

• Server-side	programming
• Introduction	to	Node.js

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

95-702	Distributed	Systems 3

Request Example
<method> <resource identifier> <HTTP Version> <crlf>
[<Header>: <value>] <crlf>
...
[<Header>: <value>] <crlf>

a blank line
[entity body]

GET /course/95-702/ HTTP/1.1
Host: www.andrew.cmu.edu
User-Agent: Joe typing
Accept: text/html
This	line intentionally	left	blank

Reply Example
<HTTP Version> <Status> <crlf>
[<Header>: <value>] <crlf>
...
[<Header>: <value>] <crlf>

a blank line
[response body]

HTTP/1.1 200 OK
Date: Mon, 24 Jan 2011 15:43:08 GMT
Server: Apache/1.3.39 (Unix) mod_throttle/3.1.2 ...
Set-Cookie: webstats-cmu=cmu128.2.87.50.8400; ...
Last-Modified: Sun, 23 Jan 2011 21:46:30 GMT
ETag: "558425-2336-4d3ca1b6"
Accept-Ranges: bytes
Content-Length: 9014
Content-Type: text/html
This	line intentionally	left	blank
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
...

• How	does	a	web	server	handle	an	HTTP	static
page	request?	

• How	does	PHP	work?
• How	does	Java	Enterprise	Edition	(JEE)	work?	
• How	does	Rails	work?

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Node	is	yet	a	different	approach
• It is	a	single,	live,	ongoing	process
– It	is	not	just	run	when	a	request	comes

• You	need	not	run	behind	a	web	server
– Though	some	do
– Instead,	it	gives	very	simple	means	of	incorporating	
web	server	functionality	into	your	program

• It	gives	developers	full	flexibility to	do	whatever	
processing	you	want	to	on	the	server	side
–With	great flexibility
– And	lots	of	powerful	tools	to	make	magic	easy.

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Return	a	static	web	page
• Query	a	database	and	return	value
• Do	complex	computation (not	one	of	node's	strengths)

• Connect to	3rd party	APIs
• Have	ongoing	communication	across	web	sockets
• Stream	audio	/	video	/	data
• Build	peer	to	peer	applications	with	multiple	users
• Communicate with	devices	connected	to	the	server:
– e.g.	weather	sensors,	light	sensors,	temperature	sensors
– e.g. web	cams,	servos,	robots,	quad	helicopters,	home	
automation

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Allows	us	to	cover	the interesting	topics	
concerning	server-side	programming

• Allows	us	to	re-use	and	further	develop	JavaScript	
skills
– Universally	useful	for	client-side work

• Exposes	you	to	interesting cutting-edge	tools	in	
web	application	development.

• Nice	addition	to	your	resume:		Node	is	hot.
– e.g.	LinkedIn,	IBM,	Microsoft,	PayPal,	Groupon,	
Walmart	Labs	(who	knew	they	had	labs?)	,	and	many	more

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• A	bit	of	history
– Late	90's	and	early	00's,	companies	fought	browser	wars.
– Companies	such	as	Microsoft	and	Netscape	fought	for	
browser	market	share	by	creating	non-standard	
functionality.

– In	the	end,	standardization	won	out,	and	companies	
stopped	fighting	on	non-standard	functionality.

• So	how	to	differentiate?			Speed!
– Browsers	started	competing	on	who	could	be	faster.
– Faster	page	rendering	(displaying)
– Faster	JavaScript	execution

• One	outcome	of	this	competition	is	Google's	V8	
JavaScript	Engine.

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• https://github.com/v8/v8/wiki
• Open	source	JavaScript	interpreter
– (V8	is	written	in	C++,	which	you	don't	have	to	worry	about)

• V8	is	very	very	fast
• V8	has	a	great	garbage collection	algorithm
– It	doesn't periodically	stall,	and	does	not	run	out	of	
memory.

– It	does	run	smoothly	continuously.

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Ryan	Dahl	had	the	insight	that	he	could use	V8	to	
make	a	completely	event-driven,	non-blocking,		
server-side	environment.
–With	insights	from:
• Twisted	in	Python
• EventMachine in	Ruby

• And	do	so	in	JavaScript

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• These	are	considered	two	of	the	hallmarks	of	Node.
• You will	understand	them	better	as	you	start	
experiencing	programming	in	Node.

• Event-Driven:
– Like	in	the	browser,	all	processing	happens	in	response	to	
an	event.
• Browser:	click	event,	touch	event,	mouse	movement	event
• Node:

– network	data	arrived
– database	returned	values
– read	from	disk	completed
– custom	event	arrived	over	a	websocket from	a	client

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

Event Latency Scaled
1	CPU	Cycle 0.3nsec 1	sec

Main Memory 120nsec 6	min

Solid	State	Disk 50	– 150	µsec 2	– 6	days

Rotational Disk 1	– 10	ms 1 – 12	months

Internet	SF to	NYC 40	ms 4	years

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

Comparison	of	latency,	scaled	to	if	a	CPU	cycle	took	1	second

Source:	Systems	Performance:	Enterprise	and	the	Cloud	1st	Edition	by	Brendan	Gregg,	ISBN-13:	978-0133390094

• Loading	resources	via	the	Internet	can	take	a	few	hundred	ms to	a	
few	seconds

• Notice	the	load	times	in	the	Chrome	DevTools Network	tab

Synchronous,	or		blocking	example
let fs = require("fs");
let path = process.argv[2] || ".";
try {

let files = fs.readdirSync(path);
files.forEach(function(file) {

console.log(file);
});

} catch (e) { /* deal with error */ }
console.log("I am here.");

Asynchronous,	or		non-blocking	example	using	callbacks
let fs = require("fs");
let path = process.argv[2] || ".";
fs.readdir(path,

function(err,files) {
if (err) {/*deal with error*/ }
files.forEach(function(file) {

console.log(file);
}) ;

});
console.log("I am here.");

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

Notice	differences	in:
• How	are	values	
returned
•When	is	code	to	
process	files	executed
•How	are	errors	
handled

•When	would	"I	am	
here"	be	logged?

• It	can	be	more	efficient.
– Benchmark	data	supports	this

• It	can	manage	more	user	requests	per	second	
than	the	old	scheme	of	using	threads.
– Buzzword:		it can	better	handle	web	scale

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• You	will	be	spending	a	lot of	time	using	a	shell	/	
command	line	terminal,	so	choose	a	good	one.

• MacOS /	Linux
– The	bash shell	comes	installed
– Terminal is	the	default	terminal	application
– I	use	iTerm2:	open	source	with	more	functionality
• http://iterm2.com

– Hyper.app is	an	open	source,	Electron-based	terminal
• https://hyper.is

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

I've	not	used	Windows	recently	– anyone	have	updates?
• Console	window:	Command	Prompt is	default	
• Shell:	cmd.exe or	powershell.exe
• Alternatives:
– Git for	Windows	includes	Git bash

• Right-click	on	folder	to	access	bash	in	that	folder
• http://msysgit.github.io

– Babun
• Linux-like	console	with	commands
• Also	includes	git,	curl,	and	lots	more
• http://babun.github.io

– Console2	is	a	console	window	enhancement
• http://sourceforge.net/projects/console/
• (Not	updated	in	2	years?!?)

– Others?

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Also	make	sure	you	have	a	great code	editor
• Some	good	alternatives
– Atom:	https://atom.io

• Built	by github ("hackable	to	the	core")	on	node.js
– Microsoft	Visual	Studio	Code

• Built	on	Electron	(as	is	Atom)	and	is	not Visual	Studio
• https://code.visualstudio.com

– Mac:	Sublime	Text
– Windows:	TextPad,	Notepad++,	Visual	Studio	Express

• I've	used	TextWrangler (Mac	only)
– Free,	most	of	the	basics	I	need,	configurable
– Recently	moved	to	paid	version:		BBEdit

• Others?
©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• Running	node	from	a command	line	enters	into	a	read-eval-print	
loop	(REPL)	interface

• Similar	to	the	browser	console, but	on	your	laptop	(i.e.	server)
$ node
> for (i=0;i<10;i++){
... console.log(i+" mississippi");
... }
0 mississippi
1 mississippi
2 mississippi
3 mississippi
4 mississippi
5 mississippi
6 mississippi
7 mississippi
8 mississippi
9 mississippi
undefined
>

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

Use	control-d	(end	of	file)	to	quit

• Create	a	file	with	extension	.js
• Provide	the	file	as	the	first	argument	to	node:

$ node argv.js
0: node
1: /private/tmp/node/argv.js

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

process.argv.forEach(function (val, index) {
console.log(index + ': ' + val);

});

argv.js

• You	can	add	additional	arguments	also
$ node argv.js Baker Porter Hunt Wean
0: node
1: /private/tmp/node/argv.js
2: Baker
3: Porter
4: Hunt
5: Wean

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• You	can	omit	the	.js when	giving	the	program	file:
$ ls
argv.js
$ node argv
0: node
1: /private/tmp/node/argv

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• cat.js

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

• For	credit,	show	the	TAs	once	you	completed	the	
tasks.

• Finish	today,	else	show	in	office	hours	today	or	
tomorrow

• Lab	rules	(different	than	homework):
– Can	collaborate,	ask	other	students,	look	at	each	
others'	code.

–Must	get	running	on	your	own	laptop.

©	Joe	Mertz	– Mobile	to	Cloud:	Building	Distributed	Applications

