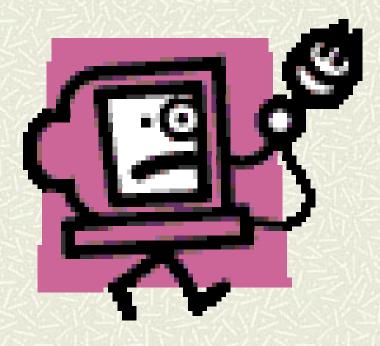
Technology



Production functions **H** Short run and long run **#** Examples of technology **H** Marginal product **#** Technical rate of substitution **#** Returns to scale

Analogies with Consumer Theory

Consumers

Maximize utility

H Constraint: budget line

Firms

H Maximize profits

Constraint: production function

Factors of Production

Inputs: labor, land, capital, raw materials

Physical capital: inputs that are themselves produced goods, such as tractors, buildings, computers, etc.

Financial capital: money used to start up or run a business (not an input to production)

Production Function

Function that describes the maximum amount of output that can be produced for a given level of inputs

Inputs and outputs are measured in flow units.

E.g., with labor, L, and capital, K, as inputs:

Y = F(K, L)

Technology, Flexibility, and Returns to Scale

Input Flexibility

- How flexible is a firm's technology?
- To obtain a particular output is it possible to substitute one input for another?
- At what rate?

Changing Scale of Operations

- If a firm doubles all inputs, what happens to output?
- **#** Returns to scale.

Short Run and Long Run

Short run: some factors of production are fixed at predetermined levels.

- Example: in short run, a firm cannot easily vary the size of a plant. It can use machines more intensively.
- **#** E.g.:

 $Y = F\left(\overline{K}, L\right)$

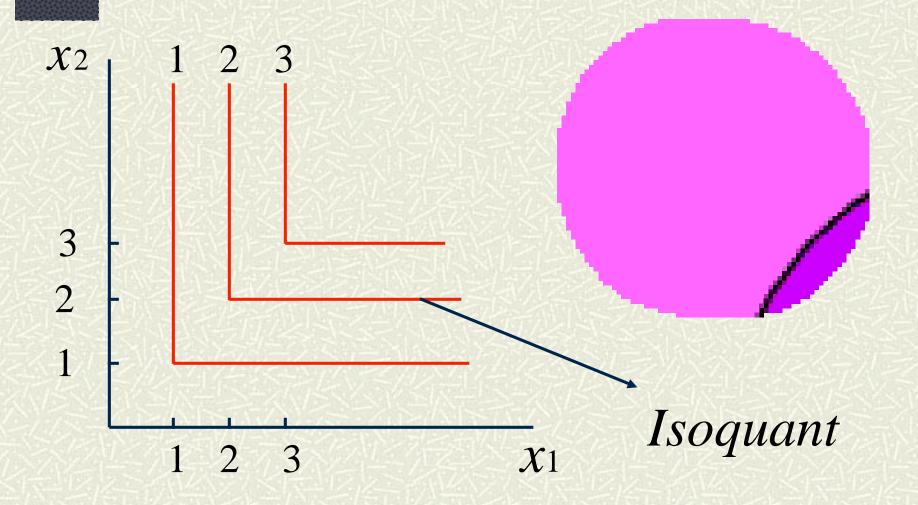
Short Run and Long Run

Long run: all factors of production can be varied. No fixed factors.

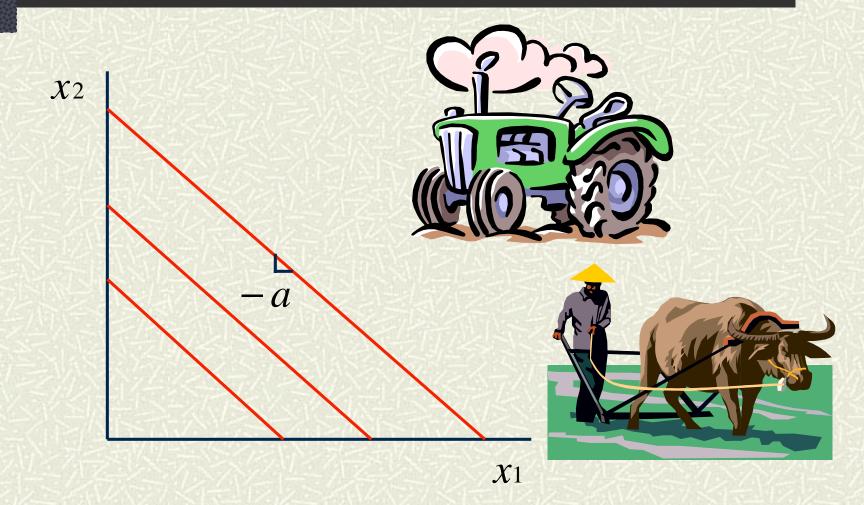
How long is the long run? It depends on the specific type of production.

➡ For automobile manufacturer it can take years to change size of plant. For travel agency months.

Fixed Proportions: $y = \min(x_1, x_2)$

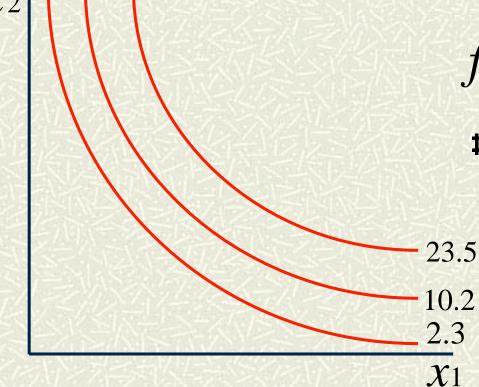


Perfect Substitutes: $y = ax_1 + x_2$



Cobb-Douglas

 χ_2



Production function: $f(x_1, x_2) = A x_1^a x_2^b$ **#** Isoquants: $y^{\overline{b}}$ χ_2 $\frac{1}{b}$

The Marginal Product

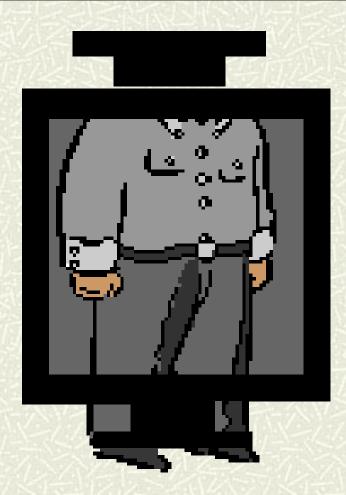
Consider a firm using inputs (x1, x2)
Q: by how much is output going to increase if the firm uses "a bit" more of input 1, while keeping input 2 fixed?

A: Marginal product of factor 1:

$$\frac{\partial f(x_1, x_2)}{\partial x_1}$$

The Marginal Product

- Typical assumption in economics: the marginal product of a factor decreases as we use more and more of that factor
- E.g.: nurses producing radiographies using given machine

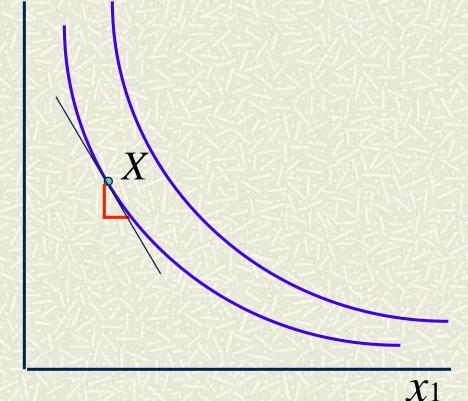


The Marginal Product: Cobb-Douglas

Consider Cobb-Douglas production function in K and L: $Y = AK^a L^b$ **#** Marginal product of capital: $\frac{\partial Y}{\partial K} = aAK^{a-1}L^b$ **#** Marginal product of labor: $\frac{\partial Y}{\partial x} = bAK^a L^{b-1}$ JI.

Technical Rate of Substitution

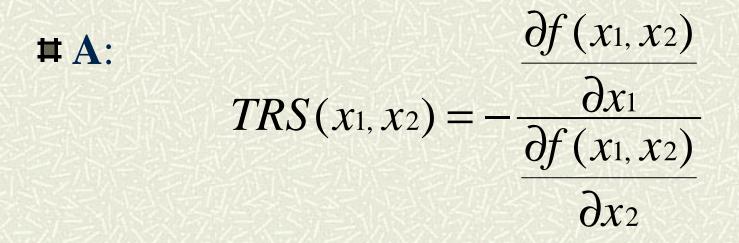
 χ_2



TRS is the slope of an isoquant at a given point X **H** Measures the rate at which the firm has to substitute one input for another to keep output constant

Computing the TRS

¤Q: What is the slope of an isoquant (TRS)?



Computing the TRS: Cobb-Douglas

Cobb-Douglas case:

 $Y = AK^a L^b$

$$TRS(K,L) = -\frac{aK^{a-1}L^b}{bK^aL^{b-1}} = -\frac{a}{b}\frac{L}{K}$$

Returns to Scale

‡ Q: What happens to output when you double the amount of all the inputs?

A1: If output doubles, the technology exhibits **constant returns to scale**.

E.g.: travel agency that uses office space and travel agents as inputs.

Increasing Returns to Scale

 A2: If output more than doubles, the technology exhibits
 increasing returns to scale.

 E.g.: oil pipeline.
 Double diameter and quadruple crosssection of the pipe.

Increasing Returns to Scale

If there are increasing returns, it is economically advantageous for a large firm to produce, rather than many small firms.

IIssue of monopoly.

Returns to Scale

A3: If output less than doubles, the technology exhibits decreasing returns to scale.

Applies to firms with large-scale operations where it is more difficult to coordinate tasks and maintain communication between managers and workers.

#Cobb-Douglas: $f(x_1, x_2) = Ax_1^a x_2^b$

\ddagger Scale inputs by a factor t > 1:

$$f(tx_1, tx_2) = A(tx_1)^a (tx_2)^b = t^{a+b} A x_1^a x_2^b$$

\ddagger Scale inputs by a factor t > 1:

$$f(tx_1, tx_2) = A(tx_1)^a (tx_2)^b = t^{a+b} A x_1^a x_2^b$$

If a + b > 1, then $t^{a+b} > t$:

 $f(tx_1, tx_2) > tAx_1^a x_2^b$

\ddagger Scale inputs by a factor t > 1:

$$f(tx_1, tx_2) = A(tx_1)^a (tx_2)^b = t^{a+b} A x_1^a x_2^b$$

If a + b = 1, then $t^{a+b} = t$:

 $f(tx_1, tx_2) = tAx_1^a x_2^b$

Scale inputs by a factor t > 1:

$$f(tx_1, tx_2) = A(tx_1)^a (tx_2)^b = t^{a+b} A x_1^a x_2^b$$

If a + b < 1, then $t^{a+b} < t$: $f(tx_1, tx_2) < tAx_1^a x_2^b$