PRACTICE MIDTERM EXAM

This practice test will not be collected or scored. You may use one page (front and back) of notes in solving the following problems.

- 1. Let A be the subset of natural numbers defined inductively by the following clauses:
 - $\bullet \ 1 \in A$
 - If $n \in A$, then $2n \in A$
 - If $n \in A$, then $2n + 6 \in A$
 - (a) Show that 32 is an element of A.
 - (b) Show that 87 is not an element of A.
 - (c) Is A freely generated? Justify your answer.
- 2. Remember that if φ and ψ are any propositional formulas and p is a propositional variable, then $\varphi[\psi/p_i]$ is defined by recursion, as follows:
 - If φ is a propositional variable p, then

$$\varphi[\psi/p_i] = \begin{cases} \psi & \text{if } p_i = p \\ p & \text{otherwise} \end{cases}$$

• If φ is of the form $(\theta \Box \eta)$, then

$$\varphi[\psi/p_i] = (\theta[\psi/p_i] \Box \eta[\psi/p_i]).$$

• If φ is of the form $(\neg \theta)$, then

$$\varphi[\psi/p_i] = (\neg \theta[\psi/p_i]).$$

(a) Show that if φ and ψ are any two formulas, and v and v' are truth value assignments such that

$$v'(p_j) = \begin{cases} \llbracket \psi \rrbracket_v & \text{if } i = j \\ v(p_j) & \text{otherwise} \end{cases}$$

then

$$\llbracket \varphi[\psi/p_i] \rrbracket_v = \llbracket \varphi \rrbracket_{v'}.$$

- (b) What does it mean for a propositional formula φ to be *valid*?
- (c) Show (using parts a and b) that if φ is valid then so is $\varphi[\psi/p_i]$.
- 3. Use algebraic means to put the following formula into disjunctive and conjunctive normal forms:

$$\neg((\neg p \to q) \land (r \to (q \lor s)))$$

Is the formula valid? Why or why not?

- 4. Use truth tables or a semantic argument to show the following.
 - $((p \lor r) \to (q \to s)) \to ((p \land q \to s) \land (r \land q \to s))$ is a tautology.
 - It is not the case that $p \lor q \models p \to q$
- 5. Give natural deduction proofs of the following:
 - $\vdash (\varphi \lor \neg \varphi)$
 - $(\varphi \lor \psi) \vdash \neg (\neg \varphi \land \neg \psi)$
 - $(\neg \varphi \lor \psi) \vdash \varphi \to \varphi \land \psi$
- 6. State the Soundness and Completeness Theorems (and say which is which).
- 7. What does it mean to say that a set Γ of propositional formulas is *maximally consistent*?

Show that if Γ is maximally consistent and $\Gamma \vdash \varphi$, then φ is in Γ .

8. Show that the following set of sentences is consistent:

$$\{p \to q, \neg r \to p, \neg p\}$$

* 9. Suppose that for formulas φ and ψ some truth valuation v makes both of them true. Show that then it is not the case that $\varphi \vdash \neg \psi$.