the proposals for specialized cognitive modules1, 
there is something unsatisfactory about the result—an image of the mind as a disconnected set of 
mental specialties. One can ask “how is it all put back together?” An analogy here can be made to 
the study of the body. Modern biology and medicine have seen a successful movement towards 
specialization responding to the fact that various body systems and parts are specialized for their 
function. However, because the whole body is readily visible, the people who study the shoulder 
have a basic understanding how their specialty relates to the specialty of those who study the hand 
and the people who study the lung have a basic understanding of how their specialty relates to the 
specialty of those who study the heart. Can one say the same of the person who studies 
categorization and the person who studies on-line inference in sentence processing or of the person 
who studies decision making and the person who studies motor control?  
 
Newell (1990) argued for cognitive architectures that would explain how all the components of the 
mind worked to produce coherent cognition. In his book he described the Soar system, which was 
his best hypothesis about the architecture. We have been working on a cognitive architecture called 
ACT-R (e.g., Anderson & Lebiere, 1998) which is our hypothesis about such an architecture. It has 
recently undergone a major development into a version called ACT-R 5.0 and this form offers some 
important new insights into the integration of cognition. The goal of this paper is to describe this 
new version of the theory and draw out its implications for the integration of mind. 
 
Before describing ACT-R and the picture it provides of human cognition, it is worth elaborating 
more on why a unified theory is needed and there is no better way to begin than with the words of 
Newell (1990):  
 
A single system (mind) produces all aspects of behavior. It is one mind that minds them all. 
Even if the mind has parts, modules, components, or whatever, they all mesh together to 
produce behavior. Any bit of behavior has causal tendrils that extend back through large 
parts of the total cognitive system before grounding in the environmental situation of some 
earlier times. If a theory covers only one part or component, it flirts with trouble from the 
start. It goes without saying that there are dissociations, independencies, impenetrabilities, 
and modularities. These all help to break the web of each bit of behavior being shaped by an 
unlimited set of antecedents. So they are important to understand and help to make that 
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theory simple enough to use. But they don’t remove the necessity of a theory that provides 
the total picture and explains the role of the parts and why they exist (pp. 17-18). 
 
Newell then goes onto enumerate many of the advantages that a unified theory has to offer; we will 
highlight a particular such advantage in the next subsection. 
 
Integration and Application 
 
The advantage we would like to emphasize is that unification enables tackling of important applied 
problems. If cognitive psychologists try to find applications for the results of isolated research 
programs they either find no takers or extreme misuse (consider, for instance, what has happened 
with research on left-right hemispheric asymmetries in Education). Applications of psychology, such 
as education, require that one attend to the integration of cognition. Educational applications do not 
respect the traditional divisions in cognitive psychology. For instance, high-school mathematics 
involves reading and language processing (for processing of instruction, mathematical expressions, 
and word problems), spatial processing (for processing of graphs and diagrams), memory (for 
formula and theorems), problem solving, reasoning, and skill acquisition. To bring all of these 
aspects together in a cognitive model one needs a theory of the cognitive architecture (Anderson, 
2002).  
 
Other domains of application are at least as demanding of integration. One of them is the 
development of cognitive agents (Freed, 2000). These applications involve assembling large 
numbers of individuals to interact; prominent among these are group training exercises. Another 
domain is multi-agent video games and other interactive entertainment systems. In many cases it is 
difficult to assemble the large number of individuals required to provide the desired experience for 
some individual. The obvious solution is to provide simulated agents in a virtual environment. In 
many cases it is critical that the simulated agents provide realistic behavior in terms of cognitive 
properties. The demand is to have entities that can pass a limited Turing test.2 Another application 
area which requires integrated treatment of human capabilities is human factors/human-computer 
interaction (see Byrne, 2003, for a review of cognitive architectures in this area). This field is 
concerned with behavior in complex tasks such as piloting commercial aircraft and using CAD 
systems. Such behavior involves the full spectrum of cognitive, perceptual, and motor capabilities.  
 
Salvucci’s Driving Example 
 
Salvucci’s (2001b) study of the effect of cell phone use on driving (see Figure 1) illustrates the use 
of cognitive models to test the consequences of artifacts and their interactions, and illustrates how 
integrated approaches and applied problems lead to a somewhat different and sterner measure of 
whether theory corresponds to data than typically applied in psychology. Of course, there have been 
a number of empirical studies on this issue and Salvucci subsequently conducted a number of these 
as a test of his model. However, he took as a challenge case whether he could predict a priori the 
effects of a cell phone’s use in a particular situation. If cognitive models are to be useful in this 
domain they should truly predict results rather than being fit to data. He already had developed an 
ACT-R model of driving (Salvucci, Boer, & Liu, 2001) and for this task he developed a model of 
using one of a variety of cell phones. He put these two models together to get predictions of the 
effects of driving on cell phone use and cell phone use on driving. Significantly, he did this without 
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estimating any parameters to fit the data because he had not yet collected any data. He was using 
established ACT-R parameters.3 
 
It should also be emphasized that his model actually controls a driving simulator and actually dials a 
simulated cell phone. While his ACT-R model does not have eyes it is possible to reconstruct what 
the eyes would see from the code that constructs the representation for a human driver in the 
simulator. Similarly while the model does not have hands it is possible to insert into the input stream 
the results that would happen had the wheel been turned or a button pressed. ACT-R has a theory of 
how perceptual attention encodes information from the screen and a theory of how manual actions 
are programmed. 
 
While Salvucci has subsequently looked at more complex cell phone use, in this study he was 
interested in dialing the phone. He compared four ways of dialing: full manual, speed manual, full 
voice, and speed voice. Figure 2a shows the effect of driving on the use of various cell phone modes. 
Figure 2b shows results that he obtained in a subsequent experiment. The correspondence between 
model and data is striking. Being able to predict behavior in the absence of parameter estimation is a 
significant test of a model. In many applications, it is also a practical necessity. 
 
Of course, there is relatively little interest in the effect of driving on cell phone use; rather the 
interest is in the converse. Salvucci collected a number of different measures of driving. Figure 3 
shows the results for mean lateral deviation from the center of the lane. Comparing the predictions in 
Figure 3a with the data in Figure 3b yields a classic glass half-full, half-empty result: The model 
succeeds in identifying that only the full-manual condition will have a significant impact on this 
measure. Much research in psychology would be satisfied with predicting the relative order of 
conditions. However, the absolute predictions of the model are way off. The ACT-R model is 
driving much better and would lead to unrealistic expectations about the performance of real drivers. 
This shows that ACT-R and Salvucci’s model are works in progress and indeed Salvucci has made 
progress since this report. However, the failings are as informative as the successes in terms of 
illustrating what a cognitive architecture must do. Note that Salvucci could have tried to re-estimate 
parameters to make his model fit—but the goal is to have predictions in advance of the data and 
parameter estimation. 
 
What a Cognitive Architecture Must be Able to Do 
 
More generally, what properties must a cognitive architecture strive for if it is to deliver on its 
promise to provide an integrated conception of mind? The example above illustrates that one will not 
understand human thought if one treats it as abstract from perception and action. As many have 
stressed (e.g., Greeno, 1989; Meyer & Kieras, 1997), human cognition is embodied and it is 
important to understand the environment in which it occurs and people’s perceptual and motor 
access to that environment. 
 
Applications, particularly involving the development of cognitive agents, stress two other 
requirements. First, the worlds that these agents deal with do not offer a circumscribed set of 
interactions as occurs in a typical experiment. They emphasize the need for robust behavior in the 
face of error, the unexpected, and the unknown. Achieving this robustness goal is not just something 
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required for development of simulated agents; it is something required of real humans and an aspect 
of cognition that laboratory psychology typically ignores.  
 
Second, Salvucci’s application stresses the importance of a priori predictions. Rather than just 
predicting qualitative results or estimating parameters to predict quantitative predictions the ideal 
model should predict absolute values without estimating parameters. Psychology has largely been 
content with qualitative predictions but this does not leave it in a favorable comparison to other 
sciences. Requiring a priori predictions of actual values without any parameter estimation seems 
largely beyond the accomplishments of the field but this fact should make us strive harder. Model 
fitting has been criticized (Roberts & Pashler, 2000) because of the belief that the parameter 
estimation process would allow any pattern of data to be fit. While this is not true, such criticisms 
would be best dealt with by simply eliminating parameter estimation.  
 
Perhaps the greatest challenge to the goal of a priori predictions is the observation that behavior in 
the same experiment will vary with factors such as population, instructions, and state of the 
participants (motivated, with or without caffeine, etc.). In other sciences, results of experiments vary 
with contextual factors (in chemistry with purity of chemicals, how they are mixed, temperature) and 
the approach is to measure the critical factors and have a theory of how they affect the outcome, 
without estimating situation-specific parameters. Psychology should strive for the same.4 
 
One major way to deal with such variability in results is to have a theory of learning that predicts 
how an individual’s past experience and the current experience shape behavior. Learning is at center 
stage in applications such as producing cognitive agents. A major criticism of the simulated agents 
that inhabit current environments is that they do not learn and adjust their behavior with experience 
like humans do. Of course, learning is also at center stage for any application concerned with 
education. 
 

The ACT-R 5.0 Architecture 
 
ACT-R claims that cognition emerges as the consequence of an interaction between specific units of 
procedural knowledge and specific units of declarative knowledge. The units of declarative 
knowledge are called chunks and represent things remembered or perceived. For instance, a chunk 
may represent the fact that 2+3=5 or that Boston is the capital of Massachusetts. For driving, chunks 
may represent numerous types of knowledge such as situational awareness (e.g. “there is a car to my 
left''), navigational knowledge (e.g. “Broad St. intersects Main St.''), or driver goals and intentions 
(e.g. “stop for gas at the next traffic light''). Procedural knowledge encodes the processes and skills 
necessary to achieve a given goal. The units of procedural knowledge are called productions, 
condition-action rules that “fire” when the conditions are satisfied and execute the specified actions. 
The conditions can depend on the current goal to be achieved, on the state of declarative knowledge 
(i.e. recall of a chunk), and/or the current sensory input from the external environment. Similarly, the 
actions can alter the state of declarative memory, change goals, or initiate motor actions in the 
external environment. Below is an English statement of a production rule from the driving model in 
Salvucci et al: 
 
  IF my current goal is to encode a distant perceptual point for steering 
   and there is a tangent point present (i.e., we are entering or in a curve) 
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 THEN shift attention to this point and encode its position and distance. 
 
The first test in the condition above would be a test of the goal and the second of the contents of the 
visual system. The action of this production requests that a visual representation be built. 
 
Figure 4 illustrates the basic architecture of ACT-R 5.0. There are a set of modules devoted to things 
like identifying objects in the visual field, controlling the hands, retrieving information from 
declarative memory, or keeping track of current goals and intentions. The central production system 
is not sensitive to most of the activity of these modules but rather can only respond to information 
that is deposited in the buffers of these modules. For instance, people are not aware of all the 
information in the visual field but only the object they are currently attending to. Similarly, people 
are not aware of all the information in long-term memory but only the fact currently retrieved. Each 
module makes this information available as a chunk in a buffer. As illustrated in Figure 4 the core 
production system can recognize patterns in these buffers and make changes to these buffers – as for 
instance, when it makes a request to perform an action in the manual buffer. In the terms of Fodor 
(1983) the information in these modules is largely encapsulated and they communicate only through 
the information they make available in their buffers. 
 
The theory is not committed to exactly how many modules there are but a number have been 
implemented as part of the core system. The buffers of these modules hold the chunks that the 
production system can respond to. Particularly important are the goal buffer, the retrieval buffer, two 
visual buffers, and a manual buffer. The goal buffer, which we associate with dorsolateral prefrontal 
cortex (DLPFC), keeps track of one’s internal state in solving a problem. The retrieval buffer, in 
keeping with the HERA model (Nyberg, Cabeza, & Tulving, 1996) and other recent neuroscience 
models of memory (e.g., Buckner, Kelley, & Petersen, 1999; Wagner, Pare-Blagoev, Clark, & 
Poldrack, 2001), is associated with the ventrolateral prefrontal cortex (VLPFC) and holds 
information retrieved from long-term declarative memory.5 This distinction between DLPFC and 
VLPFC is in keeping with a number of neuroscience results (Petrides, 1994; Fletches & Henson, 
2001; Thompson-Schill et al., 1997; Braver et al, 2001; Cabeza, et al, 2002). The other three 
modules/buffers are all based on Byrne and Anderson’s (2001) ACT-R/PM, which in turn is based 
on Meyer and Kieras’s (1997) EPIC. The manual buffer is responsible for control of the hands and is 
associated with the adjacent motor and somatosensory cortical areas devoted to controlling and 
monitoring hand movement. One of the visual buffers, associated with the dorsal “where” path of the 
visual system, keeps track of locations while the other, associated with the ventral “what” system, 
keeps track of visual objects and their identity. The visual and manual systems are particularly 
important in many tasks that ACT-R has dealt with like a participant scanning a computer screen, 
typing, and using a mouse at a keyboard. There also are rudimentary vocal and aural systems.   
 
Each of the buffers can hold a relatively small amount of information. Basically, the content of a 
buffer is a chunk. Chunks that were former contents of buffers are stored in declarative memory. In 
this way ACT-R can remember, for instance, objects it has attended to or solutions to goals that it 
has solved.  
 
The buffers are conceptually similar to Baddeley’s (1986) working memory “slave” systems. While 
the central cognitive system can only sense the buffer contents, the contents of chunks that appear in 
these buffers can be determined by rather elaborate systems within the modules. For instance, the 
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chunks in the visual buffers represent the products of complex processes of the visual perception and 
attention systems. Similarly, the chunk in the retrieval buffer is determined by complex long-term 
memory retrieval processes, as we will describe. 
 
Bringing the Buffers Together 
 
ACT-R 5.0 includes a theory of how these buffers interact to determine cognition. The basal ganglia 
and associated connections are thought to implement production rules in ACT-R. The cortical areas 
corresponding to these buffers project to the striatum, part of the basal ganglia, which we 
hypothesize performs a pattern-recognition function (in line with other proposals e.g., Amos 2000; 
Frank, Loughry, & O'Reilly 2000; Houk & Wise, 1995; Wise, Murray, & Gerfen, 1996). This 
portion of the basal ganglia projects to a number of small regions known collectively as the 
pallidum. The projections to pallidum are substantially inhibitory and these regions in turn inhibit 
cells in the thalamus, which projects to select actions in the cortex. Graybiel and Kimura (1995) have 
suggested that this arrangement creates a "winner-lose-all" manner such that active striatal 
projections strongly inhibit only the pallidum neurons representing the selected action (which then 
no longer inhibit the thalamus from producing the action). This is a mechanism by which the 
winning production comes to dominate. According to Middleton and Strick (2000), at least 5 regions 
of the frontal cortex receive projections from the thalamus and are controlled by this basal ganglia 
loop. These regions play a major role in controlling behavior. 
 
Thus, the basal ganglia implement production rules in ACT-R by the striatum serving a pattern-
recognition function, the pallidum a conflict-resolution function, and the thalamus controlling the 
execution of production actions. Since production rules represent ACT-R’s procedural memory this 
also corresponds to proposals that basal ganglia subserve procedural learning (Ashby & Waldron, 
2000; Hikosaka Nakahara, Rand, Sakai, Lu, Nakamura, Miyachi, & Doya, 1999; Saint-Cyr, Taylor, 
& Lang, 1988). An important function of the production rules is to update the buffers in the ACT-R 
architecture. The well-characterized organization of the brain into segregated, cortico-striatal-
thalamic loops is consistent with this hypothesized functional specialization. Thus, the critical cycle 
in ACT-R is one in which the buffers hold representations determined by the external world and 
internal modules, patterns in these buffers are recognized and a production fires, and the buffers are 
then updated for another cycle. The assumption in ACT-R is that this cycle takes about 50 msec to 
complete – this estimate of 50 msec as the minimum cycle time for cognition has emerged in a 
number of cognitive architectures including Soar (Newell, 1990), CAPS (Just & Carpenter, 1992), 
and EPIC (Meyer & Kieras, 1997). 
 
The architecture assumes a mixture of parallel and serial processing. Within each module there is a 
great deal of parallelism. For instance, the visual system is simultaneously processing the whole 
visual field and the declarative system is executing a parallel search through many memories in 
response to a retrieval request. Also, the processes within different modules can go on in parallel and 
asynchronously. However, there are also two levels of serial bottlenecks in the system. First, the 
content of any buffer is limited to a single declarative unit of knowledge, a chunk. Thus, only a 
single memory can be retrieved at a time or a single object encoded from the visual field. Second, 
only a single production is selected at each cycle to fire. In this second respect, ACT-R 5.0 is like 
Pashler’s (1998) central bottleneck theory and quite different, at least superficially, from the other 
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prominent production system conceptions (CAPS, EPIC, and Soar). The end of the paper will return 
to the significance of these differences. 
 
Subsequent sections of the paper will describe the critical components of this model – the 
perceptual-motor system, the goal system, the declarative memory, and the procedural system. 
However, now that there is a sketch of what ACT-R 5.0 is, we would like to close this section by 
noting the relationship between the ACT-R 5.0 system described in Figure 4 and earlier ACT 
systems. 
 
Brief History of the Evolution of the ACT-R Theory 
 
ACT systems have historical roots in the HAM theory (Anderson & Bower, 1973) of declarative 
memory. ACT was created by marrying this theory with a production system theory of procedural 
memory (Newell, 1973b). Significant earlier embodiments of that theory were ACT-E (Anderson, 
1976) and ACT* (Anderson, 1983). By the time ACT* had been formulated, a distinction had been 
made between a symbolic and subsymbolic level of the theory. The symbolic level consisted of the 
formal specification of the units of declarative memory (chunks) and the units of procedural memory 
(productions). The subsymbolic level consisted of the specification of continuously varying 
quantities that controlled the access to chunks and productions. In the case of declarative memory 
these quantities have always been referred to as activations, which reflect the past patterns of usage 
of the chunk. In the case of procedural memory the subsymbolic quantities have had various names 
but are currently called utilities that reflect the reinforcement history of the productions. 
 
ACT-R (Anderson, 1993) emerged as a result of marrying ACT with the rational analysis of 
Anderson (1990) that claimed that cognition was adapted to the statistical structure of the 
environment. The insight was that one could use rational analysis to design the subsymbolic 
computations that controlled access to information. According to rational analysis, the subsymbolic 
components were optimized with respect to demands from the environment, given basic 
computational limitations. 
 
A somewhat incidental aspect of the initial formulation of ACT-R in 1993, called ACT-R 2.0, was 
that a running simulation of the system was distributed. Owing to the increased power of computers, 
the relatively new standardization of Common Lisp in which ACT-R 2.0 was implemented, and the 
growth of understanding about how to achieve an effective and efficient simulation, this was the first 
widely available and functional version of the ACT architecture. A worldwide user community arose 
around that system. The system was no longer the private domain of our theoretical fancies and had 
to serve a wide variety of needs and serve as the basis of communication among researchers. This 
had a major catalytic effect on the theory and served to drive out the irrelevant and awkward 
assumptions. ACT-R 4.0 (Anderson & Lebiere, 1998) emerged as a cleaned-up version of ACT-R 
2.0. It includes an optional perceptual-motor component called ACT-R/PM (Byrne & Anderson, 
1998). While there are disagreements about aspects of ACT-R 4.0 in the community, it has become a 
standard for research and exchange. ACT-R 5.0 reflects a continued development of the theory in 
response to community experience. 
 
Over 100 models have been published by a large number of researchers based on the ACT-R 4.0 
system. This productivity is a testimonial to the intellectual gain to be had by a well-working 
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integrated system. Table 1 summarizes the research areas covered by these models; detailed 
information is available from the web site act-r.psy.cmu.edu. A major commitment in the 
development of ACT-R 5.0 is that the models developed in 4.0 still work so that 5.0 constitutes 
cumulative progress.  
 
Differences between ACT-R 4.0 and 5.0 
 
ACT-R 5.0 differs from ACT-R 4.0 in four principal ways. First, there have been some 
simplifications in the parameters and assumptions of the architecture. Some assumptions of ACT-R 
4.0, while they seemed good ideas at the time, were not being exploited in the existing models and 
were sometimes being actively avoided. These were eliminated.6 Also as more models were 
developed it became apparent that there were some constraints on the parameter values that worked 
across models. These parameter constraints have moved us closer to the goal of parameter-free 
predictions and enabled an effort like Salvucci’s described earlier. 
 
Second, the tentative brain mapping illustrated in Figure 4 was not part of ACT-R 4.0. However, it 
seemed that ACT-R could be mapped onto the segregated, cortico-striatal-thalamic loops that had 
been proposed by a number of theorists, quite outside of ACT-R. Given this mapping it is now 
possible to deploy neuroimaging data to make novel, demanding tests of the ACT-R theory. 
 
Third, a key insight that this mapping onto the brain brought with it was the module-buffer 
conception of cognition. This enabled a more thorough integration of the cognitive aspects of ACT-
R with the perceptual-motor components of ACT-R/PM. This complete integration and consequent 
embodiment of cognition is a significant elaboration of ACT-R 5.0 over ACT-R 4.0. Within most of 
the ACT-R community, which was relatively content with ACT-R 4.0 and which is not concerned 
with data from cognitive neuroscience, it is this module-buffer conception that has received the most 
attention and praise.  
 
Fourth, there now is a mechanism in ACT-R for learning new production rules, which has 
participated in a number of successful models of skill acquisition. While other versions of ACT have 
had production-rule learning mechanisms that worked in modeling circumscribed experimental tasks 
they failed to work in large-scale simulations of skill learning. As we will describe in the section on 
ACT-R’s procedural system, the successful definition of a general production-system learning 
mechanism also depended on the move to the buffer-based conception of production rule execution. 
 
These changes have not been without consequence for the theory. One of the consequences has been 
the treatment of declarative retrieval. Information retrieved from long-term declarative memory is an 
important part of the condition of production rules. For instance, in trying to simplify a fraction like 
4/12 a critical test is whether there is a multiplication fact asserting that the numerator is a factor of 
the denominator (i.e. 4x3 =12 in this case). In all previous versions of ACT this test was performed 
by a single production requesting a retrieval (e.g., 4 x ? = 12), then waiting to see if the retrieval 
request was successful, and, if it was, examining what chunk was retrieved. This was implemented 
by an awkward process in which all production processing was suspended until the retrieval effort 
ran to completion. In contrast, in ACT-R 5.0 one production can make a retrieval request in its action 
and other productions can be fired while the retrieval request is being processed. When the retrieval 
is complete the result will appear in the retrieval buffer and another production can harvest it and 
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take appropriate action. This is perfectly analogous to how switches of visual attention functioned in 
ACT-R/PM where one production would make a request that attention move to an object and 
another production will respond to the result when attention has switched. This makes the retrieval 
system interruptible and there is evidence (Byrne, 2000) that retrievals can be interrupted. 
 
Another significant consequence of the changes concerns the treatment of goals. In ACT-R 4.0 the 
condition of each production rule had to specify a test of the goal. The system was widely perceived 
as too goal-focused and not sufficiently interruptible. Now, in ACT-R 5.0 specification of the goal is 
optional in a production rule just as the specification of the contents of any buffer is optional. 
Different rules can refer to different subsets of the buffers and whatever rule has the highest utility 
will execute. Thus, new information inserted into the perceptual buffers from the environment can 
evoke rules that take precedence over rules that respond to the current goal. 
 
For purposes of organizing a more detailed exposition of the theory and relevant evidence it is useful 
to break the system into its four major pieces – the perceptual-motor system, the goal system, the 
declarative system, and the procedural system. These will form the next four major sections of the 
paper. 
 

The Perceptual-Motor System 
 
As a matter of division of labor, not as a claim about significance, ACT-R historically was focused 
on higher-level cognition and not perception or action. Perception and action involve systems every 
bit as complex as higher-level cognition. Dealing with cognition had seemed quite enough. 
However, this division of labor tends to lead to a treatment of cognition that is totally abstracted 
from the perceptual-motor systems and there is reason to suppose that the nature of cognition is 
colored by the systems it interacts with and that there are not clean breaks between perception, 
central cognition, and action. In some laboratory tasks and a great many applied tasks much of the 
timing and details of the behavior depend on the perceptual-motor systems. Thus, we cannot achieve 
our goal of a priori predictions without some consideration of the perceptual and motor processes. 
 
With their EPIC architecture, Meyer and Kieras (1997) developed a successful strategy for relating 
cognition to perception and action without dealing directly with real sensors or real effectors and 
without having to embed all the detail of perception and motor control. This is a computational 
elaboration of the successful Model Human Processor system defined by Card, Moran, and Newell 
(1983) for human-computer-interaction applications. This approach involves modeling, in 
approximate form, the basic timing behavior of the perceptual and motor systems, the output of the 
perceptual systems, and the input to the motor system. We have adopted exactly the same strategy 
and to a substantial degree just re-implemented certain aspects of the EPIC system. Undoubtedly, 
this strategy of approximation will break down at points but it has proven quite workable and has 
had a substantial influence on the overall ACT system. We would hope that the architecture that has 
emerged would be compatible with more complete models of the perceptual and motor systems. 
 
Byrne and Anderson (1998, 2001) took much of the EPIC perceptual-motor system and embedded it 
in an extension to ACT-R 4.0 called ACT-R/PM. That system has greatly influenced the design of 
ACT-R 5.0 where many of the modules in 5.0 were originally ACT-R/PM modules. The major 
difference between ACT-R/PM’s perceptual-motor machinery and EPIC’s is in the theory of the 
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visual system. The ACT-R visual system separates vision into two modules, each with an associated 
buffer. A visual-location module and buffer represent the dorsal “where” system and a visual-object 
module and buffer represent the ventral “what” system. ACT-R implements more a theory of visual 
attention than a theory of perception in that it is concerned with what the system chooses to encode 
in its buffers, but not the details of how different patterns of light falling on the retina yield particular 
representations. In addition, on the issue of whether attention is object-based or location-based it 
implements the emerging conclusion that it is both (e.g., Egly, Driver, & Rafal, 1994; Humphreys, 
Olson, Komani, & Riddoch, 1996; Vecera & Farah, 1994).  
 
When a production makes a request of the “where” system, the production specifies a series of 
constraints, and the “where” system returns a chunk representing a location meeting those 
constraints. Constraints are attribute-value pairs which can restrict the search based on visual 
properties of the object (such as “color: red”) or the spatial location of the object (such as “screen-y 
greater-than 153”). This is akin to so-called “pre-attentive” visual processing (Triesman & Gelade, 
1980) and supports visual pop-out effects. For example, if the display consists of one green object in 
a field of blue objects, the time to determine the location of the green object is constant regardless of 
the number of blue objects. 
 
A request to the “what” system entails providing a chunk representing a visual location, which will 
cause the what system to shift visual attention to that location, process the object located there, and 
generate a declarative memory chunk representing the object. The system supports two levels of 
granularity here, a coarse one where all attention shifts take a fixed time regardless of distance, and a 
more detailed one with an eye-movement model. For the fixed-time approximation, this parameter is 
set at 185 msec in ACT-R and serves as the basis for predicting search costs in situations where 
complete object identification is required.7 However, ACT-R does not predict that all visual searches 
should require 185 ms/item. Rather, it is possible to implement in ACT-R versions of feature-guided 
search that can progress more rapidly. There is considerable similarity between the current 
implementation of visual attention in ACT-R and Wolfe’s GS theory (Wolfe, 1994) and indeed we 
plan to adapt Wolfe’s GS into ACT-R. Just to make clear the contrast with EPIC, the EPIC visual 
system does not implement the what-where distinction and cannot do feature-based searches. 
 
The more detailed version is based on Salvucci’s (2001a) EMMA system, and is based on a number 
of models of eye-movement control in reading, particularly the E-Z Reader model (Reichle, 
Pollatsek, Fisher, and Rayner 1998; Reichle, Rayner, & Pollatsek 1999). In EMMA, the time 
between the request for a shift of attention and the generation of the chunk representing the visual 
object of that location is dependent on the eccentricity between the requested location and the 
current point of gaze, with nearer objects taking less time than farther objects. The theory assumes 
that eye movements follow shifts of attention and that the ocular-motor system programs a 
movement to the object. If the object is not encoded before that program is complete there will be an 
eye movement. According to this model eye movements typically lag visual attention by about 200 
msec because it takes that long to program and execute an eye movement. Salvucci has tested this 
theory in developing the driver model that we described earlier. Again, to make clear the differences 
with EPIC, EPIC does not distinguish between eye movements and visual attention. 
 
A Model for Menu Selection 
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Menu selection turns out to be an interesting domain for testing ideas about visual search. Nilsen 
(1991) provided data for a task that involved selecting a digit from a menu of the digits 1-9 randomly 
arrayed vertically. The data concerned the times for participants to move a mouse from the home 
position above the menu to the target item. Figure 5 shows the time for this action as a function of 
the serial position of the item in the menu. The best-fitting linear function to these data has a slope of 
103 msec per position. 
 
These results depend on the fact that the items in the menu are ordered randomly. Since the 
participant does not know where the target item is, a critical component to latency has to be a visual 
search of the list looking for the target item. Participants tend to move the mouse down as they scan 
for the target (mouse movement and eye scanning data confirm simultaneous movement). Thus, 
once they identify the target, the distance to move the mouse tends not to vary much with serial 
position. Thus, when the target position is unknown, time is dominated by visual search. In contrast, 
if the position of the item is known in advance (as in a fixed order menu) the critical latency 
component should be a Fitts law (Fitts, 1954) description of the motion. In this case time would be a 
logarithmic function of distance.  Nilsen has data from such a condition to confirm this relationship. 
 
An ACT-R model has been developed for this task (Anderson, Matessa, & Lebiere, 1997) that 
assumes that, given a target, participants selected one of its features and scanned down the menu for 
the first item with that feature. If this was the target they stopped. If not they scanned for the next 
item that contained the target feature. The two critical productions in this model were: 
 
Hunt-Feature 
 IF the goal is to find a target that has feature F 
 and there is an unattended object below the current location with feature F 
  THEN move attention to the closest such object. 
 
Found-Target 
 IF the goal is to find a target 
 and the target is at location L 
  THEN move the mouse to L and click. 
 
The first production Hunt-Feature moves attention down looking at objects that have a feature in 
common with the target. The movement of attention to an object will cause its identity to be 
encoded. If it is an instance of the target letter Found-Target can apply. The production Found-
Target will retrieve the location of the target and move the mouse to that location. 
 
The time to reach a target will be a function of the number of digits that precede it and have the 
selected feature. Given the McClelland-Rumelhart feature set (McClelland & Rumelhart, 1981), 
there is a .53 probability that a randomly selected feature of one number will overlap with the feature 
set of another number. Using the 185 msec for a shift of attention ACT-R predicts 185*.53 = 98 
msec per menu item, which is close to the slope, 103 msec., in the Nilsen data. The fit of the ACT-R 
model to the data is illustrated in Figure 5. This is a striking demonstration of how the ACT-R theory 
can be used to predict new data sets using old parameters.8 
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This theory also makes a non-obvious prediction which is that menu search should be faster to the 
extent that the target tends to have different features than foils, and this prediction has been 
confirmed. For instance, Anderson, Matessa, and Lebiere (1997) report an experiment showing that 
menu search is faster when searching for a letter among digits than a letter among letters (letters tend 
not to overlap in features as much with digits as they do with other letters). Anderson et al. also 
found that menu search for numbers is faster among letters than among numbers.  
 
Subsequent research on this task (Byrne, Anderson, Douglass, & Matessa, 1999), collecting eye 
movements and relating them to search times, has shown that the control process is more complex 
than described in the simple model above. Byrne (2001) presents a more sophisticated learning-
driven ACT-R model which captures many of these complexities. 
 
ACT-R Modules in Parallel 
 
The ACT-R model described by Byrne and Anderson (2001) for the Schumacher et al. (1997; also 
reported in Schumacher et al. 2001) experiment is a useful illustration of how the perceptual-motor 
modules work together. It involves interleaving multiple perceptual-motor threads and has little 
cognition to complicate the exposition. The experiment itself is interesting because it is an instance 
of perfect time-sharing. It involved two simple choice reaction time tasks: 3-choice (low-middle-
high) tone discrimination with a vocal response and 3-choice (left-middle-right) visual position 
discrimination with a manual response. Both of these tasks are simple and can be completed rapidly 
by experimental participants. Schumacher, et al. (1997) had experimental participants train on these 
two tasks separately, and they reached average response times of 445 ms for the tone discrimination 
task and 279 ms for the location discrimination task. Participants were then asked to do the two tasks 
together with simultaneous stimulus presentation and encouraged to overlap processing of the two 
stimuli. In the dual-task condition, they experienced virtually no dual-task interference—283 ms 
average response time for the visual-manual task and 456 ms average response time for the auditory-
vocal task. 
 
We constructed an ACT-R/PM model of the two tasks and the dual-task. A schedule chart for the 
dual-task model is presented in Figure 6. Consider the visual-motor task first. There is a quick 50 
msec detection of the visual position (does not require object identification), a 50 msec production 
execution to request the action, followed by the preparation and execution of the motor action. With 
respect to the auditory-vocal task, there is first the detection of the tone (but according to the 
parameters inherited from EPIC this takes longer than detection of visual position), then a 
production executes requesting the speech, and then is a longer but analogous process of executing 
the speech. According to the ACT-R model, there is nearly perfect time sharing between the two 
tasks because the demands on the central production system are offset in time. Figure 7 presents the 
predictions of the ACT-R model for the task. There is an ever-so-small dual-task deficit because of 
variability in the completion times for all the perceptual-motor stages, which occasionally results in 
a situation where the production for the auditory-vocal task must wait for the completion of the 
visual-motor production. 
 
This model nicely illustrates the parallel threads of serial processing in each module, which is a 
hallmark of EPIC and ACT-R. Figure 6 also illustrates that the central production-system processor 
is also serial, a feature that distinguishes ACT-R from EPIC. However, in this experiment there was 
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almost never contention between the two tasks for access to the central processor (or for access to 
any other module). 
 

The Goal Module 
 
While human cognition is certainly embodied, its embodiment is not what gives human cognition its 
advantage over that of other species. Its advantage depends on its ability to achieve abstraction in 
content and control. Consider a person presented with the numbers 64 and 36. As far as the external 
stimulation is concerned, this presentation affords the individual a variety of actions – adding the 
numbers, subtracting them, dialing them on a phone, etc. Human ability to respond differently to 
these items depends on knowledge of what the current goal is and to be able to sustain cognition in 
service of that goal without any change in the external environment. Suppose the goal is to add the 
numbers. Assuming that one does not already have the sum stored one will have to go through a 
series of substeps in coming up with the answer and to do this one has to keep one’s place in 
performing these substeps and keep track of various partial results such as the sum of the tens digits. 
The goal module has this responsibility of keeping track of what these intentions are so that behavior 
will serve that goal. The goal buffer that holds this representation of intention is associated with the 
dorsolateral prefrontal cortex. A classic symptom of prefrontal damage is contextually inappropriate 
behavior such as when a patient responds to the appearance of a comb by combing their hair. 
DLPFC has also been known to track amount of subgoaling in tasks like Tower of London 
(Newman, Carpenter, Varma, & Just, in press) and Tower of Hanoi (Fincham, Carter, vanVeen, 
Stenger & Anderson, 2002).  
 
Modeling the Tower of Hanoi Task 
 
The Tower of Hanoi task (Simon, 1975) has been a classic paradigm for behavioral studies of goal 
manipulations. A number of the most effective strategies for solving this problem require that one 
keep a representation a set of subgoals. We (Anderson & Douglass, 2001) have explicitly trained 
participants to execute a variant of what Simon (1975) called the sophisticated perceptual strategy in 
which one learns to set subgoals in order to place disks – thus, a participant might reason “In order to 
move disk 4 to peg C I have to move disk 3 to peg B, and in order to do this I have to move disk 2 to 
peg C, and in order to do this I have to move disk 1 to peg B” . In this example the participant must 
keep track of goals to move four disks and this “stack” of goals can be represented “4-3-2-1”. 
Numerous behavioral studies have shown that accuracy and latency is strongly correlated with 
maintaining this goal stack.  
 
Fincham et al. performed a study to see how various brain areas would respond to the task. Of 
particular interest, given the correspondences in Figure 4, was how the dorsolateral prefrontal cortex 
responded to the need to maintain subgoals. They performed an experiment in which participants 
had to make a move every 16 seconds (with intervening time filled in by a distractor activity). Figure 
8 displays the percent rise in activation found in the right DLFPC for each of a sequence of 8 moves. 
The labels on the abscissa indicate the goals that participants had to maintain for each move. Figure 
8 also displays the predictions of a model that says each goal maintained should increase the percent 
rise by .05. The correspondence is quite striking. 
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The goal module also serves to create new abstract chunks. For instance, after the sum of 36 and 64 
has been calculated the goal buffer will hold the fact that 36+64 = 100. The chunk in the goal buffer 
holding this information will be stored in declarative memory. Chunks formed in any buffer will be 
stored in long-term memory but the goal module is the only source of abstract chunks. This process 
of storing results of past goals allows the system to later retrieve these results and so bypass the need 
to calculate the answer. In this way the goal system serves to enable problem-solving by retrieval as 
described by Logan (1988). 
 
One can build chunks in the goal buffer that contain other chunks as sub-elements. So the goal 
module is the only system that can create complex hierarchies of chunks where one chunk is part of 
another. Language processing is a major consumer of this capability. Every sentence that comes in 
creates a comprehension goal which, if successful, will result in a hierarchical representation of the 
meaning of that sentence (Anderson, Budiu, & Reder, 2001). Others have also identified a general 
structure-building function for dorsolateral cortex and also for the inferior frontal gyrus (Newman, 
Just, Keller, & Carpenter, submitted). 
 
The processing of goals seems to be what separates humans from other animals. Goal processing 
provides much of the ability to form abstract and hierarchical representations that Marcus (2001) has 
identified as key elements to human cognition. The ACT-R model of instruction taking that we will 
describe later makes heavy use of the goal system. 
 
An issue of some concern to the ACT-R community has been how to think about subgoaling. ACT-
R 4.0 had a goal stack that remembered past intentions and could reset the goal to these when the 
current goal had been achieved. It now appears that goals are simply stored in declarative memory 
and later retrieved as the participant chooses to work on them (Anderson & Douglass, 2001; 
Altmann & Trafton, 2002). Memory for such goals appears to obey all the properties of other 
declarative memories. This adds further evidence to the view that in many ways the goal system and 
declarative memory are strongly coordinated. The HERA (Nyberg, Cabeza, & Tulving, 1996) model 
holds that declarative storage and retrieval processes are organized from the prefrontal structures 
close to those that maintain goal representations. 
 

The Declarative Memory Module 
 
The declarative memory module can retrieve records of chunks that were formed in the various 
perceptual-motor buffers but also more abstract chunks that were formed in the goal buffer. ACT-R 
makes chunks active to the degree that past experiences indicate that they will be useful at this 
particular moment. Using a common formula in activation theories, the activation of a chunk is a 
sum of a base-level activation, reflecting its general usefulness in the past, and an associative 
activation, reflecting its relevance to the current context. The activation of a chunk i is defined as: 
 

Ai = Bi + ∑
j

Wj Sji   Activation Equation 

 
where Bi is the base-level activation of the chunk i, the Wj’s reflect the attentional weighting of the 

elements that are part of the current goal, and the Sji’s are the strengths of association from the 



1/13/03 

 17

elements j to chunk i. Figure 9 displays the chunk encoding that 8+4=12 and its various quantities 
(with Wj’s for four and eight, assuming that they are sources).  The activation of a chunk controls 

both its probability of being retrieved and its speed of retrieval. We will develop the mapping of 
activation to speed of retrieval in the example below. 
 
According to the ACT-R theory the base-level activation of a memory trace rises and falls with 
practice and delay according to the equation: 
 

Bi = ln tj
−d

j=1

n
∑

 

 
  

 

 
  Base-Level Learning Equation 

 
Where tj is the time since the jth practice of an item.  This equation is based on the rational analysis 
of Schooler and Anderson (1991) studying how the pattern of past occurrences of an item predicts 
the need to retrieve it.  They found that the above equation reflects the log odds an item will reoccur 
as a function of how it has appeared in the past.  In developing ACT-R, we assumed that base-level 
activation would track log odds.  Each presentation has an impact on odds that decays away as a 
power function (producing the power law of forgetting) and different presentations add up (it turns 
out producing the power law of practice—see Anderson, Fincham & Douglass, 1999).  In the ACT-
R community .5 has emerged as the default value for the parameter d over a large range of 
applications.  This base-level learning equation has been the most successfully and frequently used 
part of the ACT-R theory. 
 
Modeling a Fan Experiment 
 
Historically, the ACT theory of declarative retrieval has focused on tasks that require participants to 
retrieve facts from declarative memory. The second experiment in Pirolli and Anderson (1985) is a 
good one to illustrate the contributions of both base-level activations (Bi) and associative strengths 

(Sji) to the retrieval process. This was a fan experiment (Anderson, 1974) in which participants were 

to try to recognize sentences such as "A hippie was in the park". The number of facts (i.e., fan) 
associated with the person (e.g., hippie) could be either 1 or 3 and the fan associated with the 
location could be either 1 or 3. Participants practiced recognizing the same set of sentences for 10 
days. Figure 10 illustrates how to conceive of these facts in terms of their chunk representations and 
subsymbolic quantities. Each oval in Figure 10 represents a chunk that encodes a fact in the 
experiment. As a concept like hippie is associated with more facts, there are more paths emanating 
from that concept and, according to ACT-R, the strengths of association Sji will decrease.  

 
Figure 11 illustrates how the activations of these chunks vary as a function of fan and amount of 
practice. There are separate curves for different fans, which correspond to different associative 
strengths (Sji). The curves rise with increasing practice because of increasing base-level activation. 

Figure 12 illustrates the data from this experiment. Participants are slowed in the presence of greater 
fan but speed up with practice. The practice in this experiment gets participants to the point where 
high-fan items are recognized more rapidly than low-fan items were originally recognized. Practice 
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also reduces the absolute size of the effect of fan but it remains substantial even after 10 days of 
practice. 
 
According to the ACT-R theory the effect of fan is to reduce the strength of association, Sji, from a 

term like hippie to the chunk encoding a fact. As argued in Anderson and Lebiere (1998), the 
strength of association can be calculated by S - ln(fan) where S is a parameter to be estimated. In 
Anderson and Reder (1999), we used values of S around 1.5 in fitting the data in that paper and this 
is the value used for fitting the data in Figure 12. The effect of practice is to increase the base-level 
activation of the facts. According to Anderson and Lebiere (1998), an item with n units of practice 
will have an approximate base-level activation of .5*ln(n) and this is what was used in fitting the 
data. Figure 11 shows the activation values that are gotten from combining the base-level activation 
with the associative activation according to the Activation Equation, setting the weights, Wj, in this 

experiment to .333 (as used in Reder and Anderson, because each of the three content terms (hippie, 
in, park) in the sentence gets an equal 1/3 source activation). These are parameter-free predictions 
for the activation values. As can be seen, they increase with practice with low-fan items having a 
constant advantage over high-fan items. 
 
According to the ACT-R theory these activation values can be mapped onto predicted recognition 
times according to the equation: 
 

Recognition Time = I + Fe-Ai 
 
where I is an intercept time reflecting encoding and response time and F is a latency scale factor. 
Thus, fitting the model required estimating two parameters and these were I = 597 ms. and F = 890 
ms., which are quite similar to the parameters estimated in Reder and Anderson (1999). The value of 
I is also quite reasonable as the time to encode the words and emit a response (key press). The 
overall quality of fit is good with a correlation of .986. Moreover, this correlation does not depend 
on the parameter estimates I and F but only on e-Ai , which means that it measures a parameter-free 
prediction of ACT-R. The effect of I and F is only to scale this critical quantity onto the range of the 
latencies—although, as noted earlier with respect to Salvucci’s predictions, having a priori 
constraints on such scaling parameters can be critical. 
 
While this example illustrates the ACT-R theory of declarative memory it is by no means the only 
example. This part of the theory has been perhaps the most successful enjoying applications to list 
memory (Anderson, Bothell, Lebiere, & Matessa, 1998), implicit memory (Lebiere & Wallach, 
2001), category learning (Anderson & Betz, 2002), sentence processing (Anderson, Budiu & Reder, 
2001), and individual differences (Lovett, Daily & Reder, 2000) among other domains. The theory 
of declarative memory gives a natural account of the explicit-implicit distinction. Explicit memories 
refer to specific declarative chunks that can be retrieved and inspected. Implicit memory effects 
reflect the subsymbolic activation processes that govern the availability of these memories. This is 
substantially the same theory of memory as that of Reder’s SAC theory (Reder & Gordon, 1997). 
 
An interesting development in ACT-R 5.0 has been the discovery that the declarative memory 
component has come to behave like other sensory buffers.  Retrieving a memory from the past is a 
similar process to attending to an object from the visual display; that is, retrieving a memory is like 
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perceiving the past. Indeed the equations used by Wolfe (1994) in his theory of visual attention are 
like the equations used in ACT-R’s declarative memory for retrieving a chunk. Both combine a 
bottom-up effect (in ACT-R’s case base-level activations; in Wolfe’s case features being searched 
for) with a contextually driven top-down component (in ACT-R’s case associative component; in 
Wolfe’s case context-determined salience). 
 

Procedural Memory 
 
As described so far, ACT-R consists of a set of modules that progress independently of one another. 
This would be a totally fragmented concept of cognition except for the fact that they make 
information about their computations available in buffers. The production system can detect the 
patterns that appear in these buffers and decide what to do next to achieve coherent behavior.  The 
acronym ACT stands for Adaptive Control of Thought and this section will describe how the 
production system achieves this control and how it is adaptive. 
 
The issue of control in ACT-R might seem trivial. Production rules can be viewed as hard symbolic 
rules and it might seem that they specify what to do when certain conditions match with no 
possibility of variation. However, this is not the ACT-R conception of things. In many situations the 
contents of various buffers will vary continuously and so the concept of the conditions of a 
production matching has to be taken as a matter of degree. The ACT-R community has mainly 
focused on the partial matching of the contents of declarative memory. It has been shown that partial 
matching can produce a number of classic memory errors such as reversals in serial recall or false 
alarms in a memory test (e.g., Anderson, Bothell, Lebiere, & Matessa, 1998). 
 
To add to the non-determinism of the production-rule selection, multiple productions might have 
their conditions matched on a single cycle, partly because partial matching stretches the set of 
acceptable rules. However, even if ACT-R were only an exact matching system, the system could 
still get into indeterminate states because multiple rules can have their conditions matched in the 
current buffers. Since multiple production rules match and only one can be executed it is necessary 
to select among the competitors in a process called conflict resolution. ACT-R selects among the 
multiple production rules according to their utilities. Production rule utilities are noisy, continuously-
varying quantities just like declarative activations and play a similar role in production selection as 
activations play in chunk selection.  The utility of a production i is defined as: 
 

Ui = PiG − Ci  
 
where Pi is an estimate of the probability that if production i is chosen the current goal will be 
achieved, G is the value of that current goal (typically estimated at 20 sec.), and Ci is the estimate of 
how much cost (typically measured in time that will have to be spent to achieve that goal). As we 
will discuss, both Pi and Ci are learned from experience with that production rule.  
 
The utilities associated with a production are noisy and on a cycle-to-cycle basis there is a random 
variation around the expected value given above. The highest valued production is always selected 
but on some trials one might randomly be more highly valued than another. If there are n 
productions that currently match, the probability of selecting the ith production is related to the 
utilities U

i
 of the n production rules by the formula: 
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Pr ob( i) =
eUi / t

eUj / t

j

n

∑
 

 
where the summation is over all applicable productions and t is related to the standard error of the 
variance of the noise by the formula: 
 

σ = πt / 6  
 
Thus, at any point in time there is a distribution of probabilities across alternative productions 
reflecting their relative utilities. The value of σ is about 1 sec. in our simulations and this is 
emerging as a reasonable setting for this parameter. 
 
Learning mechanisms adjust the costs C

i
 and probabilities P

i
 that underlie the utilities U

i
 according 

to a Bayesian framework. Because the example that we will describe concerns learning of the 
probabilities, we will expand on that but the cost learning is similar. The estimated value of P is 
simply the ratio of successes to the sum of successes and failures: 
 

P =
Successes

Successes + Failures
 

 
However, there is a complication here that makes this like a Bayesian estimate. This complication 
concerns how the counts for Successes and Failures start out. It might seem natural to start them out 
at 0. However, this means that P is initially not defined and after the first experience the estimate of 
P will be extreme at either the value 1 or 0 depending on whether the first experience was a success 
or failure. To provide some inertia in the speed with which the probability estimates converge on the 
empirical proportions of successes, Successes and Failures start out at initial values α and β, 
respectively, yielding the following formulas: 
 

Successes = α + m
Failures = β + n  

 
where m is the number of experienced successes and n is the number of experienced failures. This 
leads to an estimate of P that starts out equal to a prior α/(α+β) and moves to the empirical m/(m+n) 
as experience accumulates. The larger the sum α+β is, the slower is the shift from the prior 
probability to the empirical probability. 
 
Model for the Building-Sticks Task 
 
The experiment by Lovett (1998) is a good one for illustrating the learning of these subsymbolic 
procedural parameters. Participants solved building-stick problems like the one illustrated in Figure 
13. This is an isomorph of Luchins waterjug problem (Luchins, 1942) that has the advantage that it 
cannot be solved by mental addition but requires actual exploration (and hence the trial-and-error 
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problem solving can be observed). Participants are given an unlimited supply of building sticks of 
three lengths and are told that their goal is to create a target stick of a particular length. They can 
choose one of two basic strategies–they can either start with a stick smaller than the desired length 
and add sticks (like the addition strategy in Luchins waterjugs) or they can start with a stick that is 
too long and “saw off” lengths equal to various sticks until they reach the desired length (like the 
subtraction strategy). The first is called the undershoot strategy and the second is called the 
overshoot strategy. Participants show a strong tendency to hillclimb and choose as their first stick the 
one that will get them closest to the target stick. So, in the example in Figure 13 will tend to choose 
the overshoot strategy since the resulting stick gets them closest to the target. 
 
In these problems only one of the two operators works and participants cannot achieve a stick of the 
desired length by the other operator. One of the two operators is more often successful—different 
participants experience different operators as more successful. Table 2 shows the distribution of 
experience. In cases where undershoot proves more successful, undershoot always works on all of 
the problems that look like undershoot should work and 50% (or 75% in the extreme condition) of 
the problems that look like overshoot should work. Figure 14 shows percent use of the more 
successful strategy as a function of problem bias. Problem bias refers to whether the problem looked 
like that operator got the student closer to the target problem. Participants show a strong hillclimbing 
bias and tend to select the operator that gets them closest to the goal. As they learn which operator is 
more successful they come to use it more and more. Initially they used the more successful operator 
on problems that looked the other way only 10% of the time but by the end of the experiment they 
were using it 60% of the time in the extreme-biased condition. 
 
Figure 14 also shows the predictions of an ACT-R model that consists of 4 critical productions 
(given in Table 3) that chose overshoot and undershoot as well as other productions that execute the 
plans. The four critical productions consist of two that select overshoot and two that select 
undershoot. The difference between the two productions for an operator is that one is context-
sensitive and only applies if the problem looks that way while the other is context-free and applies 
regardless. ACT-R does a good job in accounting for this shift in probabilities of choice. The ACT-R 
model was fit to these data by fixing the parameters α and β for the context-free productions and β 
for the context-sensitive productions at 0.5 and by estimating the remaining critical production 
parameter, the context-sensitive productions' α. The best-fitting value for the context-sensitive 
productions' α is 10.68. More details of the model fitting are available in Lovett (1998). 
 
In terms of the critical production rules, ACT-R decreases its evaluation of the less successful 
productions and increases its evaluations of the more successful productions (e.g., decide-overshoot 
and force-overshoot). Table 3 documents what happens to the P values of these productions. The 
first column of that table shows the initial P value for the context-free productions as 0.5 (based on 
the priors, α

α +β = 0.5
0.5+0.5 ) and the initial P value for the context-sensitive productions as 0.96 (based 

on the priors, α
α +β = 11.36

11.36+0.5 ). This represents an initial preference for using the context-sensitive 

productions, i.e., choosing the strategy toward which the stick lengths are biased. Since the approach 
that looks closest will not always lead to a solution, however, the corresponding context-sensitive 
production will experience a certain number of failures (depending on the condition). Also, with 
noise in the production values, there is always some chance that a less successful production will be 
attempted;  this allows the system to gather at least some information about the success of all of the 
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four critical productions. After 90 trials of experience (the end of the experiment), the productions’ P 
values will have been adjusted based on this information (see Table 3). Note that in both conditions, 
the production corresponding to the more successful approach (within both the context-free and 
context-sensitive pairs) had a higher evaluation. Moreover, in the extreme-biased condition, this 
preference for the more successful production was stronger than in the biased condition. This 
example illustrates how the utility-learning mechanism enables ACT-R to adapt to the method that is 
more successful.  
 
Production Rule Learning and Learning from Instruction 
 
In the above example a number of things were prespecified including the productions that would do 
the task. These essentially amount to degrees of freedom in constructing a model and these degrees 
of freedom keep us from our ultimate goal of a priori predictions. However, we could eliminate these 
degrees of freedom if we could specify the process by which these production rules were learned. 
Taatgen and Anderson (in press) have developed a production learning mechanism called 
production compilation, which shows considerable promise. It bears some similarity to the 
chunking mechanism in Soar (Newell, 1990) and is basically a combination of composition and 
proceduralization as described in Anderson (1983) for ACT*. Production compilation can be 
illustrated with respect to a simple paired-associate task. Suppose the following pair of production 
rules fire in succession to produce recall of a paired associate: 
 
IF reading the word for a paired-associate test 
 and a word is being attended 
THEN retrieve the associate of the word 
 
IF recalling for a paired-associate test 
 and an associate has been retrieved with response N 
THEN type N 
 
They might apply for instance when the stimulus “vanilla” is present, recall the paired-associate 
“vanilla-7” and produce “7” as an answer. Production compilation would try to collapse these two 
productions into one. But what is to be done about the retrieval – the second production has to wait 
for the retrieval requested by the first production? The solution is to build a production rule that has 
the product of this retrieval built into it. Thus, ACT-R learns the following production rule: 
 
IF reading the word for a paired-associate test 
  and “vanilla” is being attended 
THEN type “7” 
 
This example shows how production rules can be acquired to embed knowledge in declarative 
memory. The next section will describe an empirical test of the predictions of this production-
compilation mechanism. For other tests see Taatgen (2001a, 2001b). 
 
So far we have discussed how production rules are created but not how they are selected. After a 
new production New is composed from old productions Old1 and Old2, whenever New can apply 
Old1 can also apply. The choice between New, Old1, and whatever other productions might apply 
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will be determined by their utilities. However, the new production New has no prior experience and 
so its initial probabilities and costs will be determined from Bayesian priors. The values of P and C 
for a new production New should be set based on the values of P and C for the production Old1 that 
it competes with. Again we will just focus on P, noting that a similar process works in the case of C.  
 
The Bayesian priors in the case of P are α and β. Their sum is set to some constant value which 
reflects the confidence ACT-R has in new productions. This sum is a parameter, Total. Given this 
sum and the value P of Old1, the parameters for the new production are calculated as: 
 

α = P*Total 
β = (1-P)*Total 

 
Thus, the P value for the new production is initially the same as Old1. The parameter Total reflects 
the confidence we have that the parameters for New will be the same as the parameters for Old1 and 
so controls the speed with which ACT-R can learn that New has a different value. Since New is 
more specific than Old1 it will apply in a restricted set of situations where it may be more or less 
successful. The same parameter Total determines the speed with which the system will adjust the 
initial value of C for New which is taken from Old1. While anything can happen, typically the final 
value of P for New will be the same as Old1 but its C value will be less because of the efficiency 
gathered by eliminating a production rule. 
 

Putting it all Together: Modeling the Effect of Learning from Instructions 
 
The tasks we have used so far to illustrate the ACT-R theory have all been focused on one aspect of 
the system (except for Salvucci’s driving example which preceded presentation of the theory). The 
models of the menu task (Figure 5) and perfect time-sharing (Figure 7) focused on the perceptual-
motor modules. The model of the Tower of Hanoi task (Figure 8) focused on the goal module. The 
model of the fan experiment (Figure 12) focused on the declarative retrieval module. Finally, the 
model of the building-sticks task (Figure 14) focused on the procedural system. While these were 
nice tasks to illustrate the behavior of the subsystems, given the goal of this paper it would be 
valuable to have models that put the various components together.  
 
We will describe two such models. The first of these is a model that starts with learning from 
instruction and progresses to a highly automated performance of a task. We (Anderson & Bothell, 
2002, Unit 9) have developed a formalism for representing instructions as a set of goals to be 
achieved in declarative memory and we have a set of production rules that will interpret any such 
instruction set. The production compilation mechanism will eventually convert these instructions 
into a set of productions for directly performing the procedures without declarative retrieval of the 
instructions. This model accounts for one of the mysteries of Experimental Psychology, which is 
how a set of experimental instructions causes a participant to behave according to the experimenter’s 
wishes. According to this analysis, during the warm-up trials, which are typically thrown away in an 
experiment, the participant is converting from a declarative representation and a slow interpretation 
of the task to a smooth, rapid procedural execution of the task. 
 
We have explored this compilation of procedures from instructions in a task that is considerably 
more complicated than what is normally studied. This is a simulation of the responsibilities of an 
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anti-air warfare coordinator (AAWC) on an Aegis-style cruiser (Hodge, Rothrock, Walker, Fisk, 
Phipps, & Gay, 1995). There is no need to burden the reader with all the details, but it is worth 
noting that bright undergraduates spend a couple of hours learning the rules of engagement before 
they even begin performing the task. Once they start performing the task, they show typically power-
law improvement in many of its components (Sohn, Douglass, Chen, & Anderson, submitted). 
 
As an illustration of how instruction is deployed in performing this task consider one tiny fragment 
of the instruction which is the fact that when participants begin to classify an air track on the radar 
screen they must first select “track” from a menu of options. This piece of information is requested 
by the first instruction-following production below and when retrieved, it is utilized by the second 
instruction-following production that sets a subgoal to find the track option in the menu: 
 
IF trying to retrieve an instruction to achieve a goal 
 and an instruction for achieving that goal has been retrieved 
THEN retrieve the first step of that instruction 
 and note trying to recall the first step. 
 
IF trying to retrieve a step of an instruction 
 and a step has been retrieved involving a subgoal 
THEN retrieve an instruction to achieve that subgoal  
  and note trying to achieve that subgoal. 
 
This pair of productions is representative of instruction interpretation in that it is quite abstract (no 
mention of AAWC task) and that it heavily involves goal manipulations, which we associate with 
dorsolateral prefrontal cortex. In the example, the first production retrieves the instruction “The first 
step in classifying a plane is the subgoal of selecting ‘track’” and the second production response to 
this retrieved instruction. Production compilation will build a combination of these two productions 
with the information from the retrieved instruction built in: 
 
 
IF trying to classify a plane 
THEN set a subgoal to select “track” 
 and note trying to retrieve an instruction for selecting “track”. 
 
As this production rule becomes combined with more production rules downstream ACT-R 
eventually learns the production rule: 
 
IF trying to classify a plane 
THEN hit the F1 key 
 and set a subgoal to select “update”  
 and note trying to retrieve an instruction for selecting “update”. 
 
since the F1 key is the key that selects the “track” option. This production rule also sets the subgoal 
to select the menu item “update.” This is the next step in the sequence of actions that produces a 
classification. To achieve this goal would require another key press (in this case, F6). The production 
compilation process cannot produce rules that merge multiple external actions on the world together 
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and so this limits how much compilation can collapse into a single rule. Anything larger would 
require merging the keystroke for this action with the keystroke for the next action and create 
potential jamming of the motor module. This illustrates how perceptual-motor constraints set the 
bounds of production compilation. 
 
Modeling Haimson’s Task 
 
We have been performing a number of tests that focus on very specific aspects of the overall task to 
see how well the knowledge compilation mechanism predicts the specifics of the skill transition. We 
will describe some work that Haimson (Haimson & Anderson, 2002) has done as one example of 
this. One of the things that performers must do is to select air tracks on a radar screen for 
investigation and classification. The tracks to be selected have a certain physical profile and doctrine 
requires selecting the closest track to home ship that meets this profile. Haimson was interested in 
how people performed this task as a function of the distance of the targets from the home ship and 
the number of distractors. Figure 15 shows a typical screen that he presented to his participants. 
Their task was to select the item on the screen closest to home ship (center of screen) that had a 
curved component. Table 4 shows his data classified according to whether the target was close or far 
from home ship and number of distractors in the close and far regions. The data give evidence for an 
ordered search starting from home ship and moving outwards. For instance, participants are not 
much affected by number of far distractors when the target is close. 
 
Participants were given a lot of practice at this task and we were interested in how well ACT-R 
could predict the effects of practice as well as the effect of the variables in Table 4. The instructions 
relevant to performing this task are quite simple relative to the instructions for the full task: 
 

1. At the beginning find home ship, click it, and find target. 
2. To find the target, attend to the unattended item closest9  to home, and click it if it is curved. 
3. If the item is not of the correct shape repeat 2. 

 
From these instructions ACT-R will eventually learn productions like 
 
 IF looking for the target track 
 and the currently attended object is not curved  
THEN shift attention to the closest unattended location 
 
This production will compete with its more primitive parents according to its experienced utility in 
solving the problem. Because it is more efficient in time than its parents it will eventually come to 
dominate. The critical parameters of the model are Total, which controls rate of learning, and t, 
which controls the amount of noise in utility estimations. Total was set to 50 and t was set so the 
standard deviation of the utilities would be the emerging default of 1 second. 
 
Figure 16 shows the comparison between the observed behavioral functions and the predicted 
functions. Part (a) collapses over number of distractors and part (b) collapses over distance from 
home ship. The model does a good job of getting the ball park figures. Much of this has to do with 
the preset parameters in the model that determine rate of switching attention in visual search and 
time to move a mouse. While the absolute amount of speed-up on this task is captured (which is a 
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parameter-free prediction of the model), human participants are displaying this learning more 
gradually over a longer period of time. 
 
We want to stress that this example depends on the perceptual-motor system (determines asymptotic 
performance), the declarative and goal systems (for representing and interpreting instructions), and 
the procedural system (for creating and compiling new production rules). The only parameter 
estimated was Total, (reflecting the fact that production-rule learning is new and we do not have 
much experience on the setting of this parameter). Given how long it takes to run the model, we did 
not estimate it to provide optimal fits but rather just took a value that seemed to give somewhat 
reasonable results. The ability to deploy this full system and give nearly a priori productions 
illustrates the promise of the integrated approach represented by cognitive architectures. We still 
have a good distance to go before we can give similar detailed predictions for all of the GT-ASP task 
but this is our aspiration. 
 

Putting it all together: Tracking Multiple Buffers in an fMRI study 
 
We have recently completed an fMRI study that succeeded in tracking multiple components in 
Figure 4. Participants in this experiment were performing an artificial algebra task (based on 
Blessing & Anderson, 1996) in which they had to solve “equations”. For a full exposition of the 
transformations see Anderson, Qin, Sohn, Stenger, and Carter (in press) but to give an illustration 
suppose the equation to be solved were 
 

② P ③ 4 <–> ② 5 
 
where solving means isolating the P before the <–>. In this case the first step is to move the ③ 4 over 
to the right inverting the ③  operator to a ② ������ the equation now looked like: 
 

②  P <–> ② 5② 4 
 
Then the ② in front of the P is eliminated by converting ② ’s on the right side into ③ ’s. So that the 
“solved” equation looks like: 
 

P <–> ③ 5③ 4 
 
Participants were asked to perform these transformations in their heads and then key out the final 
answer—this involved keying “1” to indicate that they have solved the problem and then keying 3, 5, 
3, and 4 on this example. The problems required 0, 1, or 2 (as in this example) transformations to 
solve. Figure 17 shows the effect of number of transformations on Day 1 and 5 on time to hit the 
first key. The figure shows a large effect of number of transformations but also a substantial speed 
up over days. 
 
Figure 18 shows the activity of the ACT-R buffers solving an equation that involves a single 
transformation. The encoding begins with the identification of the <-> sign and then the encoding of 
the symbols to the right of the sign. Then begins the process of encoding the elements to the left of 
the sign and their elimination in order to isolate the P. In the example in Figure 18, six operations 
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(Steps 1-6) are required to encode the string and an additional two operations (Steps 9 & 10) to 
encode the transformation. Each of these requires activity in the imaginal module.10 There are 5 such 
operations in the case of 0 transformations and 10 in the case of 2. With respect to retrievals in 
Figure 18, two pieces of information have to be retrieved for each transformation (Steps 7 & 8) that 
must be performed. One piece was the operation to perform ("flip" in Figure 18) and the other the 
identity of the terms to apply this operation to (argument position in Figure 18). There were 5 
retrieval operations in the case of 2 transformations and none in the case of zero transformations. In 
all cases there are the final 5 motor operations (Steps 11-15 in Figure 18) but their timing will vary 
with how long the overall process takes. Finally, we tracked the number of productions required to 
solve these equations – there were 14 in the case of zero transformations, 20 in the case of one 
transformations, and 23 in the case of two transformations. Note that Figure 18 does not represent a 
significant involvement of the goal buffer. Unlike the ACT-R model for the Tower of Hanoi task 
(Figure 8), the ACT-R model for this task involves a single goal that holds the intention to transform 
the equation and keeps track of where one is in achieving that intention. 
 
Participants in the experiment spent 5 days practicing this new symbol system. They were imaged on 
days 1 and 5. For a complete report on the data see Qin, Sohn, Anderson, Stenger, Fissel, Goode, & 
Carter (in preparation), but here we will just be concerned with the results relevant to differential 
involvement of four regions that reflect these four components of the ACT-R system imaginal 
buffer, retrieval buffer, motor buffer, and production rules. Figure 19 shows the three cortical 
regions associated with the three buffers. These associations were already discussed with respect to 
Figure 4. In addition, we have found, as have others (e.g., Poldrack, Prabakharan, Seger, Gabrieli, 
1999), that the caudate (part of the basal ganglia) are particularly sensitive to the acquisition of new 
procedural skills. Since new productions need to be acquired to learn this novel task we expected to 
find activity here as well. The caudate is subcortical and therefore not represented in Figure 19. 
 
Modeling the BOLD Response 
Participants had 18 seconds for each trial. Figures 20-23 show how the BOLD signal varies over the 
18-second period beginning 3 seconds before the onset of the stimulus and continuing for 15 seconds 
afterward which was long after the slowest response. Activity was measured every 1.5 seconds. The 
first two scans provide an estimate of baseline before the stimulus comes on. These figures also 
display the ACT-R predictions for the BOLD signal that depends on the assumption that each 
activity in a buffer or a production selection elicits a separate BOLD function and that these 
functions add (for details see, Anderson, Qin, Sohn, Stenger, & Carter, in press). The BOLD 
functions displayed are typical in that there is some inertia in the rise of the signal after the critical 
event and then decay. The BOLD response is delayed so that it reaches a maximum about 5 seconds 
after the brain activity. The functions in these figures take even longer to reach their maximum 
because they are the sum of a number of responses. For the details of the estimation of these 
functions read Anderson et al. (in press). 
 
Figure 20 shows activity around the intraparietal sulcus, which has been associated with visual 
information processing in service of symbolic goals (Reichle, Carpenter, & Just 2000). It shows an 
effect of complexity and is not much affected by practice. However, it shows a considerable rise 
even in the simplest no-operation condition. This is because it is still necessary to encode the 
equation in this condition. The amount of information to be encoded or transformed also does not 
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change with practice and so one would expect little change. The functions do rise a little sooner on 
day 5 reflecting the more rapid processing. 
 
Figure 21 shows the activity around the inferior frontal sulcus which we take as reflecting the 
activity of the retrieval buffer.  While it also shows a strong effect of number of transformations it is 
in striking contrast to Figure 20.  First, it shows no rise in the 0 transformation condition because 
there are no retrievals in this condition. Second the magnitude of the response decreases after 5 days 
reflecting the fact that the declarative structures have been greatly strengthened and the retrievals are 
much quicker. The decrease in the figure is a parameter-free prediction reflecting the increase in 
base-level activation with practice (see Figure 11). 
 
Figure 22 shows the activity around the central sulcus in the region that controls the right hand. It 
also shows an effect of number of transformations but the effect is much different than in Figures 20 
and 21. Here the effect of complexity is to delay the BOLD function (because the finger presses are 
delayed) but there is no effect on the basic shape of the BOLD response because the same response 
sequence is being generated in all cases. The effect of practice is also just to move the BOLD 
response forward in this motor region. 
 
Figure 23 shows activity in the caudate, which is thought to track use of new procedures (Poldrack, 
et al., 1999). The effect of complexity on Day 1 is less apparent than in the other figures because 
there is not a striking difference in the number of production rule firings. The more complex 
conditions have BOLD functions that are more stretched out in time reflecting the greater length of 
the trial but only slightly higher functions. The differential activity has largely disappeared by Day 5 
when these productions are now highly practiced. 
 
Each of these figures shows a qualitatively different response to complexity and practice in the task: 
 

1. The motor area tracks onset of keying. Otherwise, the form of the BOLD function is not 
sensitive to cognitive complexity or practice.  

2. The parietal area tracks transformations in the imagined equation. The form of the BOLD 
function is sensitive to cognitive complexity but not practice.  

3. The prefrontal area tracks retrieval of algebraic facts. The form of the BOLD function is 
sensitive to cognitive complexity and decreases with practice.  

4. The caudate tracks learning of new procedural skill. The BOLD function is not sensitive to 
cognitive complexity but disappears with practice.  

 
The success in modeling these regions provides striking evidence that the activity in these regions 
tracks the behavior of components of the ACT-R system. The ability to separately track selection of 
procedural rules in the basal ganglia and retrieval declarative knowledge in the prefrontal cortex 
provides further evidence for ACT-R’s procedural-declarative distinction. In general, imaging results 
like this suggests that the division of ACT-R into its components does correspond to the organization 
of the mind. 
 

General Discussion 
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We have now gone through the various aspects of the ACT-R system and have shown how it makes 
contact with a wide variety of data about human cognition. Now we would like to place the theory 
somewhat in the general space of cognitive psychology. First, we will consider its relationship to its 
near neighbors, other production systems. Then, we will consider its stance on two of the high-
profile current issues in psychology—the symbolic-subsymbolic distinction and modularity. Finally, 
we will recapitulate the picture it presents of how the pieces of the mind are put together. 
 
Other Production Systems 
 
Soar, EPIC, and CAPS are three other architectures that have close intellectual connections to ACT-
R – all being derived from the ideas of Newell in the early 1970s. The Soar system was developed 
by Newell, Laird, and Rosenbloom (e.g., Laird, Newell, & Rosenbloom, 1991) to address issues both 
in psychology and artificial intelligence. Recently, its most impressive application has been to 
computer-generated forces. For instance, it successfully flew 50 missions in an Air Force training 
exercise (Jones, Laird, Nielsen, Kenny & Koss, 1999). EPIC has focused on the connection between 
the cognitive, perceptual and motor systems. We adopted many ideas from EPIC in the development 
of the perceptual-motor components of ACT-R. It has also been united with the Soar system (Chong 
& Laird, 1997). The earlier 3-CAPS architecture was substantially focused on individual differences, 
which it attributed to differences in activation capacity. The more recent 4-CAPS architecture has 
related similar concepts to fMRI data (Just, Carpenter, & Varma, 1999).11  
 
Before discussing the differences we would like to note that all of these architectures have 
converged on a 50 msec cycle time for human cognition. It would be nice to be able to point to some 
specific empirical evidence for that number but really the evidence is the more general fact that this 
is a number that has worked in a wide variety of models.12 Perhaps it is most significant that a 
smaller number has not been needed. In particular, this has been a rapid enough cycle time to model 
language processes in three of the architectures (Budiu, 2001; Just & Carpenter, 1992; Lewis, 1993). 
Language processing makes heavy computational demands. In a model like ACT-R, 50 msec is a 
reasonable minimal time for information to travel the multi-synapse route from the cortex to the 
basal ganglia and back. Newell also justified the 50 msec time (which is time for a decision in that 
architecture not time for a single production) in terms of the sum of a number of simpler neural 
processes. 
 
While there is this convergence on 50 msec, the architectures paint rather different pictures of the 
overall nature of serial and parallel processing. ACT-R is the only architecture that specifies that just 
one production can fire at a time; the other systems allow parallel production firing. As such ACT-R 
has a serious serial bottleneck. While in Soar many productions can fire in parallel elaboration 
cycles, this has to conclude with a single decision, making Soar a serial bottleneck architecture as 
well. In contrast, EPIC and CAPS do allow for multiple productions to fire in a way that enables 
multiple independent paths of cognition. In CAPS there are activation limitations that imply multiple 
parallel paths will be pursued less rapidly than a single path. Thus, CAPS is a limited-capacity 
parallel system at this level. EPIC is the only unlimited-capacity parallel system in terms of enabling 
multiple threads of central cognition without process limitations (although it proposes serious limits 
on perceptual and motor processes as well as internal working memories—Kieras, Meyer, Mueller, 
& Seymour, 1999). 
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The issue of a central cognitive limitation has been debated between EPIC and ACT-R in the 
domains of perfect time sharing and the psychological refractory period (Byrne & Anderson, 2001). 
As described earlier, ACT-R can predict perfect time sharing between two tasks provided that they 
do not make simultaneous demands for production firing or simultaneous demands on any other 
module of the system. However, according to ACT-R such perfect time sharing should be the 
exception and not the rule and this is certainly our reading of the literature. As argued in Anderson 
and Lebiere (1998) the computational reason for a serial bottleneck is to have a point at which one 
makes sure the direction of computation is coordinated. In EPIC and CAPS one has to resort to 
having the modeler build in tests to prevent conflicting directions of behavior (e.g., one production 
firing for going left and another for going right). Perhaps one of the reasons why these two 
architectures have not dealt with production rule learning, while ACT-R and Soar have, is because of 
their lack of a coordination point. It is hard to learn production rules when one needs to worry about 
possible interactions among parallel rules. 
 
While there is this strong serial coordination point in ACT-R, there are many modules that can be 
operating asynchronously in parallel just as in EPIC. Also there are other substantial parallel 
processes within modules such as retrieval from declarative memory. Also ACT-R, as other 
production systems, postulates a parallel process of matching and selection of production rules.  
 
Another major dimension on which these architectures differ is their commitment to hybridization, 
with Soar being firmly committed to a purely symbolic account of cognition while ACT-R and 
CAPS postulate a mix of symbolic and subsymbolic processes. In particular, they both assume that 
continuously-varying activation processes in declarative memory control timing of behavior.  In this 
regard, they are also close to Kintsch’s construction-integration theory (Kintsch, 1998), which might 
well be regarded as another production system theory of cognition. It seems difficult to account for 
the graded aspects of cognition without a subsymbolic component. The next subsection of this paper 
will discuss the need for a symbolic component as well as a subsymbolic component. EPIC does 
have continuously varying quantities that control things like movement times but does not seem to 
have information-laden nonsymbolic quantities in its theory of central cognition. 
 
Table 5 gives a 2x2 classification of the production systems according to whether they assume a 
serial bottleneck or not and whether they assume a hybrid nature or not. Obviously, we think ACT-R 
reflects the right cell. Of course, there are other dimensions of difference. For instance, only Soar 
does not make a procedural-declarative distinction and ACT-R and EPIC are joined in their 
emphasis on an integration of cognition with perception and action, whereas the other two 
architectures have not dealt with this issue in detail. 
 
As both CAPS and ACT-R have been compared to brain imaging data it is worth considering their 
different conceptions of the relationship. In 4-CAPS the assumption is that level of the BOLD 
response reflects amount of effort being devoted to a task while in ACT-R it is assumed to reflect the 
time a module is functioning. It will not be easy to separate these two views with fMRI data but 
other sorts of brain imaging methods with better temporal resolution may allow a discrimination. 
However, these two alternative conceptions certainly do not have to be mutually exclusive.  
 
Another difference between ACT-R and 4-CAPS is how they think about the function of different 
brain regions. In the ACT-R conception, different cortical and supporting neural structures serve as 
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modules that broadcast their contents to the basal ganglia for pattern recognition and production 
selection. In contrast, 4-CAPS assumes that there are distinct production systems implemented in 
each region that collaborate in producing an answer. In effect it is proposed that there is a “society” 
of production systems that collaborate through direct connections. In part the organization postulated 
in ACT-R reflects the fact that it requires fewer paths to connect N areas if they all go through a 
central station (N paths in and N paths out) than if they all have to be pair-wise bidirectionally 
connected (N*(N-1)) paths. While it appears that the brain is sensitive to this argument of economy 
it certainly has not ignored direct pathways between cortical regions. These are not yet reflected in 
the ACT-R architecture. In contrast, 4-CAPS emphasizes these direct pathways but ignores the loop 
through the basal ganglia. The actual implementation of 4-CAPS would seem to require that there be 
complete connectivity so that each region is connected to each other region. This total connectivity 
does not appear to hold for the brain although it is unclear how serious a difficulty that is for 4-
CAPS. On the other hand, ACT-R’s connectivity assumptions are not totally satisfied either. While 
there do appear to be projections from all relevant cortical areas to the basal ganglia, there do not 
appear to be direct pathways from the basal ganglia to all relevant cortical regions. Outward 
projections are mainly to frontal regions, and we have to assume that these regions would then 
project to other cortical areas. 
 
Hybridization 
 
As we noted in the world of production systems a significant issue is whether one needs to postulate 
information-laden subsymbolic processes in addition to symbolic processes. However, in the rest of 
cognitive science the more hotly debated issue is whether a symbolic process is required in addition 
to a subsymbolic process. Eliminative connectionism (Plaut, McClelland, Seidenberg & Patterson, 
1996) is the position that symbolic structures like production rules or declarative chunks have no 
role in the description of cognition but rather that cognition can be totally accounted for in terms of 
connections among neurons. To the extent that symbolic models work they are seen as (perhaps 
useful) approximations.  
 
We are not claiming that cognition does not arise ultimately from neural connections and indeed 
have taken pains to show that ACT-R could be given a rather standard connectionistic 
implementation (Lebiere & Anderson, 1993). Rather our claim would be twofold: 
 
1. That without recourse to symbolic representation it would be too difficult to give a thorough 

account of cognition. 
2. The symbolic assumptions reflect certain constraints on how the neurons connect and interact. 
 
With respect to the first claim, it seems that the evidence is pretty clear. There are no models of 
complex cognitive processes (e.g., natural language parsing systems that are actually used in real 
language processing, models for operating complex systems like aircraft, instructional models to 
guide training in domains that range from mathematics to anti-air warfare) that do not involve some 
symbolic components although many also use subsymbolic components. However, this may just be a 
practicality issue – while it is in principle possible, it is too difficult in practice to eliminate 
approximate symbolic representations.   
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The second claim, concerning constraints on connections, may be more fundamental and it is 
interesting to recognize how it is realized in ACT-R in the case of production rules. It is easy to think 
that the claim in ACT-R is that these production rules are coded in some data structures in the brain 
and that these structures are interpreted as one might imagine a computer would interpret such 
structures.  However, these productions really specify pathways of influence from cortex to basal 
ganglia and back again.  While the production rules involve “variables”, (a point of controversy in 
cognitive science—e. g., Marcus, 2001) these variables really specify either (a) testing whether a 
pattern of activity from one region (say the visual buffer) matches a pattern of activity in another 
region (say the retrieval buffer) or (b) moving a pattern of activity from one buffer (say auditory) to 
another (say goal). Thus, the real commitment in production rules is to the pattern of interactions 
displayed in Figure 4. The claim is that information processing is constrained to follow paths like 
these which test patterns of activation from diverse areas and transmit information to different areas. 
 
If one takes the symbolic claim to mean that there are strong a priori constraints on how brain areas 
can interact, then the evidence seems overwhelming in favor of the symbolic hypothesis (as indeed 
connectionists acknowledge—Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett, 1996; 
Hadley, 2002). While the proposal of a totally plastic, equipotential brain where anything can be 
connected to anything has the seduction of simplicity it has little basis in fact.  
 
Many people might be surprised by the fact that the symbolic assumption in ACT-R cashes out into 
a claim about strong constraints on connections in the nervous system. We certainly were surprised 
when we realized this from our first attempts to implement ACT-R in a connectionist system 
(Lebiere & Anderson, 1993). This is because we were blinded by the notation of our symbolic 
models and how we implemented them in a computer. These surface details can obscure the essential 
claims of the theory – as indeed, it is easy to be misled by the topology of connectionist networks as 
to what their essential claims are. 
 
Modularity 
 
Modularity is the assumption that there are specific encapsulated systems of information processing 
which run according to their own principles and largely do not interact with other processes. Fodor 
identified the visual system as the referent modular system (see also Pylyshyn, 1999) and proposed 
that syntactic processing in language operates the same way. While we are using the term “module” 
rather close to the sense of Fodor as an informationally encapsulated system, we should 
acknowledge that Fodor has recently (2000) reiterated his long-standing doubts that higher-level 
cognition involves modules of the sort we proposed in Figure 4.  His basic argument is that higher-
level cognition requires that such diverse knowledge be brought together that it is impossible to have 
it encapsulated into separate components.  Although he does not instantiate his argument with 
respect to ACT-R, his claim might mean one cannot keep separate one’s goals, one’s long-term 
declarative knowledge, and one’s image of a problem in the way ACT-R’s modules do.  ACT-R is 
able to do this successfully in the tasks we model in this paper, having such knowledge only interact 
through the production system which has tiny windows (the buffers) onto the operation of the 
separate modules.  This fact has to cast some doubt on Fodor’s arguments but we would 
acknowledge that our tasks do not have the kind of knowledge integration that Fodor has in mind.  
On the other hand, Fodor does not provide a well-specified example of what an architecture like this 
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cannot do.  So, in absence of more specification on both sides, it seems one must conclude that the 
force of Fodor’s doubts remain uncertain. 
 
Another source of doubt about modules (Kosslyn, 2001; Uttal, 2001) comes from doubts about the 
success of the function localization program in brain imaging research.  Questions are raised about 
both the statistics that identify regions of interest and about the consistency of the results from study 
to study.  The possibility is raised that cognitive function may not be localized to specific brain 
regions and this doubt is generalized to a doubt about the existence of modules.  However, neither 
the postulation of modules nor the use of brain imaging data requires that the modules be truly 
localized.  First, modules are information-processing concepts and they could certainly be distributed 
across many brain regions.  Second, the use of activity data in a region to study the functioning of a 
module does not require that the module be localized to that region; it only requires that the activity 
of that region reliably reflect the functioning of that module.  Third, while there are many valid 
questions about the typical exploratory use of brain imaging data, the study we described with 
respect to Figures 19-23 tested a priori predictions about the behavior of regions identified a priori.  
These same regions have satisfied the predictions of the theory across a number of studies.  As such 
they provide strong evidence for the sort of modules postulated in ACT-R. 
 
It is frequently believed that there is a contradiction between modular conception of cognition and 
general architectures for cognition such as production systems. Our review of the production systems 
certainly shows that is not the case. Both EPIC and ACT-R are quite explicit about the notion of 
multiple independent modules, each of which is an encapsulated processor that operates according to 
its own principles and interacts with others through the production system. While one might have 
characterized 3-CAPS as non-modular, 4-CAPS is quite explicit about there being different modules 
– each being a separate production system in a different brain region. The only architecture that even 
has the appearance of being non-modular is Soar and even here Newell (p 455-456) was quite 
explicit that nothing about Soar was incompatible with the proposal of modules. 
 
On the other hand, none of the production systems have specifically adopted a linguistic module and 
in three of the architectures (ACT-R, Soar, 3-CAPS) models have been produced that did syntactic 
processing in the general production rule cycle although 3-CAPS does assume specific linguistic 
capacity. At least with respect to ACT-R, there is not an in-principle commitment to the non-
existence of a linguistic module. We would be open to neural evidence clearly indicating the 
existence of such a linguistic module. Even now we feel a tension to accommodate the evidence 
about localization of language processing. Barring definitive neural data we have taken the stance 
that we will be guided by whether we can really model language processing in the 50 msec general 
serial bottleneck of ACT-R. So far we have been successful as were these other architectures. 
However, a lot of complexities of language processing have not yet been modeled. One thing that we 
have observed as ACT-R begins to address more complex processes is that it is forced by time 
constraints to process language in a rather sloppy and shallow way – not processing each word 
independently and fully (Budiu & Anderson, submitted). However, people appear to fail to do so as 
well in on-line processing (Myers & O’Brien, 1998; Noordman & Vonk, 1998; Cook, Holleran, & 
O’Brien, 1998; Albrecht & Myers, 1998; Sanford & Garrod, 1998). Thus, as a very interim report, 
there has been some success treating language in the general cognitive loop and it has led to accurate 
models of language processing. 
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Unity of Cognition 
 
We would like to close by commenting on two different senses of the unity of cognition – one is 
whether human cognition reflects a single integrated process and the other is whether ACT-R offers 
a unified characterization of cognition. With respect to the first question, the ACT-R architecture 
proposes that cognition is fragmented into many separate modules operating in parallel whose 
processing is not generally available to cognition. The processing in these modules is only partly 
coordinated. Specific final products of the processing can appear in the buffers and these can be used 
to create enough coordination for cognition to be generally adaptive. So, ACT-R certainly 
instantiates the view that the apparent unity of mental life is largely an illusion and that many critical 
processes happen in uncoordinated ways out of awareness. 
 
According to the ACT-R analysis of consciousness, three things must happen for one to be conscious 
of some information. First, it must appear in a buffer so that it can be detected by a production rule 
and second it must be detected (i.e., be part of the condition of the production rule). However, these 
two conditions are not sufficient because ACT-R is not conscious of many things that productions 
match. For instance, Lee’s (2000) model of air traffic control learned to attend selectively to very 
specific regions of the screen to achieve expertise and the evidence was that participants learned to 
do the same. However, participants were quite unaware of where they were looking. The third 
condition for consciousnesses is that the action of the production place a representation of the 
information in the goal so that it is available for subsequent processing. Thus, the trail of information 
remnants in the goal buffer is basically the trail of what ACT-R is conscious of. It is not aware that 
anything else has happened that does not leave such a trail. To the degree that goal structures 
(supported by DLPFC) are more developed in humans then consciousness by this definition is a 
feature especially supported in humans. 
 
While ACT-R implies that our experience of the unity of one’s own cognition is illusory, it offers us 
as scientists a characterization of cognition that does aspire to be unified – even as the human body 
has many separate organs but biology aspires to characterize how they all work together. Clearly, we 
have not identified all the modules or all of their processes but there is a program here for identifying 
new modules and understanding how all the modules are integrated. The convergence of all the 
knowledge streams in the production pattern matcher is the point of that integration. 
 
Summary 
While there are many details, some of which were reviewed in the main part of this paper, we 
thought it was worthwhile to distill our conception of the mind down into 6 major points: 
 

1. There are multiple independent modules whose information processing is encapsulated.  
 
2. The modules can place chunks reflecting their processing in their buffers and the production 

system can detect when critical patterns are satisfied among these chunks. 
 
3. From those productions whose conditions are satisfied a single production will be selected at 

any time and fire, leading to updates to various buffers that in turn can trigger information 
processing in their respective modules. 
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4. While chunks and productions are the symbolic components of the system reflecting its 
overall information flow, chunks have subsymbolic activations and productions have 
subsymbolic utilities that control which chunks and productions get used. 

 
5. Learning can involve either acquiring new chunks and productions or tuning their 

subsymbolic parameters. 
 
6. These processes are stochastic and take place in real time. 



1/13/03 

 36

References 
 

Albrecht, J. & Myers, J. (1998). Accessing distant text information during reading: Effects of 
contextual cues. Discourse Processes, 26, 87-107. 

Altmann, E. M. & Trafton, J. G. (2002). Memory for goals: An activation-based model. Cognitive 
Science, 26, 39-83.  

Amos, A. (2000). A computational model of information processing in the frontal cortex and basal 
ganglia. Journal of Cognitive Neuroscience, 12, 505-519. 

Anderson, J. R. (1974). Retrieval of propositional information from long-term memory. Cognitive 
Psychology, 5, 451-474. 

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum. 

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press. 

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum. 

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum. 

Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling. 
Cognitive Science, 26. 

Anderson, J. R., & Betz, J. (2001). A hybrid model of categorization. Psychonomic Bulletin and 
Review, 8, 629-647. 

Anderson, J. R. & Bothell, D. (2002). The ACT-R 5.0 Tutorial. Carnegie Mellon University. 
http://act-r.psy.cmu.edu/tutorials. 

Anderson, J. R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An integrated theory of list memory. 
Journal of Memory and Language, 38, 341-380. 

Anderson, J. R. & Bower, G.H. (1973). Human associative memory. Washington: Winston and 
Sons. 

Anderson, J. R., Budiu, R., & Reder, L. M. (2001). A theory of sentence memory as part of a general 
theory of memory. Journal of Memory and Language, 45, 337-367. 



1/13/03 

 37

Anderson, J. R. & Douglass, S. (2001). Tower of Hanoi: Evidence for the Cost of Goal Retrieval. 
Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 1331-1346. 

Anderson, J. R., Fincham, J. M. & Douglass, S. (1999).  Practice and retention: A unifying analysis. 
Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1120-1136 

Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum. 

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition and 
its relation to visual attention. Human Computer Interaction, 12, 439-462. 

Anderson, J. R., Qin, Y., Sohn, M-H., Stenger, V. A. & Carter, C. S. (in press.) An information-
processing model of the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & 
Review. 

Anderson, J. R. & Reder, L. M. (1999). The fan effect: New results and new theories. Journal of 
Experimental Psychology: General, 128, 186-197. 

Ashby, F. G. & Waldron, E. M. (2000). The neuropsychological bases of category learning. Current 
Directions in Psychological Science, 9, 10-14. 

Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press. 

Blessing, S. B. (1996). The use of prior knowledge in learning from examples. Doctoral Dissertation. 
Carnegie Mellon University, Department of Psychology, Pittsburgh, PA. 

Buckner, R.L., Kelley, W.M., and Petersen, S.E. (1999) Frontal cortex contributes to human memory 
formation. Nature Neuroscience 2, 311-314. 

Budiu, R. & Anderson, J. R. (submitted). Semantic sentence processing: A unified theory. 

Budiu, R. (2001) The role of background knowledge in sentence processing. Doctoral Dissertation, 
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA. 

Byrne, M. D. (2000). Are retrievals from long-term memory interruptible? In L. R. Gleitman & A. 
K. Joshi (Eds.), Proceedings of the Twenty-Second Annual Conference of the Cognitive Science 
Society, 71-76. Mahwah, NJ: Lawrence Erlbaum.  

Byrne, M. D. (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. 
International Journal of Human-Computer Studies, 55, 41-84.  

Byrne, M. D. (2003). Cognitive architecture. To appear in J. Jacko & A. Sears (Eds.), Human-
Computer Interaction Handbook. Mahwah, NJ: Erlbaum. 



1/13/03 

 38

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. Lebiere 
(Eds.) The atomic components of thought, 167-200. Mahwah, NJ: Erlbaum. 

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological refractory 
period and perfect time-sharing. Psychological Review, 108,847-869. 

Byrne, M. D., Anderson, J. R., Douglass, S., & Matessa, M. (1999). Eye tracking the visual search of 
click-down menus. Human Factors in Computing Systems: Proceedings of CHI 99, 402-409. 
Reading, MA: Addison Wesley.  

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. 
Hillsdale, NJ: Erlbaum. 

Chong, R. S. & Laird, J. E. (1997). Identifying dual-task executive process knowledge using EPIC-
Soar. In Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pp. 
107-112. Mahwah, NJ: Erlbaum. 

Cook, A. E. , Halleran, J. G., & O’Brien, E. J. (1998). What is readily available during reading? A 
memory-based view of text processing. Discourse Processes, 26, 109-130. 

Cosmides, L. & Tooby, J. (2000). The cognitive neuroscience of social reasoning. In M. S. 
Gazzaniga (Ed.) The new cognitive neurosciences, 2nd Edition, 1259-1272. Cambridge, MA: The 
MIT Press. 

Dehaene, S., Spelke, E., Pinel. P., Stanescu, R. Tsivkin, S. (1999). Sources of mathematical thinking: 
Behavior and brain-imaging evidence. Science, 284, 970-974. 

Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: 
Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 
123, 161-177. 

Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). 
Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press. 

Fincham, J. M., Carter, C. S., van Veen, V., Stenger, V. A., and Anderson, J. R. (2002). Neural 
mechanisms of planning: A computational analysis using event-related fMRI. In Proceedings of the 
National Academy of Sciences. 99 (5), 3346-3351. 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling the 
amplitude of movement. Journal of Experimental Psychology, 47, 381-391. 

Fodor, J. A., (1983). The modularity of the mind. Cambridge, MA: MIT/Bradford Books. 



1/13/03 

 39

Fodor, J. A. (2000).  The mind doesn’t work that way: The scope and limits of computational 
psychology.  Cambridge, MA: MIT Press. 

Frank, M. J., Loughry, B. & O'Reilly, R. C. (2000). Interactions between frontal cortex and basal 
ganglia in working memory: A computational model. Institute of Cognitive Science, University 
Colorado, Boulder, Technical Report 00-01. 

Freed, M. (2000). Simulating human agents. Papers from the 2000 AAAI Fall Symposium, Michael 
Freed, Chair. Technical Report FS-00-03. Menlo Park, CA: AAAI Press.  

Graybiel, A. M., & Kimura, M. (1995). Adaptive neural networks in the basal ganglia.. In J. C. 
Houk, J. L. Davis, and D. G. Beiser (Eds.) Models of information processing in the basal ganglia. 
Cambridge, MA: MIT Press.  

Greeno, J. G. (1989). Situations, mental models and generative knowledge. In D. Klahr & K. 
Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon. Hillsdale, NJ: 
Erlbaum. 

Gunzelmann, G., & Anderson, J. R. (2002). Strategic differences in the coordination of different 
views of space. In W. D. Gray and C. D. Schunn (Eds.), Proceedings of the Twenty-Fourth Annual 
Conference of the Cognitive Science Society (pp. 387-392). Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Hadley, R. F. (2002).  A defense of functional modularity. 

Haimson, C., & Anderson, J.R. (October, 2002).  Partitioning visual displays:  Directing the path of 
visual search.  Paper presented at the Annual Meeting of the Human Factors and Ergonomics 
Society, Baltimore, MD.  Note: Proceedings not published yet! 

Haimson, C., & Anderson, J. R. (in press). Partitioning visual displays: Directing the path of visual 
search. In Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, 
Baltimore, MD. 

Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, Z., Nakamura, K., Miyachi, S. & Doya, K. 
(1999). Parallel neural networks for learning sequential procedures. Trends in Neuroscience, 22, 10 
(256), 464-471. 

Hodge, K. A., Rothrock, L., Kirlik, A. C., Walker, N., Fisk, A. D., Phipps, D. A., & Gay, P. E. 
(1995). Trainings for tactical decision making under stress: Towards automatization of component 
skills. (HAPL-9501). Atlanta, GA: Georgia Institute of Technology, School of Psychology, Human 
Attention and Performance Laboratory.  



1/13/03 

 40

Houk, J. C. & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, 
cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 2, 
95-110. 

Humphreys, G. W., Olson, A., Romani, C., & Riddoch, M. J. (1996). Competitive mechanisms of 
selection by space and object: A neuropsychological approach. In A. F. Kramer, M. G. H. Coles, & 
G. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 365-393). 
Washington, DC: American Psychological Association.  

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated 
intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41. 

Just, M. A. & Carpenter, P. N. (1992). A capacity theory of comprehension: Individual differences in 
working memory. Psychological Review, 99, 122-149. 

Just, M. A., Carpenter, P. A., & Varma, S. (1999). Computational modeling of high-level cognition 
and brain function. Human Brain Mapping, 8, 128-136 

Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into working memory from 
the perspective of the EPIC architecture for modeling skilled perceptual-motor performance. In P. 
Shah & A. Miyake (Eds.) Models of Working Memory: Mechanisms of Active Maintenance and 
Executive Control. Cambridge: Cambridge University Press.  

Kintsch, W. (1998). Comprehension: A paradigm for cognition. New York: Cambridge University 
Press. 

Kosslyn, S. M. (2001).  “The Strategic Eye”: another look.  Minds and Machines, 11, 287-291. 

Laird, J. E.; Newell, A, & Rosenbloom, P. S. (1991). Soar: An Architecture for General Intelligence. 
Artificial Intelligence, 47:289-325.  

Lebiere, C. & Anderson, J. R. (1993). A Connectionist Implementation of the ACT-R Production 
System. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, pp. 
635-640. 

Lebiere, C. & Wallach, D. (2001). Sequence learning in the ACT-R cognitive architecture: empirical 
analysis of a hybrid model. In R. Sun & C. L. Gilles (Eds.). Sequence learning: paradigms, 
algorithms, and applications (pp. 188-212). Berlin: Spinger Lecture Notes in Computer Science.  

Lee, F. J. (2000). Does learning of a complex task Have to be complex? A study in learning 
decomposition. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA. 

Lewis, R. L.(1993).An Architecturally-based theory of Human Sentence Comprehension. PhD 
thesis, Carnegie Mellon University. Computer Science Technical Report CMU-CS-93-226.  



1/13/03 

 41

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492-
527. 

Lovett, M. C. (1998). Choice. In J. R. Anderson, & C. Lebiere (Eds.). The atomic components of 
thought, 255-296. Mahwah, NJ: Erlbaum. 

Lovett, M. C., Daily, L. Z., & Reder, L. M. (2000). A source activation theory of working memory: 
Cross-task prediction of performance in ACT-R. Cognitive Systems Research, 1, 99-118. 

Marcus, G. F. (2001). The algebraic mind: Integrating connectionism and cognitive science. 
Cambridge, MA: MIT Press. 

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive model of context effects in letter 
perception: I. An account of basic findings. Psychological Review, 88, 375-407.  

Meyer, D. E., Glass, J. M., Mueller, S. T., Seymour, T. L., & Kieras, D. E. (2001) Executive-process 
interactive control: A unified computational theory for answering 20 questions (and more) about 
cognitive ageing. European Journal of Cognitive Psychology, 13 (1/2), 123-164. 

Meyer, D. E. & Kieras, D. E. (1997). A computational theory of executive cognitive processes and 
multiple-task performance. Part 1. Basic mechanisms. Psychological Review, 104, 2-65. 

Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive 
circuits. Brain Research Reviews, 31, 236-250. 

Myers, J. & O’Brien, E. (1998). Accessing the discourse representation during reading. Discourse 
Processes, 26, 131-157. 

Newell, A. (1973a). You can’t play 20 questions with nature and win: Projective comments on the 
papers of this symposium (p. 283-310). In W. G. Chase (Ed.) Visual information processing. New 
York: Academic Press Inc. 

Newell, A. (1973b). Production systems: Models of control structures (p. 463-526). In W. G. Chase 
(Ed.) Visual information processing. New York: Academic Press Inc. 

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press. 

Newman, S. D., Just, M. A., Keller, T. A., Carpenter, P. A. (submitted).  Differential effects of 
syntactic and semantic processing on the subregions of Broca's area. Cognitive Brain Research. 



1/13/03 

 42

Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (in press). Frontal and parietal 
participation in problem-solving in the Tower of London: fMRI and computational modeling of 
planning and high-level perception.  

Nilsen, E. L. (1991). Perceptual-motor control in human-computer interaction. (Tech. Rep. No. 37). 
Cognitive Science and Machine Intelligence Laboratory, University of Michigan, Ann Arbor, MI. 

Noordman, L., & Vonk, W. (1998). Memory based processing in understanding causal information. 
Discourse Processes, 26, 191-212. 

Nyberg, L., Cabeza, R. & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA 
model. Psychonomic Bulletin and Review, 3, 135-148. 

Pashler, H. E. (1998). The psychology of attention. Cambridge, MA: MIT Press. 

Pirolli, P. L., & Anderson, J. R. (1985). The role of practice in fact retrieval. Journal of Experimental 
Psychology: Learning, Memory, & Cognition, 11, 136-153. 

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., &Patterson, K. E. (1996). Understanding normal 
and impaired word reading: Computational principles in quasi-regular domains. Psychological 
Review, 103, 56-115.  

Poldrack, R. A., Prabakharan, V., Seger, C. &Gabrieli, J. D. E. (1999). Striatal activation during 
cognitive skill learning. Neuropsychology 13, 564-574.  

Pylyshyn, Z. (1999). Is vision continuous with cognition? The case of impenetrability of visual 
perception. Behavioral and Brain Sciences, 22, 341–423. 

Qin, Y., Sohn, M.-H., Anderson, J. R., Stenger, Fissel, Goode, A. & Carter, C. (in preparation). 
Practice Study in Event Related fMRI and Base-level Activation Learning in ACT-R. 

Reder, L. M. & Gordon, J. S. (1997) Subliminal Perception: Nothing Special, Cognitively Speaking. 
In J. Cohen and J. Schooler (Eds.) Cognitive and Neuropsychological approaches to the study of 
Consciousness, pp. 125-134. Mahwah, NJ: Erlbaum. 

Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural basis of strategy and skill in 
sentence-picture verification. Cognitive Psychology, 40, 261-295. 

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement 
control in reading. Psychological Review, 105, 125-157.  



1/13/03 

 43

Reichle, E. D., Rayner, K., & Pollatsek, A. (1999). Eye movement control in reading: Accounting 
for initial fixation locations and refixations within the E-Z Reader model. Vision Research, 39, 
4403–4411. 

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. 
Psychological Review, 107, 358-367. 

Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal 
dysfunction in man. Brain, 111, 941-959. 

Salvucci, D. D. (2001a). An integrated model of eye movements and visual encoding. Cognitive 
Systems Research, 1, 201-220.  

Salvucci, D. D. (2001). Predicting the effects of in-car interfaces on driver behavior using a 
cognitive architecture. To appear in CHI Letters, CHI 2001 Conference Proceedings.  

Salvucci, D. D., Boer, E. R., & Liu, A. (2001). Toward an integrated model of driver behavior in a 
cognitive architecture. Transportation Research Record, No. 1779.  

Sanford, A. J. & Garrod, S. C. (1998). The role of scenario mapping in text comprehension. 
Discourse Processes, 26, 159-190. 

Anderson, J. R. & Schooler, L. J. (1991).  Reflections of the environment in memory.  Psychological 
Science, 2, 396-408. 

Schumacher, E. H, Seymour, T. L., Glass, J. M., Lauber, E. J., Kieras, D. E., & Meyer, D. E. (1997). 
Virtually perfect time sharing in dual-task performance. Paper presented at the 38th Annual Meeting 
of the Psychonomic Society, Philadelphia, PA.  

Simon, H. A. (1975). The functional equivalence of problem solving skills. Cognitive Psychology, 7, 
268-288. 

Sohn, M.-H., Douglass, S. A., Chen, M.-C., &Anderson, J. R. (submitted). Unit task execution with 
a dynamic display in a complex problem-solving situation 

Sohn, M-H., Douglass, S. A., Chen, M-C., & Anderson, J. R. (2000). Eye-movements during unit-
task execution in a complex problem-solving situation. In Proceedings of the 44th Annual Meeting 
of the Human Factors and Ergonomics Society, 378-381. 

Squire, L. R. (1987). Memory and brain. New York: Oxford University Press. 



1/13/03 

 44

Taatgen, N. A. (2001a). A model of individual differences in learning Air Traffic Control. In 
Proceedings of the Fourth International Conference on Cognitive Modeling, pp. 211-216. Mahwah, 
NJ: Lawrence Erlbaum Associates. 

Taatgen, N.A. (2001b). Extending the Past-tense debate: a model of the german plural. In J.D. 
Moore and K. Stenning. Proceedings of the twenty-third annual conference of the cognitive science 
society (pp. 1018-1023). Mahwah, NJ: Erlbaum.  

Taatgen, N. A. & Anderson, J. R. (in press). Why do children learn to say "broke"? A model of 
learning the past tense without feedback, Cognition. 

Triesman, A. M., & Gelade, G. (1980).  A feature-integration theory of attention.  Cognitive 
Psychology, 12, 97-136. 

Ungerleider, L. G. & Miskin, M. (1982). Two cortical visual systems. In D. J. Engle, M. A. Goodale, 
& R. J. Mansfield (Eds.) Analysis of visual behavior, 549-586. Cambridge, MA: MIT Press. 

Uttal, W. R. (2001). The new Phrenology: The limits of localizing cognitive processes in the brain.  
Cambridge, MA: MIT Press. 

Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or location? Journal of 
Experimental Psychology: General, 123, 146-160.  

Wagner, A. D., Maril, A., Bjork, R. A., & Schacter, D. L. (2001). Prefrontal contributions to 
executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. 
NeuroImage, 14, 1337-1347. 

Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: Left 
prefrontal cortex guides controlled semantic retrieval. Neuron, 31, 329-338.  

Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 197, 829-
854. 

Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The frontal cortex-basal ganglia system in 
primates. Critical Reviews in Neurobiology, 10, 317-356. 

Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & 
Review, 1, 202-238. 



1/13/03 

 45

Acknowledgements 

 
John R. Anderson, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213 
(412) 268-2788, ja@cmu.edu. This research was supported by ONR grant N00014-96-01491. 
Correspondence concerning this article should be addressed to John R. Anderson, Department of 
Psychology, Carnegie Mellon University, Pittsburgh, PA 15213. Electronic mail may be sent to 
ja@cmu.edu. 

 



1/13/03 

 46

Footnotes 
 

1. We will discuss at the end of the paper some of the recent controversy about the proliferation of 
modules (e.g., Fodor, 2000; Kosslyn, 2001; Uttal, 2001). 
 
2. These systems take advantage of the fact that it is possible to have the models interact with 
simulators and so it is not necessary to create real bodies and sensors in the simulation. 
 
3. There is one significant qualification on this claim – because of the lack of complex motor 
programs in ACT-R (which are essential for modeling driving) he had to reduce the default cycle 
time to in effect program these routines in ACT-R. However, this was done in advance of the test 
that we will be describing here. Also, Salvucci (personal communication) has subsequently shown 
that the model, given a more realistic motor programs, can drive with a 50 msec cycle time. 
 
4. Even though this is the goal, we have not fully achieved it any of the research described in this 
paper.  
 
5. There is, of course, a great deal of evidence that long-term memory, which is part of the retrieval 
module as distinct from the buffer, is associated with the temporal lobes and hippocampus. 
 
6. Specifically, in terms of Anderson & Lebiere, the decompositions described by Probability of 
Goal Equation 3.2 and Cost of goal Equation 3.3, production strength and the learning mechanism 
described by Production Strength Equation 4.4, and the associative learning described by Posterior 
Strength Equation 4.3. 
 
7. The actual value of this parameter in various instantiations of ACT-R has been the source of some 
confusion. In the first Visual Interface for ACT-R (Anderson, Matessa, & Lebiere, 1997), all activity 
was serialized and so this value was 185 ms. However, in ACT-R 5.0 the actual system parameter is 
85 ms because the same attention shift now requires two production firings that add the other 100 
ms. 
 
8. The numbers reported here are the same as those in Anderson, Lebiere, & Matessa, 1997. A 
subsequent recomputation of feature overlap leads to a .62 overlap and an estimate of a 115 msec. 
slope which is again close to the empirical number. (Anthony Hornoff, personal communication) 
 
9. This step depends on ACT-R’s ability to tag items on the screen as attended and retrieve the 
closest unattended object to a location. 
 
10. Note this is different than the visual module described earlier.  The imaginal buffer has recently 
been added to a number of ACT-R models (e.g., Gunzelmann & Anderson, 2002) to model 
transformations of visually presented information. 
 
11. We will sometimes use the term CAPS to refer to this architecture in general. 
 
12. Meyer, Glass, Mueller, Seymour, and Kieras (2002) relate this to the alpha rhythm and propose 
that changes in the cycle time account for effects of cognitive aging. 
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Table 1 
Domains for ACT-R Models 

I. Perception & Attention

     1. Psychophysical Judgements
     2. Visual Search
     3. Eye Movements
     4. Psychological Refractory Period
     5. Task Switching
     6. Subitizing
     7. Stroop
     8. Driving Behavior
     9.  Situational Awareness

II. Learning & Memory

     1. List Memory
     2. Fan Effect
     3. Implicit Learning
     4. Skill Acquisition
     5. Cognitive Arithmetic
     6. Category Learning
     7. Learning by Exploration
           and Demonstration
     8. Updating Memory & Prospective
           Memory

Approximately 100 Published Models
by as Many Authors in ACT-R 4.0

III. Problem Solving & Decision Making

1. Tower of Hanoi
2. Choice & Strategy Selection
3. Mathematical Problem Solving
4. Spatial Reasoning
5. Dynamic Systems
6. Use and Design of Artifacts
7. Game Playing
8. Insight and Scientific Discovery

IV. Language Processing

1. Parsing
2. Analogy & Metaphor
3. Learning
4. Sentence Memory
5. Communication & Negotiation

V. Other

1. Cognitive Development
2. Individual Differences
3. Emotion
4. Cognitive Workload

Visit http://act.psy.cmu.edu/papers/ACT-R_Models.htm link.

 

Visit http://act-r.psy.cmu.edu/publications 
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Table 2 
Distribution of Experience in Lovett (1998) 

(Values in parentheses were used in the extreme condition) 
 

 
 
 

Undershoot

More Successful

Overshoot

More Successful

Looks

Undershoot

10 Undershoot

  0 Overshoot

10 (5) Undershoot

10 (15) Overshoot

Looks

Overshoot

10 (15) Undershoot

10 (5) Overshoot

  0 Undershoot

10 Overshoot
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Table 3 

 
 

ACT-R model probabilities before and after problem-solving
experience in Experiment 3 (Lovett & Anderson, 1996)

Production
Prior

Probability
of Success

                        Final Value
        Biased                         Extreme-Biased
     Condition                          Condition

Production 1:
More Successful

Context Free
.50 .60 .71

Production 2:
Less Successful

Context Free
.50 .38 .27

Production 3:
More Successful
Context Sensitive

.96 .98 .98

Production 4:
Less Successful

Context Sensitive
.96 .63 .54
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Table 4 

Average Time to Find a Target as a Function of Position of Target to  
Home Ship (Center of Screen) and Number of Tracks on the Screen 

 
 

  
1 Close 
1 Far 

 
4 Close 
4 Far 

 
4 Close 
12 Far 

 
Target Close 

To Home Ship 

 
821 msec. 

 
1033 msec. 

 
1060 msec. 

 
Target Far From Home 

Ship 

 
995 msec. 

 
2028 msec. 

 
2671 msec. 
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Table 5 
Production System Architectures 

 
 

Serial Bottleneck No Serial Bottleneck

Hybrid ACT-R 3/4-CAPS

Not Hybrid SOAR EPIC
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Figure Captions 
 
Figure 1  Representation of the driving task studied by Salvucci (Salvucci, 2001). 
 
Figure 2 Impact of driving on dialing various phones (Salvucci, 2001). 
 
Figure 3 Impact of dialing various phones on deviation of car from center of lane (Salvucci, 2001). 
 
Figure 4 The organization of information in ACT-R 5.0. 
 
Figure 5 Fit of ACT-R/PM to the Nilsen (1991) menu scanning data. 
 
Figure 6 The ACT-R schedule chart for Schumacher et al (1997). 
 
Figure 7 Predictions of the ACT-R model for Schumacher et al (1997). 
 
Figure 8 The relationship between the number of goals being held during the performance of the 
Tower of Hanoi task and activation in the dorsolateral prefrontal cortex.  
 
Figure 9 A presentation of a declarative chunk with its subsymbolic quantities. 
 
Figure 10 Representation of some of the chunks in Pirolli & Anderson (1985). 
 
Figure 11 Activation of the chunks in Anderson and Pirolli (1985) as a function of fan and practice. 
 
Figure 12 Time to recognize sentences in Anderson and Pirolli (1985) as a function of fan and 
practice. 
 
Figure 13 A representation of Lovett’s building sticks task. 
 
Figure 14 Percent choice of the more successful strategy as a function of appearance of the problem 
and amount of experience. Lovett (1998). 
 
Figure 15 A typical screen in Haimson’s task. Targets are tracks with half-curves. 
 
Figure 16 Learning in the screen localization task (a) Data segregated by distance from home ship, 
collapsed over number of distractors (b) Data segregated by number of distractors, collapsed over 
distance from home ship. 
 
Figure 17 Performance in the symbol manipulation task: Effects of number of transformations and 
days of practice. 
 
Figure 18 Activity of ACT-R buffers in solving an equation. 
 
Figure 19 Location of the posterior parietal region associated with the imaginal buffer, the motor 
region associated with the manual buffer, and the ventrolateral prefrontal cortex associated with the 
retrieval buffer. 
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Figure 20 Activity in the parietal cortex predicted by imaginal processing in ACT-R. 
 
Figure 21 Activity in the ventrolateral prefrontal cortex predicted by retrievals in ACT-R. 
 
Figure 22 Activity in the motor cortex predicted by manual programming in ACT-R. 
 
Figure 23 Activity in the caudate predicted by the number of novel productions that fire. 
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Figure 1
 

Cell phone application that integrates cognition, vision, manual, auditory,  
and speech in a system that actually drives (a simulator) and talks. 

 
 
 
 
 
 
 
 
 
 

••• 
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Driver 
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Figure 2 
 
 

 
 

Figure 3 
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Figure 4  
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
 

 
 
 
 
 
 
 
 

Figure 15 
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Figure 16a 
 

Figure 16b 
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Figure 17 
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 Figure 18 
ACT-R Buffer Activity during Solution of P < = > 4 3 

 
Time Step Imaginal Retrieval Manual 

     
3.1     
3.3 1 < = >    
3.5 2 _ < = > 3   
3.7 3 _ < = > 3    
3.9 4 _ < = > 3 4   
4.1     
4.3 5 _ P < = > 3 4   
4.5 6 P < = > 3 4   
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5.1     
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Figure 19 
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Figure 20 
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Figure 21 

 

Day 5

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 2 4 6 8 10 12 14 16 18

Time (Sec.)

Day 1

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 2 4 6 8 10 12 14 16 18

Time (Sec.)

pred 2 trans
pred 1 trans
pred 0 trans
data 2 trans
data 1 trans
data 0 trans

Retrieval 
Predicts
VLPFC



1/13/03 

 76

 
Figure 22 
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Figure 23 
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1 We will discuss at the end of the paper some of the recent controversy about the proliferation of 
modules (e.g., Fodor, 2000; Kosslyn, 2001; Uttal, 2001). 
2 These systems take advantage of the fact that it is possible to have the models interact with simulators 
and so it is not necessary to create real bodies and sensors in the simulation. 
3 There is one significant qualification on this claim – because of the lack of complex motor programs in 
ACT-R (which are essential for modeling driving) he had to reduce the default cycle time to in effect 
program these routines in ACT-R. However, this was done in advance of the test that we will be 
describing here. Also, Salvucci (personal communication) has subsequently shown that the model can 
drive given a more realistic motor module with a 50 msec cycle time. 
4 Even though this is the goal, we have not fully achieved it any of the research described in this paper 
5 There is, of course, a great deal of evidence that long-term memory, which is part of the retrieval 
module as distinct from the buffer, is associated with the temporal lobes and hippocampus. 
6 Specifically, in terms of Anderson & Lebiere, the decompositions described by Probability of Goal 
Equation 3.2 and Cost of goal Equation 3.3., production strength and the learning mechanism described 
by Production Strength Equation 4.4., and the associative learning described by Posterior Strength 
Equation 4.3. 
7 The actual value of this parameter in various instantiations of ACT-R has been the source of some 
confusion. In the first Visual Interface for ACT-R, all activity was serialized and so this value was 185 
ms. However, in ACT-R 5.0 the actual system parameter is 85 ms because the same attention shift now 
requires two production firings.  
8 The numbers reported here are the same as those in Anderson, Lebiere, & Matessa, 1997. A subsequent 
recomputation of feature overlap leads to a .62 overlay and an estimate of a 115 msec. slope which is 
again close to the empirical number. (Anthony Hornoff, personal communication) 
9 This step depends on ACT-R’s ability to tag items on the screen as attended. 
10 Note this is different than the visual module described earlier.  The imaginal buffer has recently been 
added to a number of ACT-R models (e.g., Gunzelmann & Anderson, 2002) to model transformations of 
visually presented information. 
11 We will sometimes use the term CAPS to refer to this architecture in general. 
12 Meyer, Glass, Mueller, Seymour, and Kieras (2002) relate this to the alpha rhythm and propose that 
changes in the cycle time account for effects of cognitive aging. 


