HOMEWORK #5 Due Wednesday, September 26

- 1. Finish reading section 1.3, and start reading section 1.4 in van Dalen.
- 2. A binary truth function is a function f(x, y) that takes values of x and y in the set $\{0, 1\}$ to a value in the set $\{0, 1\}$. Note that a binary truth function is defined uniquely by its truth table.
 - a. How many different binary truth functions are there?
 - b. Two binary truth functions don't depend on any of their arguments: the constant 0 function and the constant 1 function. How many binary truth functions depend only on one of their two arguments?
 - c. We've already seen a number of binary truth functions that depend on both arguments, namely those corresponding to the connectives $\land, \lor, \rightarrow, \leftrightarrow, \oplus$ (exclusive or), | (nand, or the sheffer stroke), and \downarrow (nor). (The last three are defined by $p \oplus q \equiv \neg(p \leftrightarrow q), p | q \equiv \neg(p \land q),$ $p \downarrow q \equiv \neg(p \lor q).$)

What are the remaining ones? You can define them in words, in terms of the other connectives, or with truth tables.

- * 3. Show that if k is a natural number and $\varphi_1, \ldots, \varphi_k$ are propositional formulas, then $[\![\varphi_1 \land \ldots \land \varphi_k]\!]_v = 1$ if and only if $[\![\varphi_i]\!]_v = 1$ for each i from 1 to k. Remember that, for example, $\varphi_1 \land \varphi_2 \land \varphi_3$ is an abbreviation for $((\varphi_1 \land \varphi_2) \land \varphi_3)$. Do this carefully, using only the definition of $[\![\cdot]\!]_v$.
- * 4. Show that if $\varphi_1, \ldots, \varphi_k$ and ψ are in PROP, then the following is true:

 $\{\varphi, \ldots, \varphi_k\} \models \psi$ if and only if $\models \varphi_1 \land \ldots \land \varphi_k \to \psi$.

Once again, do this carefully, using the definition of semantic entailment.

- 5. Show that if $\{\varphi\} \models \psi$ and $\{\psi\} \models \theta$ then $\{\varphi\} \models \theta$.
- \star 6. Do problem 1a on page 20 of van Dalen.
 - 7. Do problems 2, 3, 5, and 6 on page 21 of van Dalen.
 - 8. Do problem 1 on page 27.

- ★ 9. Use "algebraic means" (as in the notes and on page 23 of the textbook) to do problem 2 on page 28 of van Dalen.
 - 10. Use "algebraic means" to show that the following are all tautologies:
 - a. $((\varphi \land \neg \psi) \lor \psi) \leftrightarrow (\varphi \lor \psi)$ b. $(\varphi \to \neg \varphi) \to \neg \varphi$
 - c. $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$
 - d. $\varphi \to (\psi \to \varphi \land \psi)$
- * 11. Let \equiv be any equivalence relation on a set X. For any element a in X, let [a] denote the equivalence class of a, defined by

$$[a] = \{b \in X \mid b \equiv a\}.$$

Show that for any elements a and b of X, $a \equiv b$ if and only if [a] = [b]. (Remember that two sets said to be are equal if and only if they have exactly the same elements.)

- * 12. Now let \equiv denote equivalence modulo 5 on the natural numbers. In other words, $a \equiv b$ holds iff a b is a multiple of 5, that is, iff there is an integer c such that a b = 5c.
 - a. Define the operation of addition \oplus on equivalence classes by

$$[a] \oplus [b] = [a+b].$$

Show that this operation is well defined, that is, if $a \equiv a'$ and $b \equiv b'$ then $a + b \equiv a' + b'$.

b. Define exponentiation \uparrow on equivalence classes by

 $[a]\uparrow[b]=[a^b].$

Show that exponentiation is *not* well-defined.

◦ 13. In the problem above, show that multiplication on equivalence classes, defined by $[a] \otimes [b] = [a \times b]$, is well-defined.