Preferences

Preference Relation

The consumer strictly prefers bundle X to bundle Y:

$$(x_1, x_2) \succ (y_1, y_2)$$

The consumer is indifferent between X and Y: $(x_1, x_2) \sim (y_1, y_2)$

Weak Preference

#If (x1, x2) >> (y1, y2) or (x1, x2) ~ (y1, y2) **#**Then: (x1, x2)≥(y1, y2)

How are the relations related?

Q: What do these two relations imply? $(x_1, x_2) \ge (y_1, y_2)$ $(y_1, y_2) \ge (x_1, x_2)$

How are the relations related?

A: The consumer is indifferent between X and Y:

$$(x_1, x_2) \sim (y_1, y_2)$$

Assumption I: Complete Preferences

For any two bundles X and Y:X preferred to Y:

$$(x_1, x_2) \succeq (y_1, y_2)$$

♯ Y preferred to X:

$$(y_1, y_2) \geq (x_1, x_2)$$

Indifference: $(x_1, x_2) \sim (y_1, y_2)$

Assumption II: Reflexive

Any bundle X is at least as good as itself:

 $(x_1, x_2) \geq (x_1, x_2)$

Assumption III: Transitive

If:

 $(x_1, x_2) \geq (y_1, y_2)$

♯ And:

 $(y_1, y_2) \geq (z_1, z_2)$

Then:

 $(x_1, x_2) \geq (z_1, z_2)$

Indifference curves

Q: Can indifference curves cross?

 χ_2 X

 X_1

Perfect substitutes

Perfect complements

Satiation

Well-behaved preferences

- Let's impose some extra assumptions to rule out less interesting situations
- Well-behaved preferences satisfy two properties:
- 1. Monotonicity
- 2. Convexity

Monotonicity

Consider two bundles: $(x_1, x_2), (y_1, y_2)$

where Y has at least as much of both goods and more of one.

#Then:
$$(y_1, y_2) \succ (x_1, x_2)$$

Monotonicity implies that indifference curves have negative slopes

Indifference curves have negative slopes

Convexity

Consider two bundles: $(x_1, x_2) \sim (y_1, y_2)$ **\ddagger** Convexity implies that, for $0 \le t \le 1$ $(tx_1 + (1 - t)y_1, tx_2 + (1 - t)y_2)$ \succ (x_1, x_2)

Convex preferences

Non-convex preferences

Marginal rate of substitution

The MRS is the slope of the indifference curve at a point (x_1, x_2)

MRS=derivative of indifference curve

Interpretation of MRS

The MRS measures the rate at which the consumer is willing to substitute one good for the other.

If good 2 is measured in dollars, the MRS measures the consumer's willingness to pay for an extra unit of good 1.