1. Do problem 1 on page 27 of van Dalen.

2. Determine conjunctive and disjunctive normal forms for the following formulas:

 \neg(p \leftrightarrow q), \quad ((p \rightarrow q) \rightarrow p) \rightarrow p

 Use these normal forms to determine whether each formula is a tautology.

3. (a) Show that all of the truth functions (on \{0, 1\}) can be defined in terms of \{\rightarrow, \bot\}, i.e. that this is a functionally complete set of connectives.

 (b) Show that \{\rightarrow, \lor, \land\} is not a functionally complete set of connectives.

 (c) Conclude that \{\rightarrow, \lor, \land, \leftrightarrow, \top\} is not a functionally complete set of connectives. (Hint: define the last two in terms of the others.)

4. Prove the following proposition:

 Let \(X \) be a set with an equivalence relation, written \(x \sim y \). Suppose given a set \(A \), and a function \(f : X \rightarrow A \) that respects \(\sim \), in the sense that \(f(x) = f(y) \) whenever \(x \sim y \). Then there is a function

 \[\overline{f} : X/\sim \rightarrow A \]

 such that for all \(x \in X \),

 \[\overline{f}([x]) = f(x). \]

 Where the quotient set \(X/\sim = \{[x] \mid x \in X\} \) is the set of all equivalence classes \([x] = \{y \mid x \sim y\}\).

4. Use the foregoing to show that one can define the multiplication of a (positive) rational number \(\frac{n}{m} \) by a natural number \(k \) by the usual formula,

 \[k \cdot \frac{n}{m} = \frac{k \cdot n}{m}. \]

(Recall that a (positive) rational number is an equivalence class of pairs of natural numbers \(\frac{n}{m} = [(n, m)] \), under the equivalence relation \((n, m) \sim (n', m') \iff n \cdot m' = n' \cdot m\).)