
©	Joe	Mertz	- M2C:	Building	Distributed	Applications 1



• An	example	of	a	NoSQL database
• Is	schema-less
– Do	not	define	tables	and	columns	in	advance
– Store new	data	however	is	needed

• Stored as	BSON
• Similar	to	JSON,	but	with	a few	more	data	types

– JSON	is	essentially	serialized	JavaScript	objects
» I.e. what	JavaScript	objects	would	look	like	if	represented	as	an	
object	literal

• Therefore	MongoDB essentially	stores	JavaScript	objects
– Easy to	save	a	JavaScript	object
– Easy to	restore	as	a	JavaScript	object

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 2



• Browse comparison	on:
– http://www.mongodb.org/display/DOCS/SQL+to+Mongo+Mapping+Chart

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 3



• It	is	unclear	whether	it	is	beneficial	or	not	to	be
thinking	in	terms	of	RDBMS	and	mapping	it	to	
Mongo.

• My	intuition:
– Forget	about	RDBMS	in	this	case
– Just	see	Mongo as	a	simple	way	to	store,	query,	and	
retrieve	JavaScript	objects

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 4



• Database
– A	database	is	a	set	of	collections

• Collections
– A	collection	is	a	set	of	documents

• Documents
– A	document	is	(essentially)	a	JSON	string

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 5



• Save	and	find	JSON	documents
– Each	JSON	document is	not	restricted to	have	the	
same	structure,	but	they	mostly	do

– Each	document	has	(globally) unique	_id
• A		Collection is	a	set	of	JSON	documents
• A	Database	is a	set	of	JSON	collections

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 6



• What is	passed	to	mongodb:
{	"name"	:	"apple",
"price"	:	1.99}

• Mongodb adds	in	an		_id:
{	"name"	:	"apple",	
"price"	:	1.99,	
"_id"	:	ObjectId("35414c4ebb264d7000000000")	}

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 7



• Mongod – the	MongoDB database	server
– Listens	by	default	on	port	27017
– Requests	/	responses	via	a	MongoDB protocol

• Mongo	– a	MongoDB shell	application
– A	JavaScript shell	to	interact	with	MongoDB
– Can	do	all	database	operations

• MongoDB drivers
– Exist	for	many languages
– Provides	a	language-specific		API	for	interacting	with	
MongoDB

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 8



• Scan:
– https://www.mongodb.com/who-uses-mongodb

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 9



• SQL and NoSQL	DBMSs	each	have	their	strengths
• Our	purpose	in	67-328:
– Exposure:	have	basic	knowledge	of	it
– An	easy	way	to	store	and	retrieve	data	in	a	form	very	
close	to	JavaScript	objects	(BSON)

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 10



• Browse	to:
https://docs.mongodb.com/manual/administration/install-community/

• Follow	the	download	instructions:
–MacOS:		I	found	installing	HomeBrew and	then	
MongoDB to	be	easy.

• Experiment	with	mongo	shell:
– Start:	
https://docs.mongodb.org/getting-started/shell/import-data/

– Follow	their	example	through	Remove	Data

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 11



• Studio	3T	has	a	free	version	to	view/edit	
mongoDB databases

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 12



• In	the	mongo	shell,	you	can	directly	interact	with	
the	mongod in	a	REPL.

• To	interact	with	mongod from	within	a	node	
program,	use	the	npm module	mongodb:
– npm install	mongodb -- save

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 13



• Run	mongodb
• Run	mongo
• Run	mongodb example

• You	can	find	the	API	for	the	demonstrated	
collection	methods	at:
– http://mongodb.github.io/node-mongodb-native/2.2/api/Collection.html

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 14



• Due	by	Wednesday	(or	first	10	min	in	class):
– mLab Introduction

• Due	November	20
– Implement	simple	CRUD	operations	for	what	you	are	
persisting	in	your	final	project.

– Have	at	least	a	single	web	page	from	which	you	can	
get,	post,	(put,)	and	delete	documents	to	a	MongoDB	
database.

– You	don't	have	to	do	all	your	final	project	collections,	
but	you	need	to	do	one	collection	of	documents,	and	
at	least	3	attributes	per	document.

©	Joe	Mertz	- M2C:	Building	Distributed	Applications 15


