
First – The Field of Conflict... (the penultimate battle between good and evil…)

Exam 2 is an on l ine exam. You have the entire
class time to do the exam. If you finish early,
you may leave or stay and work. I f you do not
finish by 1:20, you will not receive extra t ime.

The exam consists of four problems in which
you write code. You need to create the folders
and files required. You must submit them to
the handin folder created for you in the course
directory.

The problems focus on the fundamentals of
programming with Processing that were
presented in homeworks 1- 11 .

You may access the Processing API. You MAY
NOT access any other material.

We will, where possible help you with syntax
errors but we will not help you with logic
problems.

Non-working code can receive partial credit
but it must compile.

Second – The Rules of Engagement...

• You will write four separate programs for

this exam – one program for each question.

• Each program must be in a separate folder
that has the same name as the .pde fi le
inside it .

• You will put all four folders into a fifth outer
folder named with your Andrew id.

• You will put the folder named with your
Andrew ID into your handin folder on the
server. Use the Exam2 folder.

• You will zip the folder named with your
Andrew ID and mail it as an attachment
using the subject line:
 Exam 2
to Jim at:
 jr2u@andrew.cmu.edu

• You should mail a copy to yourself as
backup security.

There is partial credit for all four question – do
not erase non-working code.

Question 1 - 10 points

Copy the following code into a processing program:

color c1, c2;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 0, 200); // blue
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 design(100, c1); // red rects with 100 pixel separation
 design(80, c2); // blue rects with 80 pixel separation
 noLoop();
}

Define the function design(float, color)
where the arguments are:
 argument #1 width and height of the innermost rectangle. It is also the amount added
 to the width and height of each subsequent rectangle drawn.
 argument #2 is the color of the stroke making the rectangle.
Rectangles are drawn as long as they are visible in the window.
The fill value, strokeWeight value, and rectMode are set correctly in the setup() function.

You will need to use some form of loop to do this. Hardwiring the number of rectangles
will not receive full credit.
Expected output:

Question 2 - 10 points
Open a new, empty Processing program.
- Copy the following code into the program:

int [] spacingList = { 100, 84, 120 };
color [] colorList = { color(200, 0, 0),
 color(0, 0, 200),
 color(0, 200, 0) };
void setup()
{
 size(400, 400);
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 drawAllDesigns();
 noLoop();
}

- Copy your design() function from question 1 into the program.
- Define the function, drawAllDesigns()so that it traverses the arrays and draws
 designs using the data in the arrays.
- Your drawAllDesigns() must use the design() function you defined in
 question 1 to receive full credit for this problem. If you were not able to get
 question one working, you can put code to draw the rectangles inside the loop that
 is traversing the arrays for partial credit.
- You MAY NOT hardwire the loop to work with only three-element arrays.
- Your code must work with parallel arrays of any length.

Expected output:

Question 3 - 15 points

Open a new, empty Processing program.
- Copy the following code into the program:
int [] spacingList1 = { 100, 84, 120 };
int [] spacingList2 = { 120, 140, 170 };
int [] spacingList3= { 130, 170, 190 };
color [] colorList = { color(200, 0, 0),
 color(0, 0, 200),
 color(0, 200, 0) };

void setup()
{
 size(400, 400);
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);
 noLoop();
}

- Copy your design() function from question 1 into the program.
- Copy your drawAllDesigns() from question 2 into the program.
- Modify the signature of your drawAllDesigns()function to accept arguments so
it can traverse different arrays to draw the design.
- You may not write three different functions do to this. One definition of
drawAllDesigns()must be able to traverse any one of the three spacingList
arrays.

Expected outputs are on the following page:

The following versions of the draw() function produce the following outputs:
 drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);

 //drawAllDesigns(spacingList1, colorList);
 drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);

 //drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 drawAllDesigns(spacingList3, colorList);

// Question 4 - 15 points
// Copy the following code into a new program:
int x, y, length;
int rotatingX, rotatingY;
int diam;
color ul, ur, ll, lr;

void setup()
{
 size(400, 400);
 x = width/2;
 y = height/2;
 length = width/5;
 diam = 33;
 smooth();
 // red for upper left quadrant
 ul = color(200, 0, 0);
 // green for upper right quadrant
 ur = color(0, 200, 0);
 // yellow for lower left quadrant
 ll = color(200, 200, 0);
 // blue for lower right quadrant
 lr = color(0, 0, 200);
}

void draw()
{
 background(0);
 rotatingX =
 x + int(cos(radians(frameCount*2)) * length);
 rotatingY =
 y + int(sin(radians(frameCount*2)) * length);
 coloredBackground(rotatingX, rotatingY);
 stroke(255);
 line(x, y, rotatingX, rotatingY);
 fill(255);
 noStroke();
 ellipse(width/2, height/2, 10, 10);
 ellipse(rotatingX, rotatingY, 20, 20);
}
void coloredBackground(int rotx, int roty)
{

}

Finish the definition of coloredBackground(int rotx, int roty).

The arguments are the location of the rotating circle. The function must use the argument
values to determine which quadrant the circle is in and fill that quadrant with the
corresponding quadrant color.
Sample output – the four images below are taken at different times during the run
of the program:

