Cloud Computing
Learning Goals

• To have a general understanding of what falls under the nebulous definition of Cloud Computing
 – Not to be confused with nebulous clouds nor the cloud nebula.
• To be familiar with the concepts of SaaS, IaaS, PaaS, (and HuaaS).
• To understand the benefits and risks of using cloud computing
• To be aware of the breadth of services that are available as XaaS
 – Including business models and software development support
What is Cloud Computing?

- Cloud computing is a model for enabling
 - convenient, on-demand network access
 - to a shared pool of configurable computing resources
 - (e.g., networks, servers, storage, applications, and services)
 - that can be rapidly provisioned and released
 - with minimal management effort
 - or service provider interaction

Source: US National Institute of Standards and Technology, 2009
Example Use Cases

• Payroll company – monthly variation
 – Has peak loads on its web applications on the last working day of the month
 – Traffic tails off the rest of the month

• Weather company – special events
 – Fairly steady state load most of the time
 – Extreme peak loads when there is a weather event (hurricane, ice storm, etc.)
Example Use Cases

• Short-Term Campaign
 – You have a campaign (e.g. Superbowl commercial) that needs a short-term increased capacity to manage.
Anonymous Pharmaceutical Company

• Problem:
 – Simulate the interaction of each of millions of compounds with a cancer-related protein.
 – Estimated 341,700 hours of computing
 • I.e. 39 years!

• Solution:
 – Used 10,600 cloud-based compute instances

• Physical equivalent:
 – 12,000 sq feet data center
 – Would cost $44 million

• Result
 – 2 hour setup
 – 9 hours use
 – Peak cost $549.72/hour
 – Total cost $4,362!

Example Use Cases

• Startup company - scalability
 – Minimal capital available for equipment
 – Minimal capital available to hire tech support staff
 – No way to predict when their new service will go viral.
E.g. Animoto (cloud-based video creation service)

• Animoto made its service available via Facebook
• Resource needs doubled every 12 hours for three days.
• Demand surged from 50 servers to 3,500 servers
• After the peak subsided, traffic fell to a lower level.

Source: Michael Armbrust et al.
 » http://doi.acm.org/10.1145/1721654.1721672
Over / Under Provisioning

Figure 2. (a) Even if peak load can be correctly anticipated, without elasticity we waste resources (shaded area) during nonpeak times. (b) Underprovisioning case 1: potential revenue from users not served (shaded area) is sacrificed. (c) Underprovisioning case 2: users desert the site permanently after experiencing poor service; this attrition and possible negative press result in a permanent loss of a portion of the revenue stream.

Source: Michael Armbrust et al.
 » http://doi.acm.org/10.1145/1721654.1721672
Infrastructure is Not Your Core Business

• You have a need for an extensible software application that scales indefinitely (from your perspective) and is available 24/7 worldwide.

• And your core business is not distributed software development.
Essential Characteristics

• On-demand self-service
• Broad network access
• Resource pooling
• Rapid elasticity
• Measured service

 – US National Institute of Standards and Technology, 2009
On-demand self-service

- Consumer can unilaterally:
 - Provision computing capabilities,
 - E.g. server time and network storage,
 - As needed
 - Automatically
 - Without requiring human interaction
Broad network access

• Capabilities are available
 – Over the network
 – Accessed through standard, published APIs
Resource pooling

• Provider’s computing resources are pooled
 – Serving multiple consumers using a multi-tenant model
 – With different physical and virtual resources dynamically assigned and reassigned according to consumer demand.

• Customer generally has no control or knowledge over the exact location of the provided resources
 – But may be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).

• Examples of resources include
 – storage
 – processing
 – memory
 – network bandwidth
 – virtual machines.
Resource Pooling - Business model

• Resource pooling is key to the business model
 – Large scale data centers
 – In low-cost geographic locations
 • Real estate
 • Power
 • Labor
 – Statistical multiplexing to increase utilization
 – Resulted in significant decrease in costs
 • Decrease factor of 5 to 7- Armbrust et al

• Therefore, cloud computing could was able provide better software and computing services cheaper than medium and small sized data centers.
Rapid elasticity

• Capabilities can be rapidly and elastically provisioned
 – In some cases automatically
 – To quickly scale out and rapidly released to quickly scale in.

• To the consumer, the capabilities available for provisioning often appear to be unlimited and can be purchased in any quantity at any time.
Measured Service

• Providers use a metering capability at some level of abstraction appropriate to the type of service — (e.g., storage, processing, bandwidth, and active user accounts).

• Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer of the utilized service.

• 1000 processors for 1 hour is no more expensive than 1 processor for 1000 hours
These are worth knowing...

• Essential characteristics of cloud computing
 – On-demand self-service
 – Broad network access
 – Resource pooling
 – Rapid elasticity
 – Measured service
 – US National Institute of Standards and Technology, 2009
Service Models

• IaaS - Infrastructure as a Service
• PaaS - Platform as a Service
• SaaS - Software as a Service
• HuaaS - Humans as a Service
Infrastructure as a Service (IaaS)

- Processing, storage, networks, and other fundamental computing resources
- The consumer can run arbitrary software
 - Including operating systems and applications
Amazon Elastic Compute Cloud (EC2)

- IaaS example
- Multiple instance types, ranging from
 - Micro Instance
 - 613 MB memory
 - up to 2 ECUs
 - Network storage
 - Extra Large Instance
 - 15 GB memory
 - 8 ECUs
 - 1690 GB local storage
 - Higher network performance

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Memory (GB)</th>
<th>ECUs</th>
<th>Local Storage (GB)</th>
<th>Network Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>613</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra Large</td>
<td>15</td>
<td>8</td>
<td>1690</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region: US East (Virginia)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Linux/UNIX Usage</th>
<th>Windows Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small (Default)</td>
<td>$0.080 per Hour</td>
<td>$0.115 per Hour</td>
</tr>
<tr>
<td>Medium</td>
<td>$0.160 per Hour</td>
<td>$0.230 per Hour</td>
</tr>
<tr>
<td>Large</td>
<td>$0.320 per Hour</td>
<td>$0.460 per Hour</td>
</tr>
<tr>
<td>Extra Large</td>
<td>$0.640 per Hour</td>
<td>$0.920 per Hour</td>
</tr>
<tr>
<td>Micro On-Demand Instances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro</td>
<td>$0.020 per Hour</td>
<td>$0.030 per Hour</td>
</tr>
</tbody>
</table>

| Hi-Memory On-Demand Instances |
Extra Large	$0.450 per Hour	$0.570 per Hour
Double Extra Large	$0.900 per Hour	$1.140 per Hour
Quadruple Extra Large	$1.800 per Hour	$2.280 per Hour

| Hi-CPU On-Demand Instances |
| Medium | $0.165 per Hour | $0.285 per Hour |
| Extra Large | $0.660 per Hour | $1.140 per Hour |
Simple Storage Service (S3)

• Web-based storage
• Web Services interface
 – SOAP and REST
 (Two varieties of machine-to-machine communication)
Platform as a Service (PaaS)

- Programming languages, tools, and/or software systems provide a platform upon which a customer can build an applications.
- The consumer does not manage or control the underlying computing infrastructure, but has control over the deployed applications.
Force.com - PaaS

• Force.com development platform
• Apex programming language
• API
• Eclipse IDE integration
• Database, security, workflow, and user interface tools
• Free for developers
Google App Engine – PaaS

• Run web apps on Google infrastructure
 – Automatic scaling and load balancing
• Security and Authentication
• Work queues for scheduled tasks
• Messaging
Google App Engine

- Provides Java, Python, Go, and PHP platforms
- Eclipse IDE integration
- Persistent storage via:
 - Cloud Datastore – NOSQL
 - Cloud SQL – based on MySQL
 - Cloud Storage – objects & files up to 1TB
Software as a Service (SaaS)

• Provides the capability to use software applications running on cloud infrastructure.

• Applications are accessible from various client devices through a thin client interface such as a web browser (e.g., web-based email).
While with IaaS and PaaS, the consumer is an application developer, with SaaS, the consumer can be an end user (or application developer).

E.g.

- Companies can use the SaaS named CakeHR
 - Human resources software
- CakeHR uses the PaaS from CenturyLink/AppFog
 - PHP platform as a service
- AppFog uses the IaaS from Amazon Web Services
 - EC2, S3
Example SaaS

- Salesforce.com – CRM
- Basecamp – Project Management
- Flickr – Photo Management
- YouTube, Vimeo – Video Streaming
- Piazza – Course forums
- Others you use?
Human as a Service (HuaaS)

• Less common association with cloud computing
• E.g.
 – YouTube crowdsourcing of “newsworthy” videos
 – Amazon product reviews
 – Amazon Mechanical Turk
 – ReCAPTCHA
 – duoLingo
 – Uber
 – Burpy
 – Thumbtack
 – Favor
 – HomeAdvisor
Public & Private Clouds

• Public cloud:
 – Cloud computing provided to public customers
 – Service aka *utility computing*

• Private cloud:
 – Cloud computing only within a firm
 – Only sensible when economies of scale are big enough to justify
 • Else you just have a "data center".
Where can we run Node.js apps?

• Laptop
 – No static IP address
 – Laptop not awake when TA wants to test
• Andrew.cmu.edu
 – Only static web pages
• Traditional web hosting (e.g. DreamHost, BlueHost)
 – Do not allow continuous processes
 – Node.js is a running process, not something a web server invokes
• IaaS – E.g. AWS
 – Possible, but need to create OS stack to run Node on.
 – More work than is needed
• PaaS
 – Best alternative for what we need.
PaaS for Node.js

• Two platform alternatives would work
 – OS as a Service
 • Provide the OS (linux, windows)
 • Running Node is as trivial as "node app.js"
 – Node as a Service
 • Node is kept running by the service
 • Deploy new code to the service and it is automatically run
 – Deploy via command line interface (CLI)
 – Or Deploy via git
PaaS Options

- Heroku
- AppFog
- Modulus
- dotCloud
- EngineYard
- Nodejitsu
- Microsoft Azure
- IBM Bluemix
- Redhat OpenShift
 - Free
 - Easy to use CLI via git

And others...