HOMEWORK #6 Due Wednesday, October 3

- 1. Read Section 1.4 in van Dalen, and start reading Section 1.5.
- \star 2. Use our semantic definitions to prove or find a counterexample to each of the following:
 - a. For every set of formulas Γ , every formula φ , and every formula ψ , if $\Gamma \models \varphi \land \psi$, then $\Gamma \models \varphi$ and $\Gamma \models \psi$.
 - b. For every set of formulas Γ , every formula φ , and every formula ψ , if $\Gamma \models \varphi \lor \psi$, then $\Gamma \models \varphi$ or $\Gamma \models \psi$.
- * 3. Do problems 4 and 5 on page 28 of van Dalen. In other words, if $\varphi \mid \psi$, read " φ nand ψ ," means that φ and ψ are not both true, and $\varphi \downarrow \psi$, read " φ nor ψ ," means that neither φ nor ψ is true, show that $\{\mid\}$ and $\{\downarrow\}$ are complete sets of connectives.
 - 4. Do problem 6 on page 28. In other words, show that these are the only two binary connectives that have this property.
 - 5. Show that $\{\rightarrow, \bot\}$ is a complete set of connectives.
- ***** 6.
- a. Show that $\{\rightarrow, \lor, \land\}$ is not a complete set of connectives. (Hint: show that any formula involving only these connectives is true when all the variables are true.)
- b. Conclude that $\{\rightarrow, \lor, \land, \leftrightarrow, \top\}$ is not a complete set of connectives. (Hint: define the last two in terms of the others.)
- 7. a. Show that $\{\perp, \leftrightarrow\}$ is not a complete set of connectives. (Hint: show that any formula involving only these connectives and the variables p_0 and p_1 is equivalent to one of the following: \perp , \top , p_0 , p_1 , $\neg p_0$, $\neg p_1$, $p_0 \leftrightarrow p_1$, or $p_0 \oplus p_1$.)
 - b. Conclude that $\{\bot, \top, \neg, \leftrightarrow, \oplus\}$ is not complete. (Hint: see the previous problem.)
- \circ 8. How many ternary (3-ary) complete connectives are there?
- \circ 9. Do problem 7 on page 28.

- \star 10. Do problem 8 on page 28. (Hint: it might help to read problem 7.)
 - 11. Make up a truth table for a ternary connective, and then find a formula that represents it.
 - 12. Do problems 9 and 10 on page 28.
 - 13. Using the property $\varphi \lor (\psi \land \theta) \approx (\varphi \lor \psi) \land (\varphi \lor \theta)$, and the dual statement with \land and \lor switched, put

$$(p_1 \wedge p_2) \lor (q_1 \wedge q_2) \lor (r_1 \wedge r_2)$$

in conjunctive normal form. (Hint: try it with $(p_1 \wedge p_2) \lor (q_1 \wedge q_2)$ first.)

* 14. Do problem 1 on page 39 of van Dalen. Remember that we are taking $\varphi \leftrightarrow \psi$ to abbreviate $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$.

Note that a parenthesis is missing at the end of part (f). The \leftarrow directions of parts (d) and (e) are a little tricky, because they require the classical rule RAA.

15. Do problem 2 on page 39.

There is a parenthesis missing in part (b); it should read $[\varphi \to (\psi \to \sigma)] \leftrightarrow [\psi \to (\varphi \to \sigma)]$. Here the square brackets are only used to make the formula more readable; they are no different from parentheses.