Consumer Surplus

Demand Function and Demand Curve

Demand function:

 $x_1 = x_1(p_1, p_2, m)$

Inverse Demand Function

Consider a demand function

$$x_1 = x_1(p_1, p_2, m$$

The inverse demand function is

$$p_1 = p_1(x_1) \quad \longrightarrow \quad p_1 = c \frac{m}{x_1}$$

Cobb-Douglas example:

$$\rightarrow x_1 = c \frac{m}{p_1}$$

Inverse Demand Curve

Gross Consumer Surplus

- **#** Consumer buys $x_1 \qquad p_1$ units of good 1.
- Consumer has different
 willingness to pay for each
 extra unit.
- GCS: Area under demand curve.
- GCS tells us how much money consumer willing to pay for x_1^*

Consumer Surplus

Consumer buys $x_1^* p_1$ units of good 1.

Consumer pays p_1^* for each unit.

The Welfare Effect of Changes in Prices

- Goal: provide a monetary measure of the effects of price changes on the utility of the consumer.
- **#** 3 ways of doing it:
- 1. Compute changes in consumer's surplus;
- 2. Compensating variation;
- 3. Equivalent variation.

Change in Consumer's Surplus

Suppose a tax increases price of good 1 from p_1^* to p_1^{**} .

Decrease in CS:

R + T

Change in Consumer's Surplus

- In practice, to compute the change in CS we need to have an estimate of the consumer's demand function. This can be done using statistical methods.
- How is change in CS related to change in utility? The two coincide when utility is quasi-linear:

$$u(x_1,x_2)=v(x_1)+x_2$$

Compensating Variation

CV=how much money x we need to give the consumer after the price change to make him just as well off as CV he was before the price change.

Budget line:

 $x_2 = m - p_1 x_1$

Equivalent Variation

EV=how much money we need to take away from the consumer before the price change to make him just as well off as he was after the price change. **H** Budget line:

 χ_2 EV

$$x_2 = m - p_1 x_1$$

 X_1

Compensating and Equivalent Variations

- To compute CV and EV we need to know utility function of the consumer.
- This can be estimated from the data by observing consumer's demand behavior.
- E.g. observe consumer's choices at different prices and income levels. Observe that expenditures shares are relatively constant: Cobb-Douglas preferences.

An Example: Increase in Oil Prices

 Often, OPEC manages to restrict production and significantly increase oil prices.

What's the effect of this increase on consumers' welfare?

Consumers' utility function over gasoline x_1 and composite goods, x_2 :

$$u(x_1, x_2) = 10(x_1)^{\frac{1}{2}} + x_2$$

Moreover: m = \$200

 $p_1^* = \$1; p_1^{**} = \$2.$

Find Consumer Demand's Before Price Increase

Consumer solves:

 $\max_{x_{1},x_{2}} \left(10x_{1}^{\frac{1}{2}} + x_{2} \right)$

 $200 = p_1^* x_1 + p_2^* x_2$ # Optimality condition: $-\frac{5}{x_1^{\frac{1}{2}}} = -\frac{p_1^*}{p_2^*} = -p_1^*$

s.t.

Find Consumer Demand's Before Price Increase

Since:
$$p_1^* = \$1$$

Demand for gasoline is:

$$x_1^* = 25 \frac{1}{(p_1^*)^2} = 25$$

Demand for composite good:

$$x_2^* = 200 - 25 = 175.$$

Find Consumer Demand's After Price Increase

Since:
$$p_1^{**} = \$2$$

Demand for gasoline goes down: $x_1^{**} = 25 \frac{1}{(p_1^{**})^2} = \frac{25}{4}$

Demand for composite good:

$$x_2^{**} = 200 - 2\frac{25}{4} = 187.5$$

Compute Change in Consumer's Surplus

Inverse demand function:

$$p_1 = \frac{5}{(x_1)^{\frac{1}{2}}}$$

Consumer surplus: $CS^* = 25$ $CS^{**} = 25/2.$

Compute Compensating Variation

Government pays amount CV such that:

$$u(25,175) = u\left(\frac{25}{4},187.5+CV\right)$$

Plug in numbers:

$$10(25)^{\frac{1}{2}} + 175 = 10\left(\frac{25}{4}\right)^{\frac{1}{2}} + 187.5 + CV$$

Compute Compensating Variation

Plug in numbers: $10(25)^{\frac{1}{2}} + 175 = 10\left(\frac{25}{4}\right)^{\frac{1}{2}} + 187.5 + EV$

Get:

 $EV = \frac{25}{2}$

Compute Equivalent Variation

Government pays amount EV such that:

$$u\left(\frac{25}{4}, 187.5\right) = u(25, 175 - EV)$$

Plug in numbers: $10\left(\frac{25}{4}\right)^{\frac{1}{2}} + 187.5 = 10(25)^{\frac{1}{2}} + 175 - EV$

Compute Equivalent Variation

Plug in numbers: $10\left(\frac{25}{4}\right)^{\frac{1}{2}} + 187.5 = 10(25)^{\frac{1}{2}} + 175 - EV$ # Get:

$EV = \frac{25}{2}$

Conclusion

In this case: change in consumer's surplus equals compensating variation which equals equivalent variation.

In general these three measures differ.

This Wednesday:

Who Wants to be an Economist?