
©	Joe	Mertz	- Distributed	Application	Development 1



• What	branch	of	science	would	have	informed	keeping	your	money	safe	
500	years	ago?

• What	branch	of	science	informs	keeping	your	money	safe	today?
• Who	can	and	cannot	see	your	information	if	it	is	stored	in	the	cloud	at:

– Google
– Apple
– Microsoft

• What	is	the	security	debate	going	on	in	the	country	in	which	Google	and	
Apple	have	taken	different	approaches?
– How	is	this	tied	to	their	business	models?

• If	you	type	in	pnc.com in	your	browser,	how	can	you	really	trust	you	are	
communicating	with	PNC	Bank?

• At	Google,	data-center-to-data-center	communications	did	not	used	to	
be	encrypted.	Why	wouldn't	they?

• If	I	download	software	or	visit	a	web	site	and	get	a	message	that	the	
certificate	is	invalid,	what	does	that	mean?

©	Joe	Mertz	- Distributed	Application	Development 2



• Understand	basic	cryptography	and	security	terms
• Understand	security	in	terms	of:
– Secure	web	transmission
– Authentication
• Who	are	you?

– Authorization
• What	are	you	allowed	to	do?

– Certificates,	and	Digital	Signatures
• Is	this	document	/	software	/	transaction	real?

• Have	a	basic	understanding	of	the	underlying	
theory	and	math	behind	web	security.

©	Joe	Mertz	- Distributed	Application	Development 3



• Symmetric	key
– Simple	e.g.	Caesar	cipher
–Most	prevalent:	AES

• Asymmetric	key
– Also	known	as	Public	Key	(or	Private	/	Public	Key)
–Most	prevalent:	RSA

©	Joe	Mertz	- Distributed	Application	Development 4



• Pick	a	key	(a	number)
• Shift	the	letters	of	the	plaintext	by	the	key	to	
create	the	ciphertext.

• E.g.
– Plaintext:	Yellow	cake
– Key:	3
– Ciphertext:	Bhoorz fdnh

©	Joe	Mertz	- Distributed	Application	Development 5

Source:	http://en.wikipedia.org/wiki/File:Caesar3.svg



• Secret	key	algorithm
– The	sender	and	the	receiver	share	a	secret	key

• Symmetric	algorithm
– Trivially-related	keys	are	used	to	encode	and	decode	
the	message
• Trivially-related:		uses	the	same	key,	or	keys	require	only	a	
simple	transformation.
• E.g.	Caesar	cipher:		(English)	symmetric	key	is	26-key

©	Joe	Mertz	- Distributed	Application	Development 6



• One	way	to	discover	the	plaintext	is	to	
exhaustively	try	every	possible	key.

• Is	the	algorithm	susceptible	to	being	broken	by	
exhaustively	trying	possible	keys?

• Is	the	Caesar	cipher	susceptible	to	brute	force	
attack?

©	Joe	Mertz	- Distributed	Application	Development 7



• Use	extremely	large	keys
– An	8	bit	key	has	28 possible	keys
• 256

– A	16	bit	key	has	216 possible	keys
• 65,536

– A	32	bit	key	has	232 possible	keys
• 4,294,967,296

– A	256	bit	key	has	2256 possible	keys
• 1.15792089	× 1077

©	Joe	Mertz	- Distributed	Application	Development 8



• Cryptography	is	essentially	trying
– to	"mess	up"	the	original	data	as	much	as	possible
– so	that	someone	else	cannot	find	the	original
– but	be	able	to	get	the	original	data	back	with	a	key

• Encryption	=	"mess	up"

• So	how	can	we	"mess	up"	the	data	better	than	
the	Caesar	cipher	does?
– The	blocks	of	plaintext	are	one	character.		
– There	is	only	so	much	you	can	do	to	one	character.
– So	how	about	encrypting	blocks	of	data?

©	Joe	Mertz	- Distributed	Application	Development 9



• Symmetric	key	cipher
• Works	on	blocks	of	text
– E.g.	128	bit	blocks

• Simple	Caesar	example:	Two	characters,	Key:	1
– cake	(c=3,	a=1,	k=11,	e=5)
– 0011000110110101
– 0011001010110110

©	Joe	Mertz	- Distributed	Application	Development 10



• If	blocks'	plaintext	are	identical,	then	their	ciphertext will	
also	be	identical.

• One	way	to	avoid	repeated	similarity	is	to	mess	up	the	
current	block	with	info	from	all	prior	blocks.	
– I.e.	XOR	current	block	with	prior	block,	then	encrypt

©	Joe	Mertz	- Distributed	Application	Development 11Image	source:	http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Original Block	Cipher Block	Cipher	Chaining



• Advanced	Encryption	Standard	(AES)
– Very	complex	chaining	block	cipher
– Adopted	by	US	National	Institute	of	Standards
• Replaced	the	former	standard:	DES

– Data	Encryption	Standard	– 56	bit	key	block	cipher

• To	check	what	your	browser	is	using:
– In	Chrome,	browse	to	some	https://…	site
– Look	at	the	Security	tab	in	Dev	Tools

©	Joe	Mertz	- Distributed	Application	Development 12



• Symmetric	algorithms	require	Alice	and	Bob	to	
share	a	secret	(the	key).
– Both	can	encrypt	and	decrypt	messages

• Asymmetric	algorithms	allow	for	not	sharing	a	
secret.
– Alice	can	encode	a	message	for	Bob
– She	cannot	decode	messages	already	encoded	for	Bob

©	Joe	Mertz	- Distributed	Application	Development 13



©	Joe	Mertz	- Distributed	Application	Development 14

Secret Key

Secret Key



©	Joe	Mertz	- Distributed	Application	Development 15

Public Key Private Key

Private Key Public Key



©	Joe	Mertz	- Distributed	Application	Development 16

Public Key Public Key

Private Key Private Key



• Uses	asymmetric	keys
• Single	public	key
– Pass	out	to	the	world

• Single	private	key
– You	keep	secret

• Public	can:
– Encrypt	a	message	for	you	using	the	public	key
– Decrypt	a	message	encrypted	with	your	private	key	
using	your	public	key.

©	Joe	Mertz	- Distributed	Application	Development 17



• RSA	is	a	common	public	key	encryption	algorithm
– Named	for	its	authors:	Rivest,	Shamir,	&	Adleman

• Developed in	1977
• Based	on	the	mathematics	of	large	prime	
numbers
– If	you	have	the	numbers,	you	can	use	them	to	encrypt	
messages

– If	you	don't	have	the	numbers,	it	is	infeasible	to	guess	
them

©	Joe	Mertz	- Distributed	Application	Development 18



• There	is	a	nice	tutorial	tool	at:
– https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RS
AWorksheet.html

• You	can	practice	by	using	prime	numbers	you	can	
find	at:
– http://en.wikipedia.org/wiki/List_of_prime_numbers

• E.g.	23,	37

©	Joe	Mertz	- Distributed	Application	Development 19



• RSA	keys	have	an
exponent	&	modulus

• You	encrypt/decrypt
with	y =	x5	%	851

• Graph	is	encryption
of	1	to	100.
– See	a	pattern?
– Can	you	predict

the	value	at	101?
• Unpredictability

is	its	strength
• Red	dot	is	

at	(53,	477)
• Corresponding	

key	is	{e:317,n:851}
– Same	exponent,	different	modulus

• 477317%851=53
©	Joe	Mertz	- Distributed	Application	Development 20

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100

53	->	public	key	->	477
477	->	private	key	->	53



• What	are	the	two	types	of	cryptographic	systems?
• Which	is	AES?
• Which	is	RSA?
• Which	has	a	single	key?
• Which	has	a	pair	of	keys?
• If	you	have	one	AES	key,	can	you	guess	the	other?
• If	you	have	one	RSA	key,	can	you	guess	the	other?
• Which	of	the	following	key	lengths	(in	bits)	are	
susceptible	to	brute	force	attack?
– 2,	16,	32,	256,	1024

• (T/F)	If	data	is	encrypted	with	a	public	key,	then	
someone	else	can	decrypt	it	with	the	public	key?

©	Joe	Mertz	- Distributed	Application	Development 21



1. Encryption	/	Decryption
– Public	key

• Used	by	others
• To	encrypt	a	message	intended	only	for	you

– Private	key
• Used	by	you
• To	decrypt	a	message	originally	encrypted	by	your	public	key

2. Signing	/	Verification
– Private	key

• Used	to	sign	a	document	so	that	others	can	verify	the	source
– Public	key

• Used	to	verify	that	a	signed	document	was	signed	by	you.
©	Joe	Mertz	- Distributed	Application	Development 22



• Cryptographic	protocols	build	on	the	use	of	
cryptographic	algorithms

• Two	prominent	protocols:
– Transport	Layer	Security	(TLS)	(newer)
– Secure	Socket	Layer	(SSL)	(older)

• Both	are	application-level	protocols,	that	work	
above	the	transport	layer	(especially	TCP)	to	
provide	safe	end-to-end	communication.

• Often	folk	will	refer	to	secure	communication	as	
"over	SSL"	regardless	of	whether	TLS	or	SSL	is	
being	used.

©	Joe	Mertz	- Distributed	Application	Development 23



• SMTP	and	IMAP	(email	protocols)	can	work	above	
TLS	or	SSL	to	provide	secure	email	transmission

• HTTPS	is	HTTP	over	TLS/SSL	to	provide	secure	web	
communication

©	Joe	Mertz	- Distributed	Application	Development 24



• Symmetric	(e.g.	AES)
– Fast
– Difficult	to	distribute	and	and	keep	keys	secure

• Asymmetric	(e.g.	RSA)
– 100	to	1000	times	slower

• Why?		Because	raising	each	block	to	a	ginormous	exponent	is	slow.

– Can	allow	for	public	keys

• TLS	/	SSL	uses	the	best	of	both	worlds:
– Use	asymmetric	keys	to	exchange	symmetric	keys	at	the	
beginning	of	a	conversation

– Symmetric	keys	will	have	the	lifespan	of	that	conversation

©	Joe	Mertz	- Distributed	Application	Development 25



• Start	with	RSA	Public	/	Private	keys
– Ask	Amazon	for	their	Public	key
– Amazon	replies	with	their	Public	key

• Generate	a	128	bit	(or	bigger)	random	number
– This	is	your	"session"	new	AES	key
– Encrypt	the	new	AES	key	with	the	Amazon	Public	Key
– Send	the	encrypted	key	to	Amazon

• Notice	you	are	sending	an	AES	key	encrypted	with	a	RSA	key
• Amazon	receives	the	encrypted	key

– They	(and	only	they)	can	decrypt	the	AES	key	with	their	RSA	Private	
key

– They	now	have	the	AES	key	you	created	for	this	session
• Amazon	and	your	browser	communicate	by	encrypting	and	

decrypting	all	messages	with	the	same	AES	128	bit	random-
number	key.
– At	the	end	of	this	session,	both	forget	the	AES	key

©	Joe	Mertz	- Distributed	Application	Development 26



1. Encryption	/	Decryption
– Public	key

• Used	by	others
• To	encrypt	a	message	intended	only	for	you

– Private	key
• Used	by	you
• To	decrypt	a	message	originally	encrypted	by	your	public	key

2. Signing	/	Verification
– Private	key

• Used	to	sign	a	document	so	that	others	can	verify	the	source
– Public	key

• Used	to	verify	that	a	signed	document	was	signed	by	you.
©	Joe	Mertz	- Distributed	Application	Development 27



• How can	you	guarantee	to	someone	that	a	
document	you	sent	them	is	from	you,	and	has	not	
been	changed?

• How	can	you	guarantee	that	the	software	you	are	
using	came	from	Microsoft?

• You	want	to	keep	the	document	/	software	/	
image	/	etc.	viewable	and	usable,	but	just	want	a	
scheme	by	which	others	can	verify	its	
authenticity.

©	Joe	Mertz	- Distributed	Application	Development 28



• Public	key	encryption	can	be	used	to	provide	
digital	signatures	to	validate	authenticity

• Digital	signatures	are	better	that	real	signatures,	
for	people	can	alter	a	paper	document	once	you	
have	signed	it.

• With	digital	signatures,	if	the	document	is	
changed,	then	the	signature	becomes	invalid.

• This	is	because	the	signature	is	a	number	based	
on	the	content	of	the	document.
– Or	more	specifically,	on	the	hash	value of	a	document.

©	Joe	Mertz	- Distributed	Application	Development 29



• Input	data	(application,	document,	picture,	etc.)
• Outputs	a	large,	but	fixed-size	number.
– e.g.	128	bits	or	160	bits

• Any	intentional	or	accidental	change	in	the	file	
will	change	its	resulting	hash	value.

• The	file	being	encoded	is	called	the	“message”
• The	output	is	called	the
– Hash	value
–Message	digest
– Or	simply,	digest

©	Joe	Mertz	- Distributed	Application	Development 30



1. For	any	message,	the	hash	value	is	easy	to	compute.
2. It	is	infeasible	to	create	a	new	message	that	has	a	given	

hash	value
– You	can’t	work	backwards	to	create	an	imposter.

3. It	is	infeasible	to	modify	a	message	in	any	way	without	
changing	its	hash	value
– The	most	minor	changes	still	change	the	hash	value.

4. It	is	completely	unlikely	that	two	documents	will	have	
the	same	hash	value
– So	you	don’t	have	to	worry	that	you	just	happen	upon	another	
document	with	the	same	hash	value

©	Joe	Mertz	- Distributed	Application	Development 31



• SHA
– Designed	by	the	National	Security	Administration	(NSA)
– SHA-1

• 160	bit	digest
– In	Feb	2017,	a	deliberate	collision	was	demonstrated*
– Breaking	property	#2	on	the	previous	slide

– SHA-2
• A	family	of	related	hash	functions
• SHA-256	has	a	256	bit	digest	(this	is	currently	used	in	Chrome)

• MD5
– 128	bit	digest

• Both	SHA-256	and	MD5	are	often	represented	as	
strings	of	hex	digits

©	Joe	Mertz	- Distributed	Application	Development 32

*Google	announced	that	they	had	demonstrated	a	SHA-1	collision	on	2/23/17:
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html



• openssl dgst -sha256	invoice.txt
• Change	one	character
– Compare	resulting	hash	value

©	Joe	Mertz	- Distributed	Application	Development 33



• Can	a	hash	function	be	used	to	encrypt	a	
message?

©	Joe	Mertz	- Distributed	Application	Development 34



• Take	your	document	(email	message,	etc)
• Calculate	a	hash	function	on	it.
– SHA256

• Encrypt	the	resulting	hash	value	with	your	private	
key.

• The	encrypted	hash	value	is	the	digital	signature.
• Send	it	…

©	Joe	Mertz	- Distributed	Application	Development 35



• …	The	recipient
• Receives	the	document	(email	message,	etc)	and	
the	digital	signature.

• Decrypts	the	signature	with	the	sender's	public	
key	resulting	in	the	hash	value	of	the	message.

• Calculate	a	hash	of	the	document	&	compare	it	
with	the	sender’s	hash	value

• Should	they	be	equal?			Why?

©	Joe	Mertz	- Distributed	Application	Development 36



• What	does	it	mean	if	the	hash	values	are	not	
equal?

• Could	Mallory	change	the	document?
• Can	Mallory	change	the	document	without	
changing	the	hash	value?

• Can	Eve	read	the	document	(email,	etc.)?
–What	can	I	do	about	that?

©	Joe	Mertz	- Distributed	Application	Development 37



• HTTP	requests	to	3rd	party	web	services	often	need	
to	be	signed	in	order	to	establish	securely:
– What	application	is	making	the	request
– For	which	user	the	request	is	being	made	on	behalf	of
– Whether	the	application	has	the	authorization	to	make	the	
request	on	behalf	of	the	user

– Whether	the	request	has	been	tampered	with	in	any	way	
in	transit

• HTTP	requests	can	be	digitally	signed,	typically	using	
two	keys:
– The	application's	API	key
– A	specific	users	access	token
– (These	both	go	by	different	names	depending	on	the	API)

©	Joe	Mertz	- Distributed	Application	Development 38



• We	saw	we	could	use:
– Asymmetric	keys	(RSA)
– to	share	a	symmetric	key	(AES)
– Then	pass	messages	back	and	forth	efficiently	using	
the	symmetric	key

• This	is	essentially	TLS
• So,	I	can	use	this	scheme	to	safely	send	
Amazon.com a	message	with	my	credit	card	
number,	correct?

©	Joe	Mertz	- Distributed	Application	Development 39



• Do	I	really	know	who	I’ve	been	negotiating	with?
• Is	it	really	Amazon.com?
– Or	Mallory?

• They	sent	me	their	public	key	to	use,	
– So	if	I	knew	that	this	was	really	Amazon.com’s public	key,	
– Then	I	could	trust	I’m	working	with	the	real	Amazon.com,	
– For	only	Amazon.com has	the	corresponding	private	key.

• What	if	someone	I	trust	confirmed	that	this	was	
Amazon.com’s public	key?

©	Joe	Mertz	- Distributed	Application	Development 40



• A	Digital	Certificate	is	a	document	that	provides	
information	about	an	organization
–Most	importantly,	its	public	key

• And	the	Digital	Certificate	is	digitally	signed	by	
some	trusted	party.

©	Joe	Mertz	- Distributed	Application	Development 41



• Issued	by	trusted	entities
– Company	IT	Department	(internally)
– VeriSign
– Thawte
– Lets	of	others

• Typically	contains
– Owner’s	name
– Owner’s	public	key
– Expiration	date
– Name	of	certificate	issuer
– Serial	number
– Issuer’s	digital	signature

• E.g.	Blackboard	Digital	Certificate

©	Joe	Mertz	- Distributed	Application	Development 42



©	Joe	Mertz	- Distributed	Application	Development 43



• What	happens when you	log	onto	Amazon?
– SSL	/	TLS	handshake
• Shared	public	key

– Digital	certificate	to	authenticate	identity
» hash
» Certificate	authority	public	key

• Generate	and	share	a	symmetric	key
• Continue	communication	using	Advanced	Encryption	
Standard	(AES)

– Authenticate	with	name	and	password
• Passed	via	secure	SSL
• If	ok	then	a	cookie	can	be	tied	to	a	session	in	the	server	that	
maintains	that	you	are	authenticated	(at-main?)

©	Joe	Mertz	- Distributed	Application	Development 44



45

By	Yanpas - Own	work,	CC	BY-SA	4.0,	https://commons.wikimedia.org/w/index.php?curid=46369922

©	Joe	Mertz	- Distributed	Application	Development



• The	“padlock”	on	a	browser	means	_______?
• Does	the	padlock	means	you	are	logged	in?
• If	you	are	logged	into	Amazon.com,	which	are	true?
– Your	browser	received	Amazon’s	public	key
– Your	browser	used	a	certificate	authority	to	validate	Amazon’s	
public	key

– Amazon	validated	your	public	key	with	a	certificate	authority
– Amazon	provided	an	encrypted	hash	value	of	the	certificate	
authority’s	digital	certificate.

– RSA	might	have	been	used	between	your	browser	and	Amazon.
– Your	browser	and	the	certificate	authority	are	sharing	a	secret	
key

– Your	browser	and	Amazon	are	sharing	a	secret	key.

©	Joe	Mertz	- Distributed	Application	Development 46



• RSA	is	a	{protocol	or	encryption	algorithm}.
• AES	is	a	{protocol	or	encryption	algorithm}.
• SSL	is	a	{protocol	or	encryption	algorithm}.
• A	hash	function	is	an	{encoding	or	encryption}	
algorithm.

©	Joe	Mertz	- Distributed	Application	Development 47



• You	can	create	your	own	authentication
• Require	a	secure	channel	(e.g.	SSL,	TLS)
• Create	a	login	page
– User	ID	and	Password	sent	to	the	server
– Store	in	mongoDB
• userID as	key
• password

©	Joe	Mertz	- Distributed	Application	Development 48



• Storing	raw	passwords	on	a	server	is	dangerous
– Risk	of	nosey	(disgruntled)	employees	accessing	them
– Risk	if	your	server	is	broken	into	and	file	stolen

• Therefore,	don't	store	raw	passwords
– Rather,	store	the	hashed	value	of	the	password

– http://nodejs.org/api/all.html#all_crypto_createhash_algorithm

– Then	with	a	user	logs	in,	hash	the	submitted	password	
and	compare	it	with	the	stored	value

©	Joe	Mertz	- Distributed	Application	Development 49



• If	your	stored	hashed	passwords	get	stolen,	they	
can	still	be	susceptible	to	attacks:
– Dictionary	attack
• Generate	a	large	set	of	possible	passwords	(e.g.	dictionary	
words),	hash	each,	and	test	against	the	saved	hashed	
password

– Rainbow	table	attack
• Create	a	lookup	table	of	hash	values	and	the	original	
passwords	for	a	very	large	set	of	possible	passwords

©	Joe	Mertz	- Distributed	Application	Development 50



• Randomly	salt each	password
• When	storing	new	credentials

– Generate	a	new	random	number	(the	salt)
– Append	the	number	to	the	password	string
– Hash	the	new,	longer	string
– Store	with	the	user	profile:

• The	hashed	(password+salt)
• The	salt

• When	validating	credentials	
– Get	the	user's	salt	from	their	profile
– Append	the	salt	to	the	submitted	password
– Hash	the	resulting	string
– Compare	the	hash	value	to	the	stored	hashed	value

• Note:
– If	you	are	doing	this	for	an	actual	site,	research	current	best	practices	

for	the	attacks	are	always	advancing
©	Joe	Mertz	- Distributed	Application	Development 51



• Authorization	is	different	than	Authentication
• Authentication	establishes	identity
• Authorization	establishes	access	rights
• Many	sites	have	their	own	authorization	schemes
• Many	use	the	open	scheme:	OAUTH

©	Joe	Mertz	- Distributed	Application	Development 52


