

1.  What	would	your	server	do	with	a	request	with	no	path?	
–  Would	it	return	index.html?		Why	not?	

2.  What	is	the	benefit	of	asynchronous	reading	the	file	and	
wri?ng	to	the	response?	
–  What	would	be	the	difference	if	you	used	synchronous	file	reads?	
–  What	would	happen	to	simultaneous	visitors	to	your	site?	
–  What	is	a	use	case	for	using	a	synchronous	file	read?	

3.  There	are	two	asynchronous	file	read	op?ons:	
	fs.readFile	and	fs.createReadStream	

–  Look	up	both	APIs	
–  What	is	the	tradeoff	for	this	Simple	Server	task?	

4.  This	assignment	was	to	simply	GET	a	file.		How	would	you	
know	if	the	request	was	a	POST?	

5.  What	network	layers	is	this	all	working	over.		When	you	
response.write,	what	protocols	are	being	used?	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	
Applica?ons	

•  Modules	allow	for	separa&on	of	concerns	
–  I.e.	separa?ng	your	server	program	into	files,	each	
providing	a	dis?nct	func?onality.	

•  Three	types	of	modules	
– Node	Core	API	modules	

•  Packaged	in	the	basic	Node	installa?on	
–  Contributed	modules	

•  Akin	to	the	idea	of	RubyGems	
•  Retrieved	with	Node	Package	Manager	(NPM)	

–  Local	modules	
•  I.e.	the	modules	you	develop	
•  Your	server	should	not	be	one	monolithic	file.	It	will	be	more	
understandable,	maintainable,	and	parts	reusable	if	func?onal	
parts	are	separated	into	individual	files.	

•  A	module	is	a	single	JavaScript	file	
•  Within	the	file,	use	module.exports	for	the	
func?ons	and	variables	that	you	want	to	be	
accessible	from	outside	the	module	
– The	scope	of	all	variables	and	func?ons	not	exported	
will	be	restricted	to	within	the	file	itself.	

•  Require	modules	to	use	them	in	another	file	
var	myDuck	=	require("./duck.js")	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  See	hcps://nodejs.org/api/modules.html	

•  Note	in	the	example:	
const	{	PI	}	=	Math;	

•  What	is	this?	
– Called	a	destructuring	assignment	

•  See	h9ps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment	

– Math.PI	is	defined	in	the	Math	class	
– Therefore	equivalent	to:	
	const	PI	=	Math.PI	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  Demo:	
– arithme?c	
– calculator	
– Point	
– calcserver	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  exports	is	a	variable	equal	to	module.exports	
•  You	can	use	exports	to	add	to	modules.exports	
– exports.key	=	123456	
•  Equal	to	module.exports.key	=	123456	

– exports.double	=		func?on(x)	{	return	2*x};	
•  The	module.exports	property	can	be	assigned	a	
new	value	(such	as	a	func?on	or	object).	
– module.exports	=	Point	

•  But	assigning	to	exports	will	not	modify	module,	
must	use	module.exports	
– exports	=	Point	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

Task1:	Create	a	module	that	exports	methods	&	data	
–  Similar	to	calculator.js,	create	a	module	that	has	at	least	3	
methods	and	a	variable	

–  Create	a	test	program	to	demonstrate	require-ing	and	using	the	
module	

Task2:	Create	a	module	that	exports	a	class	
–  Similar	to	point.js,	create	a	class	(you	can	reuse	the	one	you	
created	for	HW1	–	JavaScript	Classes)	module.	

–  Star?ng	with	your	hw	solu?on	for	today	(HW8	–	Simple	Server)	
•  Add	a	path	that	will	take	data	from	an	hcp	request	

–  Use	your	class	to	do	something	
–  And	then	return	the	result	to	the	client	in	the	form	of	JSON	
–  Don't	break	the	default	behavior	of	serving	sta?c	files	

•  Create	an	html	form	and	use	$.getJSON	to	make	an	AJAX	request	to	your	
server	to	use	your	class	and	display	a	result.	

–  Deploy	to	Now	 ©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  Project	organiza?on:	
–  "Task1"	folder	

•  Code	files	(module	and	test)	
•  Module	and	test	files	should	be	clearly	commented	
•  No	narra?ve	necessary	

–  "Task	2"	document	(only,	no	code)	
•  URL	of	app	deployed	to	Now	

–  Be	sure	/_src	is	public	if	you	have	subscribed	to	Now	
•  Narra?ve	showing	screenshots	of	

–  Form	in	browser	
–  Form	filled	in	and	ready	to	submit	
–  Result	in	browser	

•  Module	and	server	should	be	clearly	commented	

•  Zip	it	all	together	and	submit	to	Canvas	
©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	
Applica?ons	

•  Node	code	is	packaged	into	modules	
•  Modules	are	added	to	a	program	via	require()	
•  You	have	seen	this	already	in	the	Lab	due	today	

var	hcp	=	require('hcp');	
– The	variable	hcp	becomes	a	handle	to	access	the	data	
and	methods	in	the	hcp	module.	
•  E.g.	hcp.createServer()	

– Conven?on:		The	variable	referring	to	a	module	is	
typically	set	to	the	same	name	as	the	module.		But	it	is	
also	legal	to	use	another	name.	
•  E.g.	var	birdhouse	=	require('hcp');	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	
Applica?ons	

•  Node	Core	API	modules	
– Packaged	in	the	basic	Node	installa?on	

•  Contributed	modules	
– Akin	to	the	idea	of	RubyGems	
– Retrieved	with	Node	Package	Manager	(NPM)	
– We	will	look	at	NPM	on	Tuesday	

•  Local	modules	
–  I.e.	the	modules	you	develop	

•  npm	is	the	Node	package	manager		
•  The	author	claims	it	is	not	an	acronym	

•  It	is	installed	alongside	Node	in	the	standard	Node	
installa?on	

•  It	is	a	command-line	u?lity	
npm	help	

•  It	is	also	available	to	browse	and	search:	
–  hcp://npmjs.org	

•  Take	some	?me	to	browse	what	is	available	
•  As	with	any	contributed	sorware,	research:	
–  How	recently	it	was	updated	
–  How	oren	it	has	been	downloaded	
–  How	many	other	modules	depend	on	it	
–  Have	bugs	been	fixed	recently	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  Microsor	Driver	for	Node.js	for	SQL	Server	
•  Amazon	S3	client	
•  Many	frameworks	for	dealing	with	HTML	&	CSS	
•  Interact	with	MineCrar	game	servers	
•  Control	DIRECTV	boxes	
•  Control	Parrot	AR	Drone	quad-copters.	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  package.json	
– A	file	to	set	parameters	for	your	app	
•  e.g.	Name,	version…	

– And	indicates	the	dependencies	on	other	modules	
•  npm	will	use	package.json	to	automagically	
download	and	install	all	modules	you	need	and	
their	dependencies	

•  package.json	is	also	be	used	for	addi?onal	
direc?ves	when	deploying	your	app	to	the	cloud.	

•  See	doc:		
– hcps://docs.npmjs.com/files/package.json	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

•  Example	
{
 "name": "application-name",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node app"
 },
 "dependencies": {
 "express": "3.0.x",
 "ejs": "*"
 }
}

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

How	the	node	would	be	started,	
perhaps	with	parameters.		
The	suffix	.js	is	assumed	

module	dependencies	
used	by	npm	
3.0.0	would	be	a	fixed	version	
3.0.x	is	latest	version	within	3.0.	
"*"	is	wildcard	latest	version	
It	is	best	to	constrain	to	versions		
you	have	tested.	

•  Once	you	have	defined	package.json,	then	run	
npm	install	

•  It	will	calculate	all	dependencies	and	download	all	
modules	

•  Alterna?vely,	to	add	a	new	module	to	
package.json	dependencies	&	download	it:	
– npm	install	package-name	--save	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	
Applica?ons	

•  Node	core:	
–  hcps://nodejs.org/api/	

•  Contributed	@	NPM:	
–  hcps://www.npmjs.com	
–  Installed	using	the	npm	command	line	interface	(cli)	

•  Part	of	your	applica?on	
–  Separate	JavaScript	files	
– Using	modules.exports	

•  In	call	cases,	include	in	your	Node.js	program	using:	
–  require()	

•  global	
•  process	
•  require	
•  console	

–  console.log(x)	
•  Print	x	to	the	console	
•  Can	do	formayng	subs?tu?on	

–  e.g.	console.log("count	%d",	count)	
–  %s	–	String	
–  %d	–	Number	(both	integer	and	float)	
–  %j	–	JSON	
–  %	-	single	percent	sign	('%')	

•  __dirname			underscore	underscore	dirname	
–  The	directory	path	of	the	current	JavaScript	file	being	executed	

•  __filename	
–  File	name	of	the	code	being	executed	

•  module	
•  exports	
•  SEE:	hcps://nodejs.org/api/globals.html	

©	Joe	Mertz	–	Mobile	to	Cloud:	Building	Distributed	Applica?ons	

