Solutions to Homework #9

- 2. a. Free; x = x
 - b. Free; y = y
 - c. Free; $z = \bar{0}$
 - d. Free; $\exists x \ (\bar{0} + y = x)$
 - e. Free; $\exists w \ (w + x = \overline{0})$
 - f. Not free; $\forall w (x + (x + w) = \overline{0})$
 - g. Not free; $\forall w \ (x + (x + y) = \overline{0}) \land \exists y \ (x + y = x)$
 - h. Free; $\forall u \ (u = v) \rightarrow \forall z \ (z = y)$
- 3. a. There are lots of terms that denote 5 in this structure; for example, S(S(S(S(c))))) and (S(S(S(c)))) + c).
 - b. To denote n, just use the term $S(S(S(\ldots S(c))))$, with n S's in all. More formally, use induction on n; if n = 0, use c; and if t denotes n, S(t) denotes n + 1.
 - c. If t denotes n, then so do (t+c), ((t+c)+c), (((t+c)+c)+c), and so on.
- 6. a. To show $\exists x \ (\varphi(x) \land \psi(x)) \to (\exists x \ \varphi(x) \land \exists x \ \psi(x))$ is valid, I need to show that it is true in every structure \mathfrak{A} . I will use Lemma 2.4.5 repeatedly.

Saying that the formula above is true in \mathfrak{A} amounts to saying that if $\exists x \ (\varphi(x) \land \psi(x))$ is true in \mathfrak{A} then $(\exists x \ \varphi(x) \land \exists x \ \psi(x))$ is true in \mathfrak{A} . To show this, suppose $\exists x \ (\varphi(x) \land \psi(x))$ is true in \mathfrak{A} . By Lemma 2.4.5, this means that there is some *a* in the universe of \mathfrak{A} such that $\varphi(\bar{a}) \land \psi(\bar{a})$ is true in \mathfrak{A} . For this value of *a*, both $\varphi(\bar{a})$ and $\psi(\bar{a})$ are true in \mathfrak{A} . But this means that $\exists x \ \varphi(x)$ is true in \mathfrak{A} , and $\exists x \ \psi(x)$ is true in \mathfrak{A} , and hence $\exists x \ \varphi(x) \land \exists x \ \psi(x)$ is true in \mathfrak{A} , which is what I needed to show.

Note that saying " θ is true in \mathfrak{A} " is synonymous with " $\mathfrak{A} \models \theta$ "; which phrasing you use is a matter of taste.

b. To show that the other direction is not valid, it's enough to describe a counterexample. Let L be a language with two constant symbols a and b, and let \mathfrak{A} be a structure in which a and b denote different objects (say, the structure with universe $\{0, 1\}$, where $a^{\mathfrak{A}} = 0$, $b^{\mathfrak{A}} =$ 1). Then $\mathfrak{A} \models \exists x \ (x = a) \land \exists x \ (x = b)$, but $\mathfrak{A} \not\models \exists x \ (x = a \land x = b)$. (There are many other simple counterexamples.)

- 7. a. This is false. For example, let φ be the formula $\forall x \ \forall y \ R(x, y)$. Then φ is true in a structure \mathfrak{A} where the denotation of R holds of everything (for example, take $\langle \mathbb{N}, Q \rangle$ where Q holds of every pair of natural numbers), and φ is false in a structure \mathfrak{B} where there is at least one pair of values for which the denotation of R does not hold (for example, take $\langle \mathbb{N}, <^{\mathbb{N}} \rangle$).
 - b. This is true, by Lemma 2.4.5: for any structure $\mathfrak{A}, \mathfrak{A} \models \neg \varphi$ iff $\mathfrak{A} \not\models \varphi$.
 - c. This is false. For example, let Γ be the empty set, and use part (a).