

Proofing Technology

Presented by: David Watterson Art Director, GATF

Defining proofs

- Content proofs
 - Preliminary pro ofs to verify whether text or graphics are po sitioned correctly on the page
 - Imposition proofs to verify a rrangement of plages on plate in reference to the full sheet, and bleed, trim, registration marks, lead edgle, etc.

Contract proofs

 A prediction of final reproduction on press
 The standard for contract color approval have historically been photomechanical proofs (Matchprint , Cromalin , Waterproof)

Digital Convergence

- Today in an all-digital environment, we're seeing a convergence of these two types of proofs
 - As level of an "acceptable " contract proo f is redefined
 - As technology advances and quality of dig ital proofing devi ces improve

Categories of Proofs

- Press proof
- Off-press photo mechanical pro ofs (Analog pro ofs)
 - Integral (sing le-sheet) proofs
 - Overlay proofs
 - Laminate proofs
 - Adhesive polymer/dry powder p roofs
 - Single-color ph otomechanical proofs
- Digital proofs
 - Soft proofs
 - Hard proofs

Press Proof

- The first proofing method was to actually put the job on press! The press used was often a small offset press, called a "proof press"
- This small press attempts to simulate the reproduction characteristics of much larger offset, gravure, or flexo presses

Analog Proofs – Overlay Proofs These proofs are made by exposing and processing dye-coated sheets of clear plastic

- Each sheet shows one of the process colors
 - Black
 - Cyan
 - Magenta
 - Yellow

Overlay Proofs

- These sheets are taped down in register to either a very reflective white base, or sometimes to the actual paper to be used for the pressrun
- Unfortunately, all these layers of plastic absorb some of the light—making overlay proofs appear darker than the printed page

Analog Proofs – Laminate Proofs

- This is most common analog proof still in use
- Laminate proo fs (such as Imation's M atchprint system) use dye-coated sheets of ver y thin plastic which are lami nated to a carrier (or base) sheet
- Each colored s heet
 is laminated , exposed
 photomechanical ly,
 and then develo ped

Adhesive Polymer/Dry Powder Proofs

- Adhesive polym er/dry powder p roofs obtained popularity by allowing virtua 11y any spot co lor to be represented
 - DuPont's Cromali n requires mixin g a small quant ity of dry powder (toner)
- Printshops often created a Matchprint and then pla ced one or more la yers of Cromalin on top to show the spot colors

Single-color Photomechanicals

- An example of a singlecolor proof is DuPont's polymer-based DYLUX material, also k nown as "blueline" material
 - According to Dupont,
 bluelines are still the mo st
 widely used pro of for final
 sign-off in the world today

Leading digital proofing technologies

- In terms of rep lacing analog p roofs for cont ract (or final approval) quality prepress proofs, the leading technolog ies are:
- Thermal laser ab lative
 - These are scree ned halftone di gital proofing devices
- Inkjet
 - Drop on Demand (DOD) inkjet
 - Continuous Flo w inkjet

Thermal Laser Ablation

- Laser ablative devices use the energy of a tightly-focused laser beam to ablate (remove) dots of pigment from a donor sheet
- These dots of pigment are then transferred to the proofing substrate

Benefits of ablative technologies

- Proofing color s are determined by ink sheets and can use the same pigments as CMYK standard offset inks.
- Ink sheets var y little, making a stable stand ard.
- Color manageme nt not required
 - as with inkjet systems.
- Little calibration needed. Only adjustment need ed is setting dot gain curve.
- Pigment is trans ferred directly to paper and pa per from actual press run can be used.
- In RIP-once-out put-many environment, dots will be identical to those on the printing plate.

– You can see the dots and catc h moire patterns.

Downside of ablative technologies

- The cost of con sumables is alm ost the same as analog proofing syst ems about \$12 p er sq/ft.
- There generally aren't donor s heets for all sp ot colors makes packagi ng work difficul t to proof.
- The manually-o perated systems are very labor intensive.
- Cost of the equ ipment is high can go over \$ 100,000 for some systems. This includes the same high replacement co sts for solid st ate lasers that y ou see in the CTP market could be up to \$30,000 to rep lace a laser.

Polaroid's PolaProof

• Polaroid introd uced it's first lase r ablation halfto ne proofer in 1997

- The laser prod uces a 10 micro n spot, which c an simulate halfton e dots with freq uencies up to 400 lpi with resolutio ns of 2400 or 2540 dpi
- Polaroid donor sheets contai n a "dynamic rele ase layer" which co ntains molec ular aluminum. The is is expanded by the laser's he at, which literal ly explodes the p igment onto t he substrate

Polaroid's PolaProof

- The original PolaProof line require manual loading of substrate and colorant sheets
- After the proof has been imaged it must be laminated using a separate device

Inkjet: the next big thing

- Inkjet technology is rapidly overtaking the digital proofing market
- Let's take a look at the two technologies
 – Continuous F low Inkjet
 – Drop-on-Dema rd

- Continuous Flow Inkjet (CFI) • CFIJ is the technology behind long time professional digital proofing systems CreoScitex Iris and Dupont Digital Waterproof
- System manufacturers claim CFIJ proofers produce smaller droplets than DOD systems
- Systems have been around for years, so

Continuous Flow Inkjet: how it works

- Continuous Flow

 ink jet systems a pply
 a static charge to the
 droplets intend ed for
 the substrate
- Uncharged dro plets are collected and recycled

Dupont Chromalin iG2 and iG4

- Currently offer ed CFIJ inkjet pr oofing system
- Media sizes:
 - iG2 15.75 x 22" media
 - iG4 28.3" x 22" media
- Resolution opt ions
 - 304.8 dpi
 - 609.6 dpi

• With ChromaNet Proof server, RIP and color man agement

CreoScitex (Iris Graphics) IrisPrint

- Continuous flo w inkjet proofer with variable- sized droplets o f ink
- Improvement to the ink nozzles - IrisPen technology re duce clogging
- Resolution opt ions
 - 300 600 dpi
 - The variable si zed droplets are claimed to produce a perceived reso lution of up to 2400 dpi.

Drop-on-Demand Inkjet (DOD)

- Large format DOD inkjet systems h ave been aroun d for years in the "print f or pay" market where the final product is the proof itself
- Until recently large format DOD s ystems have had a home in prepress and printing facilities mostly as imposition proofers
 - Imposition pro ofs mean that p recise color do esn't matter, the proof is u sed to show how the print job i s imposed for the press

Drop-on-Demand Inkjet (DOD)

- With the introd uction of the E pson 9000 in 1999, DOD systems began to gain accept ance as color c ontract proofers
- Most systems to day use more th an the 3 or 4 colors earlier DOD systems used
- 6 color and ev en 8 color dev ices improve co lor gamut and ability to reproduce Pantone, hexachrome or HiFi color matches
 - But color management software must be used for accurate color reproduction

Drops and Dots

- A drop, or drop let, is the smal lest amount of each color of ink fired from the printhead
 - Sizes are measu red in Picoliters (pl)
- A dot is the clu ster of ink drops that look li ke a small dot on the page. A dot is made up of on e or more colors and is measured in microns
 - But these are <u>not</u> screened hal ftone dots!

A droplet of ink

dot

Epson Stylus Pro 7000 & 9000

- First DOD system t o be able to ou tput what was considered contract quality inkjet color proofs
- Media sizes:
 - 7000 up to 24" wide,
 - 9000 up to 44" wide
- Resolution opt ions
 - 1440 x 720 dpi
 - 720 x 720 dpi
 - 360 x 360 dpi
- With EFI Fiery RIP
 - Postscript leve 13 & PDF capable
 - Full Pantone color seps internal to RI P

Hewlett Packard HP 5000

- Introduced at Seybold 2000, the HP 5000 raises the bar in color inket with addition of wider 6 color printheads and high nozzle v olume
- HP color thermal inkjet print te chnology
- Resolution opt ions
 - 1200 x 600 dpi maximum
- Media widths
 - 42" and 60" wi de for roll-base d
- Speed
 - 8-up proof ima ges in 6 minute s!

Agfa Sherpa 43/54/62

- Multi-density 6 color Piezo drop-on-dema nd systems
- Resolution opt ions
 - 1440 x 720 dpi
 - 720 x 720 dpi
 - 360 x 360 dpi
- Media widths
 - 42" and 60" wi de for roll-base d
- Speed
 - 8-up proof at 720 x 720 images in 8 minutes
- Comes with dedic ated spectroph otometer and ColorTune color management sys tem

Benefits of inkjet technologies

- Major cost sav ings!
 - Consumables, m uch, much less expensive
 - Proofing devic es much less expensive than thermal ablative
- They are gener ally faster than other proofing methods
 - Roll-based uni ts can be queue d up to run un attended
- They can be co lor managed
 - Thermal ablative technology, like analog proofs, are fixed by their color ant sets, so you cannot really color manage them
 - Inkjets, with their more than 4 color capabilities, allow for the reproduction of a number of color gamuts
 - Can color mana ge to match the press!

Downside of inkjet technologies

- Screening metho d is stochastic no halftone dots
- Without color management, it is difficult to control the color on inkje t proofers
 - Much wider gamu t than an offse t printing pres s
- Still some marke t perception the at inkjet proof s can't be true contract quality
 - Will have to "s ell" the concept to clients and maybe press operators
- They must be regularly maintai ned
 - Calibration is a 15 minute to 1 /2 hour proces s
 - Clogging of no zzles has been an issue in pa st

Dye Sublimation

- Also called Ther mal Dye Diffusion, these proofers utilize thin plastic co lor donor in the form of a roll, usually referred to as a ribbon
- A single ribbo n carries all fou r process colo rs
 - the first quart er of the ribbon is yellow, the second quarter is mage nta, the third q uarter is cyan and the final section is black
- Signals from the microprocesso r cause a motor to fastforward throug h the ribbon to the appropriat e color section

Kodak DCP 9000

Dye Sub: How it Works

• The dyes on th is ribbon are turned into gas by the application of thermal energy

– not a laser beam !

- A small metal stri p is heated to on e of 256 different tempera tures to produc e the needed thermal energy
- This vaporization occurs in close proximity to the special receiver paper, which a bsorbs (or sublimates) the colored gas

Dye Sublimation

- Until the adve nt of quality in kjet, one of the majo r digital proofin g technologies used
- Advantages in clude:

- Low cost of b oth the device a nd the consu mables
- easy to set up and maintain
- Disadvantages include:
 - -low resolution (300 to 400 DPI maximum)
 - difficulty rende ring certain co lors in shadow a reas

Laser Dye Sublimation

- This term refers to the Kodak Ap proval's method of imaging proofs
 - the principle is similar to laser ab lation
- The Approval images proofs b y using a la ser beam to vaporize vary ing amounts o f colored dye fro m a donor sheet
 - The laser turns each spot of color into gas, which is quickly depo sited onto a sheet of silver mylar
 - After all colors have been sub limated, the mylar sheet transfers the CMYK image onto the fina 1 substrate

Kodak Approval XP-XP4

- Produces true h alftone dots
- Resolution
 - 2400 or 2540 dpi (must be selected at time of purchase)
- Media size

- XP 2 page, XP4 4 page on man y different sub strates
- Interface & spe cial features
 - Can interface wi th many differen t RIPS, ROOM
 - With Recipe Col or metallics and full Pantone set can be reproduced

Kodak Approval XP4

IR Thermal Laminate Proofs

- Imation's Matchprint Laser Proof allo ws the creation of proofs with ex actly the same h alftone dots th at will appear on the plate
- Using your pla tesetter, you'll image heat-sen sitive materials with a thermal laser
 - CreoScitex uses Imation Matchprint Lase rProof for the Spectrum proofing opti on on Trendsett ers
 - Presstek has al so integrated th is material to wo 1k with it's platesetters the system is called PEARLhdp

Dot Do's

- Once school of thought be lieves that halft one dots are required on c ontract proo fs as the only way to show moire patterns and co mplex trapping
- There is a comfort level associated with dot-based proofs; we're us ed to seeing th em
- Dot-based proo fing systems, like laser ablative or IR thermal laminate periods use colorants that more closely match perinting inks

Dot Don'ts

- The other scho ol of though t holds that the re is no advantage to d ots, especially in a digital pro ofing environment
- print buyers care about color accuracy, whether the printed product matches the proof
 - Many wouldn't even know h ow to examine dot structure
- Advances in p rint heads, prin t engine techn ology and color manageme nt systems mean color fidelity of inkjet systems is only growing and is predicted to soon pass that of la ser ablation tec hnologies

Bottom line: Money talks!

- The main reason that inkjet pro ofs, and most particularly, dro p-on-demand inkjet system will continue to gain market s hare is that they are must cheaper than other quality sy stems
 - Equipment:
 - DOD inkjets eng ines can be had for \$10,000 \$15,000
 - CFIJ systems can go for up to \$ 70,000
 - Thermal ablativ e systems range from \$80,000 t o \$200,000
 - Extras, like ser vice contracts are priced accordingly, too
 - Consumables:
 - DOD inkjet proo fs are about 1/4 the price of analog or h alftone digital proofs!

Some dollar figures

List Price per sq /ft finished

Analog Proof (average)	\$12.50
Thermal Ablativ e (average)	\$11.75
Digital Waterp roof	\$ 5.00
DOD with special papers	\$ 3.50
Assuming a usage of:	
10 4-up (22" x 28") proofs per day or 42.78 sq/ft/day	
If 261 days of operation, total square ft usage per year	
Would be 11165 sq/ft per year	

	Avg Sqft Total Sq ft/yr		Annual \$\$	
Analog proofi ng average	\$12.50	11165	\$139,563	
Thermal ablati ve average	\$11.75	11165	\$131,189	
Digital waterp roof	\$ 5.00	11165	\$ 55,825	
DOD with special papers	\$ 3.50	11165	\$ 39,078	

Savings of \$100K per year just in mater ials!

Remote Proofing

- When we talk a bout remote pro ofing, we mean providing som e kind of a pro of to the clien t at their site.
- This can take the form of a soft proof, an onscreen only representation of a piece
- Or, it can be a h ard proof, whic h will print ou t on a printing devi ce placed onsi te with the clien t

RealTimeProof

🛛 📃 Netscape: Demo Project Contents 📃 🖻 🖻									
RealTimeProof" Guest User Logged in since: Mar-12-2001 20:22 Log-Out Recent My Profile							nt <u>My Profile</u>		
<u>10</u>	(orkspaces Add	lress Book	Ē	<u>vents</u>	<u>RTP Applica</u>	<u>tions</u>	<u>Search</u>	<u>!</u>	<u>telp</u>
RealTimeProof Demonstration (Click Here to Begin) / Demo Project Workspace: RealTimeProof Demons Project: Demo Project Sector Project: Demo Project Project:									
	ider Move Co			name Upload	/Download				
	File Name	Folder/File	<u>Publishing</u> <u>Status</u>	<u>Reviewing</u> <u>Status</u>	<u>Type</u>	<u>Size</u>	Uploaded 🛦	Modified	Annotations
	Rollers.tif	Annotations <u>History</u> Information Versions (1) 1 Page	<u>In Progress</u>	<u>Apply Corrections</u>	TIFF	75.373 mb	Mar-09-2001 01:50	Mar-09-2001 19:11	5
	Hansa.SCT	Annotations <u>History</u> Information Versions (1) 1 Page	<u>UnReviewed</u>	<u>UnReviewed</u>	Scitex CT	422.324 mb	Mar-09-2001 01:51	Mar-09-2001 01:51	2
	Test Target 2400DPI.eps	<u>Annotations</u> <u>History</u> <u>Information</u> <u>Versions</u> (1) 1 Page	UnReviewed	<u>UnReviewed</u>	PostScript	55.259 mb	Mar-09-2001 02:03	Mar-10-2001 09:47	1
	ChedBacon-P1.assg	Annotations <u>History</u> Information Versions (1) 1 Page	<u>UnReviewed</u>	<u>UnReviewed</u>	Soitex Page	0.004 mb	Mar-09-2001 02:06	Mar-09-2001 02:06	<u>5</u> ▲ ♥

RealTimeProof

RealTimeProof

Communication considerations

- The type of communication method used depends upon the number of proofs which will be generated on a daily basis
 - More obviously means a faster protocol will be needed
- Must be high s peed connectio n
 - ISDN direct singl e line= 50 mega bytes per hour
 - ISDN direct multip le line= 200 megabytes per ho ur
 - SDSL = speeds ran ge from 50 mb to 400 mb per hour
 - Tier 1 internet T1 line= 400 me gabytes per ho ur
 - Private direct T1 = 600 megaby tes per hour

Remember... a reliable, consistent, accurate digital proofing system is the cornerstone of an alldigital workflow

Thanks for Listening!