Solutions to Homework #12

2.

3.

a.

b.

$$\underbrace{ \begin{array}{c} [\psi(x)]_1 \\ \hline \varphi \to \psi(x) \\ \hline \exists x \ (\varphi \to \psi(x)) \\ \hline \exists x \ (\varphi \to \psi(x)) \end{array} 1 \\
 \end{array}}_{} 1$$

c.

d. This is just the \vee elimination rule:

$$\begin{array}{cccc} [\exists x \ \psi(x)]_1 & [\neg \exists x \ \psi(x)]_1 & \varphi \to \exists x \ \psi(x) \\ & \vdots(b) & \vdots & \vdots(c) \\ \hline \exists x \ \psi(x) \lor \neg \exists x \ \psi(x) & [\exists x \ (\varphi \to \psi(x))]_2 & \exists x \ (\varphi \to \psi(x)) \\ \hline & \frac{\exists x \ (\varphi \to \psi(x))}{(\exists x \ (\varphi \to \psi(x)) \to \exists x \ (\varphi \to \psi(x)))} \ 1 \end{array}$$

5. Suppose T is a maximally consistent theory.

For the forwards direction, suppose φ is in T. Since T is consistent, $\neg \varphi$ is not in T.

For the other direction, suppose $\neg \varphi$ is not in T. By maximality, $T \cup \{\neg \varphi\}$ is inconsistent. So there is a proof of \bot from T and $\neg \varphi$. Using RAA, we get a proof of φ from T. Since T is a theory, φ is in T.

11. Suppose T_1 is a conservative extension of T_2 , and T_2 is a conservative extension of T_3 . I need to show that T_1 is a conservative extension of T_3 . In other words, I need to show that if φ is any sentence in L_3 , then φ is in T_1 if and only if it is in T_3 .

Since T_1 contains T_2 and T_2 contains T_3 , it is clear that every sentence φ in T_3 is in T_1 . For the other direction, suppose φ is some sentence in the language L_3 that is in T_1 . Since L_3 is a smaller language than L_2 , φ is also a sentence in L_2 . Since T_1 is a conservative extension of T_2 , φ is in T_2 . And since T_2 is a conservative extension of T_3 , then φ is in T_3 , as required.

- 13. a. Let f(x) = 1 x. This is an isomorphism of the two structures, as follows. f is injective: if 1 x = 1 y then x = y. f is surjective: Given any z in (0, 1), z = f(1 z). f is an isomorphism: If a < b then 1 a > 1 b.
 - b. Let f(x) = x/(1-x). f is injective: if x/(1-x) = y/(1-y), then (cross multiplying) we have x - xy = y - xy and so x = y. f is surjective: if z is any positive real number, let x = z/(1+z). Then x is an element of (0, 1), and it is easy to check that f(x) = z. f is an isomorphism: Assuming x and y are in (0, 1), 1-x and 1-y are both positive. So we have x/(1-x) < y/(1-y) iff x - xy < y - xyiff x < y.
 - c. [0,1] satisfies "there is a smallest element," $\exists x \ \forall y \ (x \leq y)$, while (0,1) does not.
- 14. a. The structure \mathcal{B} in the problem mentioned ordered the natural numbers so that all the even numbers come first, followed by the odd numbers:

$$0, 2, 4, 6, \ldots, 1, 3, 5, 7, 9 \ldots$$

Let X be any nonempty subset of the universe of \mathcal{B} . If X has any even numbers, take the smallest even number in X, under the usual ordering on \mathbb{N} ; this is the least element of X in the ordering on \mathcal{B} . Otherwise, if there are no even numbers in X, there is at least one odd number in X. In that case, the smallest odd number in X, under the usual ordering on \mathbb{N} , is the least element of X in the ordering on \mathcal{B} .

b. Let Γ be a set of sentences, such that every well-ordering is a model of Γ . Using compactness, I will show that there is a structure that is *not* a well-ordering, but is also a model of Γ .

Add constants c_0, c_1, c_2, \ldots to the language. Let Γ' be the set of sentences

$$\Gamma \cup \{c_1 < c_0, c_2 < c_1, c_3 < c_2, \ldots\}.$$

I claim that every finite subset of Γ' is consistent. Let Δ be any such finite subset, and notice that for some n, Δ is a subset of

$$\Gamma \cup \{c_1 < c_0, c_2 < c_1, c_3 < c_2, \dots, c_n < c_{n-1}\}.$$

In other words, only finitely many of the sentences $c_{i+1} < c_i$ can be in Δ . Since $\langle \mathbb{N}, < \rangle$ is a model of Γ , the structure

$$\langle \mathbb{N}, <, n, n-1, n-2, \dots, 3, 2, 1, 0, 0, 0, 0 \dots \rangle$$

is a model of Δ (that is, the structure that assigns n to c_0 , n-1 to c_1 , and so on). Note that the constants from c_{n+1} don't appear in Δ , so we can just assign 0 to them.

Since every finite subset of Γ' has a model, Γ' also has a model \mathcal{A}' (in the language with the new constants). Let \mathcal{A} be the reduct of Γ' to the original language. Then \mathcal{A} is a model of Γ , but \mathcal{A} has elements a_0, a_1, a_2, \ldots such that $a_1 < a_0, a_2 < a_1$, and so on. Then the set

$$\{a_0, a_1, a_2, \ldots, \}$$

doesn't have a least element, so \mathcal{A} is not a well-ordering.