HOMEWORK #3 Due Wednesday, September 12

- 1. Read through section 1.2 of van Dalen.
- \star 2. Write down explicit definitions of the functions f and g, where
 - a. f is defined recursively by f(0) = 0, f(n+1) = 3 + f(n), and
 - b. g is defined recursively by g(0) = 1, $g(n+1) = (n+1)^2 g(n)$. (Hint: use "factorial" notation: $m! = 1 \times 2 \times \ldots \times m$.)
 - 3. Write down an explicit definition of the function h, where h(0) = 0 and $h(n+1) = 3 \cdot h(n) + 1$. (Hint: compare to the sequence $1, 3, 9, 27, 81, \ldots$)
- * 4. Suppose g is a function from N to N. Write down a recursive definition of the function f(n), defined by $f(n) = \sum_{i=0}^{n} g(i)$.
 - 5. Do problem 1 on page 30 of the Enderton handout.
- \circ 6. Do problem 3 on page 30 of the Enderton handout.
- * 7. Suppose, as Section 2.2 of the notes, we are given a set U, a subset $B \subseteq U$, and some functions f_1, \ldots, f_k . Say a set is *inductive* if it contains B and is closed under the f's, and let C^* be the intersection of all the inductive subsets of U. Show C^* is inductive.
- \star 8. Define the set of "babble-strings" inductively, as follows:
 - "ba" is a babble-string
 - if s is a babble-string, so is "ab" \hat{s}
 - if s and t are babble-strings, so is \hat{st}

Prove by induction that every babble-string has the same number of a's and b's, and that every babble-string ends with an "a". Is the set of babble-strings freely generated?