1. Finish the proof of the Model Existence Lemma from the lecture by showing that if M is a maximally consistent set of formulas, then $\varphi \rightarrow \psi \in M$ if and only if $\varphi \in M$ implies $\psi \in M$.

2. Show that if Γ is any consistent set, and φ is any formula, then either $\Gamma \cup \{\varphi\}$ or $\Gamma \cup \{\neg \varphi\}$ is consistent. (Hint: suppose they are both inconsistent...)

3. In van Dalen, do exercise 9 on p. 45, namely: Consider an infinite set $\{\varphi_1, \varphi_2, \varphi_3, \ldots\}$. If for each valuation v there is an n such that $[\varphi_n]_v = 1$, then there is an m such that $\vdash \varphi_1 \lor \ldots \lor \varphi_m$. (Hint: consider the negations $\neg \varphi_1, \neg \varphi_2, \ldots$, and use compactness.)

4. A formula φ is said to be independent of a set of formulas Γ if $\Gamma \not\vdash \varphi$ and $\Gamma \not\vdash \neg \varphi$. Suppose Γ is a consistent set of formulas, φ is independent of Γ, and ψ is independent of $\Gamma \cup \{\varphi\}$. Show that there are at least three different maximally consistent sets containing Γ.

 STAR