
Profit Maximization (Cont'd)

Renting or buying capital
Profit maximization and returns to scale

Renting Capital

If physical capital is one of the firm's inputs, the firm can either rent capital or buy it

#E.g.: firm can lease computers

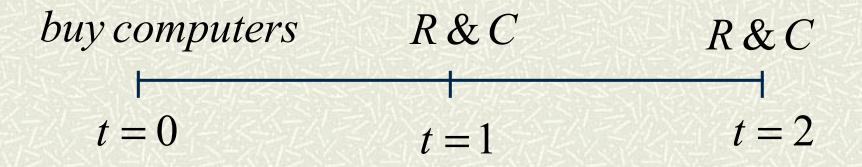
Problem solved by firm:

$$\max[pF(K,L)-w_LL-w_KK]$$

Buying Capital

What problem would the firm solve in the case it decides to buy rather than to rent capital?

- Buying a machine has an impact on the firm's revenue for several years
- Q: how do we compare revenue tomorrow to revenue today? How do we account for risk?


No Uncertainty

Firm can borrow and lend at interest rate r=0.10

- Firm is considering how many computers to buy today. Each computer:
- **#** Costs \$10,000
- Will be used for two years and then discarded (zero resale value)

No Uncertainty

Objective of the firm is to maximize the **present value of profits**: **present value** of **revenues** minus the **present value** of **costs**

Computing the Present Value

➡ What is the value today of having \$1 one year from now, if the interest rate is r=0.1?

$$\frac{\$1}{1+0.1} \approx \$0.9$$

What is the value today of having \$1 two years from now?

$$\frac{\$1}{(1+0.1)^2} \approx \$0.82$$

Present Value of the Firm at t=0

$$PV = -p_k K + \frac{R_1 - C_1}{(1 + 0.1)} + \frac{R_2 - C_2}{(1 + 0.1)^2}$$

 $R_1 - C_1 = p_1 F(K, L_1) - w_{L1} L_1$ $R_2 - C_2 = p_2 F(K, L_2) - w_{L2} L_2$

Maximizing the Present Value

The firm should decide how many computers to buy and how much labor to hire in order to maximize its present value

$$V^* = \max_{K, L_1, L_2} \left[PV \right]$$

■ Q: how much would you be willing to pay to buy this firm at time t=0?

$$V^*$$

What are the Firms Profits?

- Cost of buying computers must be amortized across their lifetime
- **T** To construct cost as a **flow** consider:
- 1. Annual economic depreciation

2. Opportunity cost due to foregone interest

User Cost of Capital

- **#** Year 1:
- 1. Annual economic depreciation: \$5,000
- 2. Opportunity cost of funds: (\$10,000)0.10

- **#** Year 2:
- 1. Annual economic depreciation: \$5,000
- 2. Opportunity cost of funds: (\$5,000)0.10

Profits=annual revenue-labor cost-user cost of capital

Buy or Rent?

- If the rental rate is larger than the user cost, then it is convenient to buy capital
- If the rental rate is lower than the user cost, then it is convenient to rent capital
- If the capital market is competitive, the rental rate should equal the user cost: firm indifferent between buying and renting

Uncertainty

- Suppose there is uncertainty about price of the product firm is selling.
- **Froblem gets more complicated because:**
- 1. Firm must take expectation of output price
- 2. Discount factor must be adjusted to take risk into account

Profit Maximization and Returns to Scale

Q: How much profit does a competitive firm with a constant returns to scale technology make in the long-run?

Profit Maximization and Returns to Scale

A: Zero!**#** Suppose it makes positive profits:

$$\Pi^* = py^* - w_1 x_1^* - w_2 x_2^* > 0$$

Double all inputs:

$$2\Pi^* = p(2y^*) - w_1(2x_1^*) - w_2(2x_2^*) > \Pi^*$$

Profit Maximization and Returns to Scale

Double all inputs:

$$2\Pi^* = p(2y^*) - w_1(2x_1^*) - w_2(2x_2^*) > \Pi^*$$

This means that the firm was not choosing inputs optimally before! Contradiction!
Thus, zero profits is the only possibility

Interpretation

Suppose you are the owner of a firm that produces software with a constant returns to scale technology:

$$y = f(x_L, x_M)$$

where x_L represents workers and x_M managers (including yourself)

Interpretation

Then, this firm's profits in the long run are zero:

Pay wage to workers X_L

Pay salary to managers X_M (including yourself because of **opportunity cost**)

Nothing else is left