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Q: What is the Optimal Choice?

Budget 
constraint

Indifference curves
More 

preferred bundles
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A: Optimal Choice is X

Optimal choice: 
indifference curve 
tangent to budget line.
Does this tangency 
condition necessarily 
have to hold at an 
optimal choice?
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Perfect Complements
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Q: Is Tangency Sufficient?
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What is the General Rule?

If: 
• Preferences are well-behaved. 
• Indifference curves are “smooth” (no kinks).
• Optima are interior.
Then:

Tangency between budget constraint and 
indifference curve is necessary and sufficient 
for an optimum.



Multiple Optima

A way to avoid 
multiplicity of optima, 
is to assume strictly 
convex preferences. 
This assumption rules 
out “flat spots” in 
indifference curves.
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Economic Interpretation

At optimum: “Tangency between budget 
line and indifference curve.”
Slope of budget line:

Slope of indifference curve:  
Tangency: 
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Interpretation

At Z:

At Y:
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Tangency with Many Consumers

Consider many consumers with different 
preferences and incomes, facing the same 
prices for goods 1 and 2.

Q: Why is it the case that at their optimal 
choice                        the MRS between 1 
and 2 for different consumers is equalized?
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Tangency with Many Consumers

A: Because if a consumer      makes an 
optimal choice, then:

Implication: everyone who is consuming the 
two goods must agree on how much one is 
worth in terms of the other.
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Tangency with 2 Consumers

Indifference curves 
of consumer 1:

Indifference curves 
of consumer 2:

Budget line:
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Finding the Optimum in Practice: 
a Cobb-Douglas Example 

Preferences represented by:

Budget line: 
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

Mathematically, we would like to:

such that
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

Replace budget constraint into objective 
function:

New problem:
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

New problem:

First-Order Condition:
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

First-Order Condition:

Rearranging:
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

First-Order Condition:

Solve for      : 

Expenditures share in 1:
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Finding the Optimum in Practice: 
a Cobb-Douglas Example

Q: How do I find         ? 

A: Use the budget constraint:
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