10 Proofs as Programs

term comp : (A =>B) & (B=>C) => (A =>C) =
fn u => fn x => (snd u) ((fst u) x);

We also allow annotated deductions, where each line is annotated with a
proof term. This is a direct transcription of deduction for judgments of the
form M : A. As an example, we show the proof that AV BD BV A, first in the
pure form.

proof orcomm : A | B=>B | A =
begin
[A B;

[A;

B | Al;

Now we systematically annotate each line and obtain

annotated proof orcomm : A | B=>B | A =
begin
[Lu: A
[v : A;
inr v : B | Al;
[w: B;
inl w : B | A];
case u

B;

of inl v => inr v
| inr w => inl w
end : B | A];
fn u => case u
of inl v => inr v
| inr w => inl w
end : A| B=>B | A
end;

1.4 Properties of Proof Terms

In this section we analyze and verify various properties of proof terms. Rather
than concentrate on reasoning within the logical calculi we introduced, we now
want to reason about them. The techniques are very similar—they echo the
ones we have introduced so far in natural deduction. This should not be sur-
prising. After all, natural deduction was introduced to model mathematical
reasoning, and we now engage in some mathematical reasoning about proof
terms, propositions, and deductions. We refer to this as meta-logical reasoning.

Draft of October 3, 2001

1.4 Properties of Proof Terms 11

First, we need some more formal definitions for certain operations on proof
terms, to be used in our meta-logical analysis. One rather intuitive property of
is that variable names should not matter. For example, the identity function at
type A can be written as Au:A. u or Aw:A. w or \u':A. v, etc. They all denote
the same function and the same proof. We therefore identify terms which differ
only in the names of variables (here called u) bound in Au:A. M, inlu = M
or inru = O. But there are pitfalls with this convention: variables have to be
renamed consistently so that every variable refers to the same binder before and
after the renaming. For example (omitting type labels for brevity):

Au.u = Aw.w
Au. w.u = M. dw. o
M. dw.u # du. Adw. w
Au. d\w. v # Aw. Aw. w
AU Adw. w = Aw. Aw. w

The convention to identify terms which differ only in the naming of their
bound variables goes back to the first papers on the A-calculus by Church and
Rosser [CR36], is called the “variable name convention” and is pervasive in the
literature on programming languages and A-calculi. The term A-calculus typi-
cally refers to a pure calculus of functions formed with A-abstraction. Our proof
term calculus is called a typed A-calculus because of the presence of propositions
(which an be viewed as types).

Following the variable name convention, we may silently rename when con-
venient. A particular instance where this is helpful is substitution. Consider

[u/w](Au. wu)

that is, we substitute v for w in Au. wu. Note that v is a variable visible on
the outside, but also bound by Au. By the variable name convention we have

[u/w](Au. wu) = [u/w](M'. wu') = A’ uu'
which is correct. But we cannot substitute without renaming, since
[u/w](Au. wu) # Iu. vu

In fact, the right hand side below is invalid, while the left-hand side makes
perfect sense. We say that u is captured by the binder Au. If we assume a
hypothesis u: T D A then
[u/w](Au:T. wu) : A
but
Au:T. uu

is not well-typed since the first occurrence of v would have to be of type T D A
but instead has type T.

So when we carry out substitution [M/u]N we need to make sure that no
variable in M is captured by a binder in N, leading to an incorrect result.

Draft of October 3, 2001

12 Proofs as Programs

Fortunately we can always achieve that by renaming some bound variables in
N if necessary. We could now write down a formal definition of substitution,
based on the cases for the term we are substituting into. However, we hope that
the notion is sufficiently clear that this is not necessary.

Instead we revisit the substitution principle for hypothetical judgments. It
states that if we have a hypothetical proof of C true from A true and we have a
proof of A true, we can substitute the proof of A true for uses of the hypothesis
A true and obtain a (non-hypothetical) proof of A true. In order to state this
more precisely in the presence of several hypotheses, we recall that

A1 true... A, true

C true

can be written as
Aj true, ..., A, true F C true

A
Generally we abbreviate several hypotheses by A. We then have the follow-
ing properties, evident from the very definition of hypothetical judgments and
hypothetical proofs

Weakening: If A+ C true then A, A’ F C true.
Substitution: If A, A true, A’ - C true and A + A true then A, A’ - C true.

As indicated above, weakening is realized by adjoining unused hypotheses, sub-
stitutions is realized by substitution of proofs for hypotheses.
For the proof term judgment, M : A, we use the same notation and write

U1:A1 un:An

N:C

as
up:Ay, .. untAy FEN:C
~—————

r

We use T to refer to collections of hypotheses u;:4;. In the deduction of N : C,
each u; stands for an unknown proof term for A;, simply assumed to exist. If
we actually find a proof M;:A; we can eliminate this assumption, again by sub-
stitution. However, this time, the substitution has to perform two operations:
we have to substitute M; for u; (the unknown proof term variable), and the
deduction of M; : A; for uses of the hypothesis u;:4;. More precisely, we have
the following two properties:

Weakening: If ' N : C then T, TV +F N : C.
Substitution: f I' w: A TVFN:Cand '+ M : A then I', TV - [M/u]N : C.

Draft of October 3, 2001

1.4 Properties of Proof Terms 13

Now we are in a position to state and prove our second meta-theorem, that
is, a theorem about the logic under consideration. The theorem is called subject
reduction because is concerns the subject M of the judgment M : A. It states
that reduction preserves the type of an object. We make the hypotheses explicit
as we have done in the explanations above.

Theorem 1.1 (Subject Reduction)
IfTFM:Aand M = M' thenT - M': A.

Proof: We consider each case in the definition of M = M' in turn and show
that the property holds. This is simply an instance of proof by cases.

Case: fst (M;, Ms) = M;. By assumption we also know that
'+ fst <M1,M2> D A

We need to show that ' - M; : A.

Now we inspect all inference rules for the judgment M : A and we see that
there is only one way how the judgment above could have been inferred:
by AEL from

'k <M1,M2) : A/\Ag

for some As. This step is called inversion, since we infer the premises
from the conclusion of the rule. But we have to be extremely careful to
inspect all possibilities for derivations so that we do not forget any cases.

Next, we apply inversion again: the judgment above could only have been
inferred by AI from the two premises

F"M]_ZA

and
'k M2 : A2

But the first of these is what we had to prove in this case and we are done.

Case: snd (M, Ms) = M. This is symmetric to the previous case. We write
it an abbreviated form.

I'ksnd (M, M) : A Assumption
T+ (M, M) : Ay A A for some A; By inversion
Tk Ml : A]_ and

'EM,: A By inversion

Here the last judgment is what we were trying to prove.

Case: There is no reduction for T since there is no elimination rule and hence
no destructor.

Draft of October 3, 2001

14 Proofs as Programs

Case: (\u:d;. M2) My = [M;/u]M>. By assumption we also know that
Tk ()\UZAl. MQ) M1 c A,
We need to show that I' F [M; /u]M> : A.

Since there is only one inference rule for function application, namely
implication elimination (DFE), we can apply inversion and find that

TF(AuwAy. M) : A] DA

and
FI_MI All

for some A}. Now we repeat inversion on the first of these and conclude
that
F, u:A1 = M2 tA

and, moreover, that A; = A/. Hence
'k M1 : A1

Now we can apply the substitution property to these to judgments to
conclude
Tk [Ml/u]Mg : A

which is what we needed to show.

Case: (caseinl M, of inlu = N | inrw = O) = [M, /u]N. By assumption
we also know that

T+ (caseinl® M; of inlu = N |inrw = 0) : A

Again we apply inversion and obtain three judgments

T+inl° M, : B'v ('

TuB'FN: A

Tbw:C'-O: A
for some B’ and C'.
Again by inversion on the first of these, we find

'-M,:B
and also C' = C. Hence we can apply the substitution property to get
Tk [M/ulN:A

which is what we needed to show.

Case: (caseinr® M; of inlu = N | inrw = O) = [M;/u]N. This is
symmetric to the previous case and left as an exercise.

Draft of October 3, 2001

1.4 Properties of Proof Terms 15

Case: There is no introduction rule for 1 and hence no reduction rule.

The important techniques introduced in the proof above are proof by cases
and inversion. In a proof by cases we simply consider all possibilities for why a
judgment could be evident and show the property we want to establish in each
case. Inversion is very similar: from the shape of the judgment we see it could
have been inferred only in one possible way, so we know the premises of this rule
must also be evident. We see that these are just two slightly different forms of
the same kind of reasoning.

If we look back at our early example computation, we saw that the reduc-
tion step does not always take place at the top level, but that the redex may
be embedded in the term. In order to allow this, we need to introduce some
additional ways to establish that M —> M’ when the actual reduction takes
place inside M. This is accomplished by so-called congruence rules.

Conjunction. As usual, conjunction is the simplest.

M= M' N = N’
(M,N) = (M',N) (M,N) = (M,N")

M= M M= M
fst M — fst M’ snd M = snd M’

Note that there is one rule for each subterm for each construct in the language
of proof terms, just in case the reduction might take place in that subterm.

Truth. There are no rules for truth, since () has no subterms and therefore
permits no reduction inside.

Implication. This is similar to conjunction.

M= M N = N'
MN= M'N MN=— MN'
M= M

Aw:A. M) = (Qu:A. M")

Draft of October 3, 2001

16 Proofs as Programs

Disjunction. This requires no new ideas, just more cases.

M = M' N = N'

inl®? M = inl® M’ int? N = inr? N’

M= M
(case M of inlu = N | inrw = O) => (case M' of inlu = N |inrw = O)

N= N'
(case M of inlu = N | intrw = O) => (case M of inlu = N' | inrw = O)

0= 0
(case M of inlu = N | inrw = 0) = (case M of inlu = N | inrw = O')

Falsehood. Finally, there is a congruence rule for falsehood, since the proof
term constructor has a subterm.

M= M
abort® M = abort® M’

We now extend the theorem to the general case of reduction on subterms.
A proof by cases is now no longer sufficient, since the congruence rules have
premises, for which we would have to analyze cases again, and again, etc.

Instead we use a technique called structural induction on proofs. In struc-
tural induction we analyse each inference rule, assuming the desired property
for the premises, proving that they hold for the conclusion. If that is the case
for all inference rules, the conclusion of each deduction must have the property.

Theorem 1.2 (Subterm Subject Reduction)
IfTHFM:Aand M = M' then T' - M': A where M = M’ refers to the
congruent interpretation of reduction.

Proof: The cases where the reduction takes place at the top level of the term
M, the cases in the proof of Theorem 1.1 still apply. The new cases are all very
similar, and we only show one.

Case: The derivation of M => M’ has the form
M, = Mll
<M17 M2> = <M117 M2>

We also know that I' - (M7, Ms) : A. We need to show that
Tk (M, M):A

Draft of October 3, 2001

1.5 Primitive Recursion 17

By inversion,
T |_ M1 . A1

and
FI— M2 . A2

and A = A1 A As.
Since we are proving the theorem by structural induction and we have a
deduction of T' F M; : A; we can now apply the induction hypothesis to
M, = M/. This yields
Tk M| :A
and we can construct the deduction
F"M{Al FFMQZAQ

'k (M{,Mz) : A1 /\A2

vl

which is what we needed to show since A = A; A As.
Cases: All other cases are similar and left as an exercise.

O

The importance of the technique of structural induction cannot be overem-
phasized in this domain. We will see it time and again, so the reader should
make sure the understand each step in the proof above.

1.5 Primitive Recursion

In the preceding sections we have developed an interpretation of propositions
as types. This interpretation yields function types (from implication), product
types (from conjunction), unit type (from truth), sum types (from disjunction)
and the empty type (from falsehood). What is missing for a reasonable pro-
gramming language are basic data types such as natural numbers, integers, lists,
trees, etc. There are several approaches to incorporating such types into our
framework. One is to add a general definition mechanism for recursive types or
inductive types. We return to this option later. Another one is to specify each
type in a way which is analogous to the definitions of the logical connectives via
introduction and elimination rules. This is the option we pursue in this section.
A third way is to use the constructs we already have to define data. This was
Church’s original approach culminating in the so-called Church numerals. We
will not discuss this idea in these notes.

After spending some time to illustrate the interpretation of propositions as
types, we now introduce types as a first-class notion. This is not strictly nec-
essary, but it avoids the question what, for example, nat (the type of natural
numbers) means as a proposition. Accordingly, we have a new judgment T type
meaning “7 is a type”. To understand the meaning of a type means to under-
stand what elements it has. We therefore need a second judgment ¢ € 7 (read:

Draft of October 3, 2001

