
Slide 1

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Product Family and Program of Projects
Architectures

Slide 2

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 2

Lesson Goal & Objectives
Understand the purpose and nature of
product family and program architectures.
Upon completion of the lesson, the
participant will be able to:

Describe the issues and constraints of a
product family architecture
Describe the issues and constraints of a
program of projects architecture

Slide 3

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 3

Lesson Outline
Product Family (Line-of-Business, Product Line)
Architecture

What is product family architecture?
Variability
Commonality
Versioning & Bug Fixes
Use Cases and Other Requirements
Documentation

Program (programme) of Projects Architecture
What is program of projects architecture?
Patterns

Constraints and issues
Impact on Project Architecture

Slide 4

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 4

Product Family Architecture
This concerns the architecture of a set of
applications that are related because they
are variations on the same product or set of
products
This is sometimes called line-of-business
architecture or product line architecture

These used to be called line-of-business architectures, but at some point in time, line-of-

business came to refer to business units, such as accounting, human resources, IT,

marketing, sales, and so on. The current term appears to be product family, though a

recent book by Hassan Gomaa calls this product line architecture.

Slide 5

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 5

Product Family Architecture
Variability

Platform
Edition or feature set
Customized code

Commonality
Framework
Base functionality
Common functions, events, services, agents
Data or file format

Versioning & Bug fixes

A major theme of software architecture is to identify the most likely kinds of changes to

occur, then isolate or encapsulate the part of the application(s) that will need to be

modified because of that kind of change. This is particularly apparent at the Product

Family level of architecture. Kinds of changes may include platform, edition, or

customized code.

You also have to consider methods for handling the common parts of the product

families. This could be done using frameworks, base functionality in layers or tiers,

libraries of things such as functions, components, services, event handlers, or agents, and

defining common data or file formats.

Framework could be something like a backplane or plug and play technology, or it could

be a communication framework. Think of things such as Eclipse or CORBA.

Base functionality can be the lower layers of a layered architecture, or some of the tiers

of a tiered architecture. At a minimum, the products in the family can share a common

function library, agents, services, or event managers. Typically all products in the product

family will share a common data and/or file format. Another major issue for product

families is how to handle versioning and bug fixes.

Slide 6

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 6

Platform

Java Virtual Machine

JVM Linux

JVM SolarisJVM Windows XP

JVM Macintosh

Common Components

This example shows a possible architecture for the Java Virtual Machine (JVM) family of

products. Some parts of the JVM are exactly the same, no matter what platform it runs

on. In addition, each version of the JVM includes code for the specific platform on which

it runs. This is a product family where the variation point is the platform on which the

software runs. Notice that the platform specific subsystems are completely independent.

The only shared code is in the Java Virtual Machine subsystem.

What you may find in this architecture is that the Java Virtual Machine may all be

abstract or pure virtual. In other words, there is no real code for the Java Virtual Machine.

Then each platform specific subsystem will contain the actual code to implement those

features written for a specific platform. That is what we are showing in this diagram. The

italicized name for Java Virtual Machine indicates that this subsystem is abstract – in

other words, there is no actual code in this subsystem. Each platform specific subsystem

provides code to implement the Java Virtual Machine. There may also be some concrete

code in Java Virtual Machine, possibly a function library or web services that run on any

platform.

The nice thing about this kind of architecture is that it is relatively simple to maintain.

Any changes to the platform specific parts of the application only happen in the platform

specific subsystem. Care has to be taken with changes to the Java Virtual Machine.

Adding something new is easy, because nothing depends on it. You can choose when to

expose the new functionality (if at all) in your specific platform subsystem. Making a

change to an existing feature in Java Virtual Machine is strongly discouraged, because

that change could immediately impact code in all of the platform specific subsystems.

This is a very good architecture because the primary kind of change to this product

family is the addition of new platforms and that kind of change is isolated in platform

specific subsystems. In this kind of architecture, if the most frequent kind of change were

changes to the Java Virtual Machine, this would be a bad architecture, because those kind

of changes have a ripple effect throughout the whole architecture.

Slide 7

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 7

Edition

Microsoft Office

Professional Edition
MS Word
MS Outlook
MS Excel
MS PowerPoint
MS Access
Visual Basic

Small Business Edition
MS Word
MS Outlook
MS Excel
MS PowerPoint
Visual Basic

Home Edition
MS Word
MS Outlook
MS Excel
Visual Basic

Academic Edition
MS Word
MS Outlook
MS Excel
MS PowerPoint
Visual Basic

MS Excel

MS Outlook

MS Word

MS PowerPoint

Visual Basic

MS Access

This example shows a possible architecture for the Microsoft Office family of products.

Microsoft Office is composed of a set of applications. Each specific edition of Microsoft

Office is composed of a subset of the total set of applications. In addition, the specific

features available in a particular application may change from one edition to another.

This is a product family where the variation point is the feature set of the software.

The nice thing about this kind of architecture is that it is relatively simple to maintain.

There is really only one set of code, but a subset of features is exposed for a particular

edition. The issues with this kind of product family are those of versioning and backward

compatibility. You don’t have to worry about compatibility between editions, because all

the editions are actually using exactly the same underlying code and file structures.

Various companies sell licensing software that makes it relatively easy to create the

different editions by turning on or off specific applications or features of applications.

This is a very good architecture because the primary kind of change to this product

family is updates to the core applications and features. Any change is immediately made

to all editions, because they are really all sharing the same software. Adding a new

edition is also easy because it just means creating a new interface, which probably means

creating a new edition in the licensing software. This kind of architecture does not

support different versions of software for the different editions. There is one large code

base (Microsoft Office) and the editions are created by turning on and off features.

There are several ways to implement turning on and off features.

One way is to use licensing software to select the allowed features. Using this software,

you define a set of features (interfaces) that you will expose in the software. Then you

define a type of license (enterprise, small business, etc.) and create a list of features that

are legal for this license. When a user installs the software, the license key identifies to

the licensing software which kind of license has been purchased. The licensing software

then locks or unlocks the indicated features for that type of license. The advantage to this

scheme is that there is one release of the software with everything in it. You don’t have to

manufacture different CD’s for different versions of the product. The disadvantage is that

the licensing software could be cracked, allowing the customer access to all the software

features, even the ones they did not purchase.

Another approach would be to have different releases of the product stored in a version

control system. In the version control system, you create a different release for each

version of the product (professional, academic, etc.), then identify the code files that will

be linked together to create that version of the product. You create different CD’s in

manufacturing, one CD for each different version of the product. In creating the package,

you have to be careful that the correct CD is put into each package. The advantage is that

a customer only gets delivered exactly what they purchased, and there is no way to crack

licensing software to get access to additional features or software – the additional features

or software are not on the CD.

Slide 8

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 8

Customized Code

Basic Tester V1.0

Basic Tester V2.0

Basic Tester V3.0

Basic Tester V4.0

«becomes»

«becomes»

«becomes»

Simulator V1.0

Simulator V2.0

«becomes»

Multitest V1.0

Multitest V2.0

Multitest V3.0

«becomes»

«becomes»

Intel
Basic Tester V4.0
Multitest V2.0
Simulator V2.0

Ericsson
Basic Tester V2.0
Multitest V1.0

The typical way you get customized code is that you have a standard code base, but

different versions customized for different customers. With the edition version, we are

assuming packaged software, where there are multiple standard editions for purchased.

For customized code, we are assuming that this is a business-to-business relationship.

Now our customer is one particular company, and they may want our product customized

for their particular purpose. Another of our customers wants the same software, but

customized somewhat differently.

The big issue here is what is the nature of the customization? Is it something simple like a

change to the look and feel of the user interface, or something more complex, such as

addition or subtraction of features, or specialized data formats? Here we assume that the

customization involves specific features for specific customers. Some of these features

may only be used by one customer, some will be used by multiple customers. For a

variety of reasons, different customers may be on different versions of the underlying

basic software.

Assume the basic software controls a microchip testing facility. We sell a basic version

of the software that provides basic control functions for one type of microchip using one

type of test equipment (write a test script, run the test script to test batches of chips, put

rejected chips in one bin, good chips in another bin). We sell additional features: test

multiple types of microchips, run multiple tests on the same batch of microchips, control

multiple types of test equipment, perform error analysis, define multiple bins for

categories of chips (pass completely, fail completely, partial failure, ambiguous-test

again), simulator for developing test scripts. Some of these features are only available on

particular versions of the base software (or later versions).

In general, maintaining customized code is a nightmare over time. It seems like a good

idea up front, but can quickly grow unmanageable. The multiple editions idea from the

previous slide is a much more manageable version of this idea. But it may not be

possible to come up with a few standard editions of the software.

Notice the direction of the arrows. Basic Tester must be stand alone, so the add-on

products have to work by making calls to Basic Tester. We cannot expect Basic Tester to

know anything about the add-ons.

Slide 9

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 9

Framework

Eclipse UML 2 Libraries

Framework

Rational Software Architect

Rational Software Modeler

Rational System Developer

One way to create a product family architecture is to start with a basic framework on top

of which everything else works. This framework can be written by the product team,

something purchased, or both.

In this example, we consider the IBM RSx product family. All of the products are built

on an Eclipse framework with UML 2 libraries. This provides some basic functionality.

In addition, each product in the family is built on top of one of the other products.

When is something a framework versus a component library? A framework is a set of

components that work together to provide a package of functionality. The framework

itself is generally an executable or set of executables. In addition, the framework provides

places where you can add in more functionality, sometimes called “hooks”. What you

build on top of the framework enhances the functionality of the framework. So in this

current example, Eclipse is a development environment of its own. The IBM RSx

products use that basic development environment and adds on to it. In this particular

example, Eclipse and the UML 2 libraries are open source.

Another kind of framework that goes in and out of popularity is a backplane. A backplane

provides basic services so that any applications you plug into it are automatically

interconnected.

Slide 10

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 10

Base Functionality

Framework

Enterprise Components

Product Family Components

Product 1 Product 2 Product 3

Similar to the idea of a framework, here we are using multiple layers as the basis for our

product line. In this case, a framework is part of the base functionality, as well as a

library of components (services, agents, event managers, functions) at the enterprise level

and product family levels. We are taking advantage of large amounts of commonality in

order to write as little new code as possible and to make maintenance of existing code

even easier.

Slide 11

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 11

Libraries

Math LibraryError Handling Routines

Basic Security Functions Enterprise Agents

Event ManagersProduct Family Services

Product 1

Product 2

Libraries are collections of things. They can be defined for any reason. The basic idea is

to write a bunch of code that is generally useful and bundle it together as a library. The

only real difference between this slide and the previous slide is that the subsystems

(libraries) on this slide have no relationships to each other, whereas on the previous slide,

the subsystems are built on top of each other.

Slide 12

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 12

Data & File Format
Shared data model
Same file format
Ease of maintenance
Ease of upgrades

As much as possible, a product family should share the same data. The data model should

reflect the combined data models for all the products in the family. This will often mean

that some fields in the data model are not used by some members of the product family,

but the trade-off is ease of maintenance of one model rather than one per product.

By the same argument, if files are used by the products, they should all share the same

file format.

Think about how easy it is to upgrade to a product with more features if the data model

and file formats match. As a customer, you don’t have to change or convert any of your

data when you upgrade your product to get more features. This is a reasonable

expectation from the customer, so the product should be architected to work that way.

Slide 13

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 13

Versioning & Bug Fixes
Bug found in one version of one product

What if found in old version and already fixed
in later versions
What if found in newest version of product
What if in all products

How many old versions to maintain
Loss of customers if upgrade is required
Issue of new features in old product versions

Version control software

When maintaining a product family, there need to be overall policies guiding bug fixes

and versioning.

If a customer finds a bug in an old version of a product, and that bug is already fixed in

later versions, do you fix the old version of the product, or do you require the customer to

upgrade?

If a customer finds a bug in the current version of the product and you know it exists in

all previous versions, do you fix it in all versions, do you send a patch to old customers,

or do you only fix the bug in the current version of the software?

What about other products in the same product family? Do you look for the bug there and

fix it in all versions of all products in the family?

Other issues arise around versioning of software. Most companies will only maintain the

last few versions of software, if they maintain old versions at all. Microsoft still releases

patches for Windows 2000, but I believe they no longer support Windows 95. There

reaches a point where a company cannot afford to keep maintaining old versions of

software.

Some customers may not be able to upgrade due to running on old hardware that will not

support the new software, or perhaps they are using old software that requires a certain

version of your software to interact with. Sometimes pricing is the issue. So requiring

upgrades may cause you to lose customers.

One issue that will often come up is that customers who cannot or will not upgrade want

you to provide them with the newest features. This is often infeasible due to lack of

functionality in the old versions to support the new features.

All of these things should be kept in mind when architecting your product family. The

software will be maintained, fixed, features added, new products created for a very long

time, so maintenance is a big issue.

Especially if you have many products or many versions in your product family, you will

need a good version control system, and probably also a good build engineer, to keep

track of all the different versions and to make maintaining the product family possible.

A big mistake is not tracking the different versions. One company we know created a

huge problem for themselves because they did not keep track of which software units

were compiled into each version of the product. They had many versions, all customized

for their (very large) customers. When a bug was reported, they had no way to recreate

the problem, because they had no way to create the same version of the software that the

customer had. This problem only grew worse over time.

Slide 14

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 14

Use Cases & other Requirements
Shared between products in the family
Specialized for different products
Can be used to find common areas and
variable areas of the software

When you think of commonality and variability, consider more than just the software.

There are often many use cases and requirements in common among products in a

product family. You can also use the requirements to find or explore what parts of the

software are common between products and which parts need to be specialized.

Slide 15

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 15

Documentation
UML Package diagram

Show subsystems, packages, libraries
Show common and specialized elements

UML Class diagram
As needed to show important elements of the different
subsystems

UML Use Case Diagram
Show use cases for product family and specialized use cases

ER Diagrams
Show the data model

MS Word
Use Case Specifications
Constraints, Regulatory Requirements, Guidelines

Slide 16

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 16

Break
As a class, review the given Product Family
Architecture.

Slide 17

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 17

Program of Projects Architecture
This concerns the architecture of a set of
applications that are related because they
are parts of a much larger application
This is as much an architecture of the
management of the projects as it is
software architecture
Common in defense industry, becoming
necessary in IT

I have talked to a number of people who know what a program of projects is, and we all

agree on the definitions. I have yet to find any literature or books written on the subject.

You often find these discussed by people from a defense industry background, since a

program of projects is typically found in quite large applications.

The program I worked on at Lockheed Missiles and Space was a satellite

communications project. The total project involved several hundred engineers and took

17 years to complete. We are starting to see very large projects (not quite this big, but

still large) in IT, and few people with an IT background have any idea how to manage

such a thing, either from the project management point of view or from the software

architecture point of view.

Slide 18

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 18

Program of Projects Architecture
Define the overall project
Create a high-level architecture

Components
Relationships
Assignment of requirements/use cases to
components

Make each component a project

What you are doing is creating an architecture for something that is so big, it requires

multiple project teams to implement. Imagine a project large enough to require 100

engineers. That is too many people for one project manager to manage. By dividing the

project into multiple smaller projects, then each project may have 10-15 engineers under

one project manager. There is still a program manager (or more likely a team of leaders)

over all of the project managers.

Initially, the big project is treated as a single project, with a program manager, architect,

business analyst, and test manager as the minimum staff. You may also have a

deployment manager and some designer/developers on staff as well. All roles except the

program manager may actually be 2 or 3 people (i.e. 2 or 3 architects, 2 or 3 business

analysts, etc.). The business analysts write the requirements for the whole program. These

may not be very detailed at this time, but there has to be enough detail for an initial

architecture to be described. The architects have to create the initial architecture,

including the components, their relationships, and any constraints, regulations,

guidelines, or patterns that are to be followed in the program overall. This is a similar

effort to creating an enterprise architecture as was described in last week’s lesson. The

requirements are divided up and assigned to the different components of the system. This

is to show which components implement which requirements.

Finally, each component becomes a project, with a project manager, business analyst,

architect, test manager, and the rest of the project team. The project architecture, project

requirements, and project schedule are parts of the overall program architecture, program

requirements, and program schedule.

Slide 19

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 19

Program of Projects Architecture

Training Facility

Ground Station

Satellite

IGroundStation
LocateSatellites
AttachToSatellite
SendMessage
DetachFromSatellite
ReceiveMessage

ISatellite
ReceiveMessage
LocateGroundStations
AttachToGroundStation
SendMessageToGroundStation
DetachFromGroundStation
LocateSatellites
AttachToSatellite
SendMessageToSatellite
DetachFromSatellite

ITrainingFacility
LocateSatellites
InitiateTrainingMode
AttachToSatellite
SendMessage
DetachFromSatellite
ReceiveMessage
EndTrainingMode

Send a Message:

 1. Ground station locates visible satellites

 2. Ground station attaches to one of the satellites

 3. Ground station sends a message to the satellite

 4. Ground station detaches from the satellite

 5. Satellite which received the message locates ground stations

 6. If message is for one of those ground stations, satellite attaches to the ground

station, sends the message, and detaches from the ground station.

 7. If the message is not for one of those ground stations, satellite locates another

satellite, attaches to the satellite, sends the message to the satellite, and detaches from the

satellite. Repeat from step 5 until message is delivered to correct ground station or

message returns to originating ground station.

TrainingExercise:

 1. Training facility locates visible satellites

 2. Training facility attaches to one of the satellites

 3. Training facility initiates training mode

 4. Training facility sends a message to the satellite

 5. Training facility detaches from the satellite

 6. Satellite attaches to the training facility.

 7. Satellite sends the message to the training facility.

 8. Satellite detaches from the training facility.

 9. Training facility attaches to the satellite.

 10. Training facility ends training mode.

 11. Training facility detaches from the satellite.

Slide 20

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 20

Program of Projects Architecture

Satellite

Engine

Navigation

AddressDecryption

PowerManagement

Transceiver

Antenna
ISatellite
ReceiveMessage
LocateGroundStations
AttachToGroundStation
SendMessageToGroundStation
DetachFromGroundStation
LocateSatellites
AttachToSatellite
SendMessageToSatellite
DetachFromSatellite
RespondToCommands

CommandProcessor

The next couple of slides show a possible breakdown of each major component into sub-

components. Each of these subcomponents (for example Transceiver or Navigation) is

assigned to a whole project team, along with the requirements for that component. Also,

the different teams will likely have to coordinate their architectures and schedules. For

example, if the satellite has to do address decryption, then that team has to know the

decryption process and the format of addresses. These are probably defined by the teams

in the ground station segment, because in general the satellite is just passing on

information and the ground stations do the real processing. So the ground station

components get to define the formats of things like addresses, messages, and

encryption/decryption algorithms. The program team are the people who determine

which team is responsible for defining the various formats and algorithms.

Slide 21

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 21

Program of Projects Architecture

IGroundStation
LocateSatellites
AttachToSatellite
SendMessage
DetachFromSatellite
ReceiveMessage
CommandSatellite

Ground Station

Triangulation

Decryption

Encryption

MessageCreator

Transceiver

Antenna

CommandAndControl

Notice that encryption and decryption are different teams. Due to program security

requirements, the people who know the encryption algorithm are not allowed to know the

decryption algorithm. Also, no one on the encryption and decryption teams are allowed

to work on or know about any other part of the system. (On the clearance side, this is

implemented using compartmentalized clearances.)

Slide 22

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 22

Program of Projects Architecture

ITrainingFacility
LocateSatellites
InitiateTrainingMode
AttachToSatellite
SendMessage
DetachFromSatellite
ReceiveMessage
EndTrainingMode

Training Facility

Triangulation

Decryption

Encryption

MessageCreator

Transceiver

Antenna

TrainingController

This is deliberately similar to the ground station, since this is the training facility for the

people who will be running the ground stations. The only component here that actually

has a team is the training controller. The rest are the exact same components as the

ground station, just re-used in the training facility component.

Slide 23

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 23

Data & File Format
Coordinate shared information between
components
Typically one component (project team) is
the “owner” of the format of information

Within a program of projects, you may want to have shared data formats and file formats

for the whole program. More commonly, some project team responsible for a component

defines the data format or file format, and other project teams that use that data or file

construct their code to use the defined format. The owner of the format of the information

is typically assigned by the program team.

Slide 24

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 24

Shared libraries
Shared libraries can be a good thing on a
program
Must be developed early, thoroughly
tested, then NOT CHANGED

Changes propagate throughout the whole
program

Shared libraries, same as in product families, can be a very good thing. After all, how

many copies of a leap year function or date converter do you need? On the other hand,

since these libraries are used by all project teams, they must be stabilized quite early in

the program lifecycle. Additions to the libraries cause no harm, but changes to existing

library elements will impact every project team on the program, so should be avoided.

Slide 25

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 25

Use Cases & other Requirements
Divided among components (project teams)
Requirement changes may need to be
negotiated between project teams

Slide 26

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 26

Documentation
UML Package diagram

Show subsystems, packages, libraries
Show common and specialized elements

UML Class diagram
As needed to show important elements of the different
subsystems

UML Use Case Diagram
Show use cases for program and for each component

ER Diagrams
Show the data model

MS Word
Use Case Specifications
Constraints, Regulatory Requirements, Guidelines

Slide 27

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 27

Break
As a class, review the given Program
Architecture.

Slide 28

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 28

Constraints and Issues
Regulatory

Sarbanes/Oxley
HIPPA
Privacy laws

Security
Limited access – physical, electronic
Encryption – data, communications

Policy
Required performance
Required uptime
Fault tolerance
Budget for new hardware or software
Technical support of systems
Centralized vs distributed
Black-out periods for new releases

These look just like the enterprise architecture! No surprise. The same kinds of things we

define at the enterprise level, might be instead or additionally defined at the product

family or program level.

Slide 29

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 29

Constraints and Issues
Licensing

Servers
Usage compliance

Maintenance
Status monitoring
Mirroring & backups
Scheduled down-time for hardware/software updates
Run-time updates
Allocation of maintenance costs

Technical Support
User queries
Problem resolution (possibly over many systems)

Slide 30

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 30

Program or Product Family Group
Responsible for setting, documenting, and
enforcing all program or product family level
policies for projects within the program or product
family
Oversee project teams to verify that project
architecture does not violate program or product
family architecture
Determine when program or product family
architecture needs to change and how to change
it
Oversee all changes to program or product family
architecture

Slide 31

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 31

Impact on project architecture
Requirements of program or product family
architecture are also project requirements
Need to negotiate problem areas with other
project teams within a product family or program,
in addition to negotiating problems with
Enterprise level groups

Corporate Security
Technical support (for users)
Maintenance group
Accounting
Regulatory groups
Enterprise architecture group
Database architecture group

Some of the impact of product family and program architectures is on the architecture of

your project. Your project has to technically fit into the overall architecture defined for

the product family or program. Other impacts will be on scheduling of work. Your

project team may have to complete some work by a particular point in time for another

project team to be able to use it. Project teams in this kind of environment are less

independent than they may be in companies without product families or programs of

projects.

Slide 32

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 32

Impact on Project Architecture
Patterns selected at the program or product
family level have to be followed at the project
level

For example, if the program uses SOA, then your
project will be designed around services

Constraints and regulatory requirements set at
the program or product family level have to be
followed at the project level

For example, privacy laws require personal information
to be encrypted. If your project in any way uses
personal information, you will have to deal with
decryption and encryption, and possibly only certain
people on your team will have access to that data.

Slide 33

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 33

Impact on Project Architecture
Because of the need to have more people
involved with your project, your schedule will be
longer

Other project teams, program or product family groups,
Enterprise architects, security people, regulatory
agencies, and so on

In the defense industry, you can add the need for
clearances to the process

It is possible that team members have different
clearances and need to know, and that you will have to
put processes in place to ensure everyone has the
appropriate access

Slide 34

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 34

Consequences
Perception of too much overhead
Lack of these structures generally leads to
project failure

Too many meetings or too few
Too many people making decisions or too few
Lack of understanding of complete project

Many companies will not consider using a product family or program architecture

because they believe it is too much overhead. Too many bosses, too much work on

models and requirements, not enough work on code. These arguments come from IT,

from people without really large project experience. You will not hear these arguments

from large defense projects, because they have a lot of experience with really large

projects and know that without this structure, the project is most likely to fail.

Without the structure of a product line or program architecture (and the related project

management changes), too much time is spent by teams working at cross-purposes, or to

prevent that, too much time is spent in meetings. Too many people are involved in

decisions (rather than just the program team), so decisions take a lot more time to make.

Or not enough people are involved in the decisions, and global policies are decided at a

project level, which may not be the best for the overall project.

Because no one is responsible at a program or product line level, there is generally a lack

of understanding of the overall project, vision, or direction. Work is repeated across

multiple projects, and contradictory work is performed that has to be fixed later when the

individual projects try to integrate.

Slide 35

Copyright © Wyyzzk, Inc. 2004
Version 5.0

Enterprise Architecture - 35

Summary
A program or product family architecture concerns applications that
are related because they are part of a program or because they are
variations on the same product
In both architectures, consider what is common among the various
projects and what is different when creating the architecture
Base the architecture on the kind of anticipated changes in the
program or product family
Constraints, issues, and policies set at the program or product family
level will effect your project architecture
You may find that many groups will be involved in your project. For
example, enterprise architecture, corporate security, regulatory
agencies, technical support, maintenance, and database architecture,
as well as program or product family group and other project teams
within the same program or product family.

