
Old Exam #2s 257/757 Exploring Programming with Graphics Page 1

Old 257 Exam #2s for Practice

Exams will be taken on Thursday March 27 in the cluster. You will
have the entire class time to do the exam. If you finish early, you
may leave or stay and work. If you do not finish by 1:20, you will not
receive extra time.

The exam will consist of four problems in which you write code. You
will need to create the folders and files required. You must be able to
submit them to the handin folder created for you in the course
directory.

The problems will focus on the fundamentals of programming with
Processing that were presented in homeworks 1-11. Homework 12
and any stuff on PImage, String, and other stuff is not on the exam.

You will have access to the Processing API. You MAY NOT access
any previous code you or anyone else has written.

We will, where possible help you with syntax errors but we will not
help you with logic problems.

There will be no new algorithmic problems on the exam. Everything
you will be asked to do is a version of what was written class or a
version of what you were asked to write for a homework assignment.

Improperly working code can receive partial credit but it must
compile. Code that fails to compile receives a zero.

Remember that the order of topics and homeworks can vary
from semester so some of the questions on these old exams
may not be pertinent to the material covered in this term’s
homeworks 1-8. Strings will NOT be on the exam.

Version 0, the first sample exam is the most recent exam. It was
used this past fall. The last sample exam is the oldest exam.
The order of topics vary from term to term so some of the
questions are not appropriate for this semester’s Exam 2.

Old Exam #2s 257/757 Exploring Programming with Graphics Page 2

Old Exam 2 Version 0 Question 1 - 10 points
Copy the following code into a processing program:

color c1, c2, c3;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 200, 0); // green
 c3 = color(0, 0, 200); // blue
 strokeWeight(3);
 ellipseMode(CORNER);
}

void draw()
{
 background(200);
 design(100, 100, 90, c1, c2); // smaller design
 design(180, 200, 165, c1, c3); // larger design
 noLoop();
}

Define the function design(float, float, float, color, color)
where the arguments are:
 argument #1 is the x coordinate of the rectangle
 argument #2 is the y coordinate of the rectangle
 argument #3 is the size of the rectangle
 argument #4 is the fill color of the rectangle
 argument #5 is the fill color of the circle
The mode and stroke weight are set properly in the setup() function.

Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 3

Question 2 - 10 points
Open a new, empty Processing program.
- Copy the following code into the program:
int [] xCoords = { 100, 200, 270 };
int [] yCoords = { 270, 200, 85 };
int [] dimensions = { 50, 70, 100 };

color [] colorListRect = { color(200, 0, 0), // rect color
 color(0, 0, 200),
 color(0, 200, 0)
 };
color [] colorListEllipse = { color(200, 200, 0), // ellipse color
 color(0, 200, 200),
 color(200, 200, 0)
 };
void setup()
{
 size(400, 400);
 strokeWeight(3);
 ellipseMode(CORNER);
}

void draw()
{
 background(200);
 drawAllDesigns();
 noLoop();
}
- Copy your design() function from question 1 into the program.
- Define the function, drawAllDesigns(). The drawAllDesigns() function
must use a loop to traverse the parallel arrays declared above and use the values in the
arrays to draw the three designs. The function must call design() inside the loop.
- You MAY NOT hardwire the loop to work with only three-element arrays. Future
arrays may be longer or shorter. Your code must work with parallel arrays of any length.

Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 4

Question 3 - 15 points

Open a new, empty Processing program.
- Copy the following code into the program:
int [] xCoords1 = { 100, 200, 270 };
int [] yCoords1 = { 270, 200, 85 };
int [] dimensions1 = { 50, 70, 100 };

color [] colorListRect1 = { color(200, 0, 0),
 color(0, 0, 200),
 color(0, 200, 0)
 };
color [] colorListEllipse1 = { color(200, 200, 0),
 color(0, 200, 200),
 color(200, 200, 0)
 };

int [] xCoords2 = { 100, 20, 40 };
int [] yCoords2 = { 50, 300, 30 };
int [] dimensions2 = { 35, 45, 55 };

color [] colorListRect2 = { color(50),
 color(75),
 color(100)
 };
color [] colorListEllipse2 = { color(200),
 color(175),
 color(150)
 };

void setup()
{
 size(400, 400);
 strokeWeight(3);
 ellipseMode(CORNER);
}

void draw()
{
 background(200);
 drawAllDesigns(xCoords1, yCoords1, dimensions1,
 colorListRect1, colorListEllipse1);
 drawAllDesigns(xCoords2, yCoords2, dimensions2,
 colorListRect2, colorListEllipse2);
 noLoop();
}

- Copy your design() function from question 1 into the program.
- Copy your drawAllDesigns() from question 2 into the program.
- Modify your drawAllDesigns()function to accept arguments and so it can
traverse different arrays to draw the design.
- You may not write two different functions do to this. One definition of
drawAllDesigns()must be able to traverse any one of the two sets of arrays.

Expected outputs are on the following page:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 5

Old Exam #2s 257/757 Exploring Programming with Graphics Page 6

// Question 4 - 15 points

// Copy the following code into a new program:
int x, y, diam, deltaX, deltaY;
color upperThird, middleThird, lowerThird;
color backgroundColor;
void setup()
{
 size(400, 400);
 x = 0;
 y = 0;
 deltaX = 30;
 deltaY = 3;
 diam = 33;
 upperThird= color(200, 0, 0);
 middleThird = color(0, 200, 0);
 lowerThird = color (0, 0, 200);
 backgroundColor = upperThird;
 noStroke();
}

void draw()
{
 setBackgroundColor();
 ellipse(x, y, diam, diam);
 moveEllipse();
}

void moveEllipse()
{
 y += deltaY;
 if (y > height)
 {
 y = 0;
 x += deltaX;
 if (x > width)
 x = 0;
 }
}

void setBackgroundColor()
{

}
Finish the definition of setBackgroundColor().
The function sets the color based on the vertical location of the ellipse.

- upper one third of the window – the ellipse is red
- middle one third of the window – the ellipse is green

Old Exam #2s 257/757 Exploring Programming with Graphics Page 7

- lower one third of the window – the ellipse is blue
Sample output – the three images below are taken at different times during the run
of the program. The primary movement of the white sphere is vertical:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 8

Old Exam 2 Version 1 Question 1 - 10 points

Copy the following code into a processing program:

color c1, c2;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 0, 200); // blue
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 design(100, c1); // red rects with 100 pixel separation
 design(80, c2); // blue rects with 80 pixel separation
 noLoop();
}

Define the function design(float, color)
where the arguments are:
 argument #1 width and height of the innermost rectangle. It is also the amount added
 to the width and height of each subsequent rectangle drawn.
 argument #2 is the color of the stroke making the rectangle.
Rectangles are drawn as long as they are visible in the window.
The fill value, strokeWeight value, and rectMode are set correctly in the setup() function.

You will need to use some form of loop to do this. Hardwiring the number of rectangles
will not receive full credit.
Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 9

Question 2 - 10 points
Open a new, empty Processing program.
- Copy the following code into the program:

int [] spacingList = { 100, 84, 120 };
color [] colorList = { color(200, 0, 0),
 color(0, 0, 200),
 color(0, 200, 0) };
void setup()
{
 size(400, 400);
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 drawAllDesigns();
 noLoop();
}

- Copy your design() function from question 1 into the program.
- Define the function, drawAllDesigns()so that it traverses the arrays and draws
 designs using the data in the arrays.
- Your drawAllDesigns() must use the design() function you defined in
 question 1 to receive full credit for this problem. If you were not able to get
 question one working, you can put code to draw the rectangles inside the loop that
 is traversing the arrays for partial credit.
- You MAY NOT hardwire the loop to work with only three-element arrays.
- Your code must work with parallel arrays of any length.

Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 10

Question 3 - 15 points

Open a new, empty Processing program.
- Copy the following code into the program:
int [] spacingList1 = { 100, 84, 120 };
int [] spacingList2 = { 120, 140, 170 };
int [] spacingList3= { 130, 170, 190 };
color [] colorList = { color(200, 0, 0),
 color(0, 0, 200),
 color(0, 200, 0) };

void setup()
{
 size(400, 400);
 strokeWeight(3);
 noFill();
 rectMode(CENTER);
}

void draw()
{
 background(0);
 drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);
 noLoop();
}

- Copy your design() function from question 1 into the program.
- Copy your drawAllDesigns() from question 2 into the program.
- Modify the signature of your drawAllDesigns()function to accept arguments so
it can traverse different arrays to draw the design.
- You may not write three different functions do to this. One definition of
drawAllDesigns()must be able to traverse any one of the three spacingList
arrays.

Expected outputs are on the following page:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 11

The following versions of the draw() function produce the following outputs:
 drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);

 //drawAllDesigns(spacingList1, colorList);
 drawAllDesigns(spacingList2, colorList);
 //drawAllDesigns(spacingList3, colorList);

 //drawAllDesigns(spacingList1, colorList);
 //drawAllDesigns(spacingList2, colorList);
 drawAllDesigns(spacingList3, colorList);

Old Exam #2s 257/757 Exploring Programming with Graphics Page 12

// Question 4 - 15 points
// Copy the following code into a new program:
int x, y, length;
int rotatingX, rotatingY;
int diam;
color ul, ur, ll, lr;

void setup()
{
 size(400, 400);
 x = width/2;
 y = height/2;
 length = width/5;
 diam = 33;
 smooth();
 // red for upper left quadrant
 ul = color(200, 0, 0);
 // green for upper right quadrant
 ur = color(0, 200, 0);
 // yellow for lower left quadrant
 ll = color(200, 200, 0);
 // blue for lower right quadrant
 lr = color(0, 0, 200);
}

void draw()
{
 background(0);
 rotatingX =
 x + int(cos(radians(frameCount*2)) * length);
 rotatingY =
 y + int(sin(radians(frameCount*2)) * length);
 coloredBackground(rotatingX, rotatingY);
 stroke(255);
 line(x, y, rotatingX, rotatingY);
 fill(255);
 noStroke();
 ellipse(width/2, height/2, 10, 10);
 ellipse(rotatingX, rotatingY, 20, 20);
}
void coloredBackground(int rotx, int roty)
{

}

Finish the definition of coloredBackground(int rotx, int roty).

Old Exam #2s 257/757 Exploring Programming with Graphics Page 13

The arguments are the location of the rotating circle. The function must use the argument
values to determine which quadrant the circle is in and fill that quadrant with the
corresponding quadrant color.
Sample output – the four images below are taken at different times during the run
of the program:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 14

Old Exam 2 Version 2: Question 1 - 10 points
Copy the following code into a Processing program:

color c1, c2;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 0, 200); // blue
 strokeWeight(3);
}

void draw()
{
 fill(c2);
 triangle(0, 0, width, height, 0, height);
 design(100, c1); // 100 pixel separation & red lines
 design(80, c2); // 80 pixel separation & blue lines
 noLoop();
}
Define the function design(int, color);
 where the arguments are:
 argument #1 is the space between the lines in the design
 argument #2 is the color of the lines in the design
The window is always square! One half (the lower left area) of the window is a filled
triangle – this code is already written. The design function you must define is a series of
vertical and horizontal lines. The vertical lines extend from a diagonal line up to the top
edge. The horizontal lines extend from the same diagonal line across to the right edge of
the window. The first argument (the int) is the space between the lines. The second
argument is the color of the lines. The stroke weight is set to the proper value in the
setup() function.

Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 15

Question 2 - 10 points

Copy the following code into a Processing program:
int [] spaceValues = { 33, 84, 112, 200, 313, 388 };
color c1, c2;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 0, 200); // blue
 strokeWeight(3);
}

void draw()
{
 fill(c2);
 triangle(0, 0, width, height, 0, height);
 design(c1);// red lines
 noLoop();
}
Recode your design() function so that it traverses the array and draws the lines at the
locations specified in the array.
The argument is the color of the lines

Expected output:

If you could not get design code in problem 1 to work, you can code the
design function for this problem by just drawing vertical lines at the proper
spacing.

Old Exam #2s 257/757 Exploring Programming with Graphics Page 16

Question 3 - 15 points

Copy the following code into a Processing program:

int [] spacing1 = { 33, 84, 112, 200, 313, 388 };
int [] spacing2 = { 100, 300 };
color c1, c2;

void setup()
{
 size(400, 400);
 c1 = color(200, 0, 0); // red
 c2 = color(0, 0, 200); // blue
 strokeWeight(3);
}

void draw()
{
 fill(c2);
 triangle(0, 0, width, height, 0, height);
 design(spacing1, c1); // red lines
 design(spacing2, c2); // blue lines
 noLoop();
}

Recode your design() function to take an array of it as it first argument. The second
argument is the color of the lines.

Expected output:

If you could not get design code in problem 1 to work, you can code the
design function for this problem by just drawing vertical lines at the proper
spacing.

Old Exam #2s 257/757 Exploring Programming with Graphics Page 17

Question 4 - 15 points
Copy the following code into a Processing program:

int x, y, length;
int rotatingX, rotatingY;
int diam;
color ul, ur, ll, lr;

void setup()
{
 size(400, 400);
 x = width/2;
 y = height/2;
 length = width/5;
 diam = 33;

 stroke(255);
 strokeWeight(3);
 smooth();
 // red for upper left quadrant
 ul = color(200, 0, 0);
 // green for upper right quadrant
 ur = color(0, 200, 0);
 // yellow for lower left quadrant
 ll = color(200, 200, 0);
 // blue for lower right quadrant
 lr = color(0, 0, 200);
}

void draw()
{
 background(0);

 rotatingX =
 x + int(cos(radians(frameCount*2)) * length);

 rotatingY =
 y + int(sin(radians(frameCount*2)) * length);

 line(x, y, rotatingX, rotatingY);

 coloredEllipse(rotatingX, rotatingY);
}

Old Exam #2s 257/757 Exploring Programming with Graphics Page 18

This code draws a line that rotates around the center of the window. How the rotation
works is not important to this question. Your task is to define the function:
 coloredEllipse(rotatingX, rotatingY);
that draws a filled circle at the end of the rotating line at the location specified by the
arguments. The diameter of the circle is specified in the setup() function as the diam.
Here are the coloring rules for the circles:

 upper left quadrant circle is red
 upper right quadrant is green
 lower left quadrant is yellow
 lower right quadrant is blue

Here is the expected output as the line rotates and the color circles are drawn during the
rotation:

- -

- -
-

Old Exam #2s 257/757 Exploring Programming with Graphics Page 19

Old Exam 2 Version 3: Question 1 - 10 points

Copy the following code into a processing program:

color c1, c2, c3;
void setup ()
{
 size(200, 200);
 noFill();
 smooth();

 c1 = color(200, 0, 0); // red
 c2 = color(0, 200, 0); // green
 c3 = color(0, 0, 200); // blue
}

void draw ()
{
 background (0);
 figure(100, 100, 33, c1, c2);
 figure(140, 40, 50, c2, c1);
 figure(75, 40, 33, c3, c2);
}

Define the function figure(float, float, float, color, color)
 where the arguments are:
 argument #1 is the x coordinate of both rectangles
 argument #2 is the y coordinate of both rectangles
 argument #3 is the edge length of the larger rectangle
 the edge length of the smaller rectangle is one half of argument #3
 argument #4 is the color of the larger rectangle
 argument #5 is the color of the smaller rectangle
 Do not worry about the stroke color, the stroke weight, or the background color.

Expected output:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 20

Question 2 - 10 points

Make a copy of the program you wrote for question 1 and use it to answer this question.
- Copy the following array declarations into your code as global variables:

float [] xCoordinates = { 40, 130, 30, 50 };
float [] yCoordinates = { 140, 70, 50, 20 };

- Modify your draw() function to look like this:
-

void draw()
{
 background (0);
 drawAllFigures();
}

- Define the function, drawAllFigures()so that it traverses the arrays and draws
 figures using the data in the arrays.
- Your drawAllFigures() must use the figure()function you defined in
 question 1. The edge size of the rectangles (argument #3) must be 25% of the sum
 of the x and y coordinates of the figure. For the zeroth figure, the edge length
 would be 45 pixels.
 If you were not able to get question one working, you can code the functions calls
 to draw the figure inside the loop that is traversing the arrays for partial credit.
- The colors are up to you.
- You MAY NOT hardwire the loop to work with only four-element arrays.
- Your code must work with parallel arrays of int of any size.

Expected output (colors seen are not required):

Old Exam #2s 257/757 Exploring Programming with Graphics Page 21

Question 3 - 15 points

Make a copy of the program you wrote for question 2 and use it to answer this question.
- Copy the following array declarations into your code as global variables:

float [] x1Cords = { 40, 90, 130, 150 };
float [] y1Cords = { 50, 40, 30, 60 };

float [] x2Cords = { 20, 50, 100 };
float [] y2Cords = { 90, 110, 100 };

float [] x3Cords = { 80, 160, 110, 20, 80 };
float [] y3Cords = { 130, 50, 80, 90, 77 };

 - Modify the drawAllFigures() function wrote in question #2 so that it can use
 any two parallel arrays as arguments to draw the group of figures.
 - The pseudo-signature of the modified function must be this:
 drawAllFigures(array-x-coordinates, array-y-coordinates, color, color)
 - You MAY NOT define three different functions to answer this question. You must use
 the same function (with different arguments) three times as shown below.

- Modify your draw() function to look something like this:
-

void draw()
{
 background (0);
 drawAllFigures(x1Cords, y1Cords, c1, c2);
 //drawAllFigures(x2Cords, y2Cords, c2, c3);
 //drawAllFigures(x3Cords, y3Cords, c3, c1);
}

Expected outputs are on the following page:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 22

The following versions of the draw() function produce the following outputs:
void draw()
{
 background (0);
 drawAllFigures(x1Cords, y1Cords, c1, c2);
 //drawAllFigures(x2Cords, y2Cords, c2, c3);
 //drawAllFigures(x3Cords, y3Cords, c3, c1);
}

void draw()
{
 background (0);
 //drawAllFigures(x1Cords, y1Cords, c1, c2);
 drawAllFigures(x2Cords, y2Cords, c2, c3);
 //drawAllFigures(x3Cords, y3Cords, c3, c1);
}

void draw()
{
 background (0);
 //drawAllFigures(x1Cords, y1Cords, c1, c2);
 //drawAllFigures(x2Cords, y2Cords, c2, c3);
 drawAllFigures(x3Cords, y3Cords, c3, c1);
}

Old Exam #2s 257/757 Exploring Programming with Graphics Page 23

// Question 4 - 15 points
// Copy the following code into a new program and finish the drawFigures()
// function so the figures change color when they move into different quadrants:
// upper left quadrant is red -- fill(255, 0, 0);
// upper right quadrant is blue -- fill(0, 0, 255);
// lower left quadrant is green -- fill(0, 255, 0);
// lower right quadrant is white -- fill(255);
// The magenta lines show the quadrant boundaries of the window

final int MAX = 5;
int [] x, y, dx, dy, diam;

void setup ()
{
 size(400, 400);
 x = new int[MAX];
 y = new int[MAX];
 dx = new int[MAX];
 dy = new int[MAX];
 diam = new int[MAX];

 initializeIntArray(x, 0, width);
 initializeIntArray(y, 0, 1);
 initializeIntArray(dx, 1, 8);
 initializeIntArray(dy, 1, 8);
 initializeIntArray(diam,15, 50);
}

void initializeIntArray(int [] array, int small, int big)
{
 for (int i = 0; i < array.length; i++)
 {
 array[i] = int(random(small, big));
 }
}

void draw ()
{
 prepareWindow();
 moveFigures();
 drawFigures();
}

void prepareWindow()
{
 background(0);
 stroke(255, 0, 255);
 line(width/2, 0, width/2, height);
 line(0, height/2, width, height/2);
 noStroke();
}

Old Exam #2s 257/757 Exploring Programming with Graphics Page 24

void moveFigures()
{
 for (int i = 0; i < x.length; i++)
 {
 x[i] += dx[i];
 if(x[i] > width) x[i] = 0;
 y [i] += dy[i];
 if(y[i] > height) y[i] = 0;
 }
}

void drawFigures()
{

}

Sample output – the four images below are taken at different times during the run
of the program:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 25

Old Exam 2 Version 4:
Question 1 5 points Back to Homework #1
Write a program without setup() and draw() functions (as you wrote the first few
homeworks) and with no user input to draw the figure shown below. The window size is
always square and never changes. Draw it any way you wish – nothing is illegal as long
as it works.
Do not draw the red lines – they are shown in the figure below to allow you to determine
the relative position of the end points of the lines..

Your image should look like this:

Old Exam #2s 257/757 Exploring Programming with Graphics Page 26

Question 2 10 points Control
Write a program using setup() and draw() functions. The program must do the following:

• draw three vertical columns of ellipses.
• there must ten ellipses in each column.
• the color of the ellipses must alternate between red and blue.
• the top ellipse must be red.
• the ellipses must be completely on screen.
• the ellipses must adjust to different size windows.

Below are three runs with different window sizes:

HINT #1: This reeks of the need for a loop or loops and an if/else – 30 calls to ellipse is
a VERY BAD idea.
HINT #2: An int value divided by 2 using the % operator (which gives you the
remainder of the division) evaluates to 0 for even values and 1 for odd values.

Old Exam #2s 257/757 Exploring Programming with Graphics Page 27

Question 3 15 points Defining Functions
Write a program using setup() and draw() functions. The program must do the following:

• define a function that draws this figure:

• The figure is a filled, colored, circle connected to the upper left corner and the

lower right corner by two lines.
• The color of the two lines is up to you.

• Values for the diameter, x, y, and color can be global variables.
• The diameter of the circle is random but reasonable.
• The color of the circle is random.
• The x position is random and can show partial circles on the edges.

• Define a function that moves circle from the top to the bottom with a random

deltaY that is small in value.
• When the circle reaches the bottom of the window, its x, diameter, deltaY, and

color values must be randomly reset and the circle repositioned to the top of the
window.

• The background color is up to you.
• Call the functions to move and draw the figure from the draw() function.

• The use of arguments for the function that draws the figure is optional here

because there is only one figure and you are using global variables. It is up to
you.

Here are four different screen shots. The broken white lines connecting the circles are an
artifact of the copy/paste and image resizing algorithms and used by Word.

HINT #3:
 someVariable = color(random(255), random(255), random(255));
will set a color variable to a random color.

Old Exam #2s 257/757 Exploring Programming with Graphics Page 28

Question 4 - 20 points Arrays
Copy your question 3 folder and rename it question4. Rename the .pde file if you have
to.

Modify your code to move five different figures in the same way the single figure moved
in question 3. Edit your functions to move and draw the figures to work the arrays or
the global variables as needed.

You have two options for doing this: One requires much less code but involves parallel
arrays. The other involves lots of global variables (one set for each figure) and a great
deal of code. You are strongly urged to use arrays.

- The array option requires global arrays for the x, y, deltaY, and color* values. You may
use initializer lists or new the arrays and call initialize functions – this is up to you.

- The individual global variables option requires 20 global variables – five for each
figure.

If you could not get the function that draws the figure to work properly in question 3, you
can still do this problem with a simple rectangle, but there will be a deduction.

If you could not get the function that moves the figure to work properly in question 3,
you can code it in draw, but there will be a deduction.

Below is three screen shots of the sample solution.

*HINT #5: If you cannot get the array of color working, just make all of the figures the
same color. This would be a small deduction but you would still get most of the points.

