48-747 Shape Grammars

HISTORICAL

WHAT IS A GRAMMAR? A LANGUAGE?

Oxford English Dictionary

Language is the method of 'human' **communication**, either spoken or written, consisting of the **use** of 'words' in an **agreed** way.

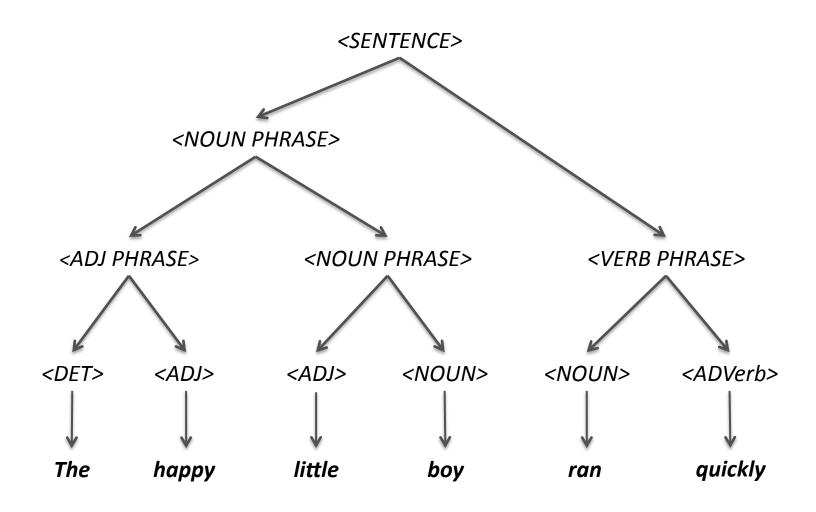
Language is the **style** or faculty of expression

Language is the system of **symbols** and **rules** for writing **algorithms**

language



underlying language is the notion of a sentence



parse tree

entities:

things like <SENTENCE> <NOUN PHRASE>

things like the, little, boy, quickly

relationships between *parts* (of the sentence):

a <SENTENCE> is a <NOUN PHRASE> followed by a <VERB

a <NOUN PHRASE> is a <ADJ PHRASE> followed by a <NOUN PHRASE>

a <ADJ PHRASE> is a <DET> followed by a <ADJective>

a <NOUN PHRASE> is an <ADJective> followed by a <NOUN>

a <VERB PHRASE> is a <VERB> followed by a <ADVerb>

boy is a <NOUN> and ran is a <VERB>

we **recognize** parts of a sentence

```
<SENTENCE> → <NOUN PHRASE> <VERB>

<NOUN PHRASE> → <ADJ PHRASE> <NOUN PHRASE>

<ADJ PHRASE> → <DET> <ADJective>

<NOUN PHRASE> → <ADJective> <NOUN>

<VERB PHRASE> → <VERB> <ADVerb>

<NOUN> → boy

<VERB> → ran
```

relationships specify **rules**

vocabulary or alphabet symbols

TERMINAL

NON TERMINAL

Building blocks

entities

• strings of symbols juxtapositioned together

sentence

string made up of

terminal vocabulary symbols

production

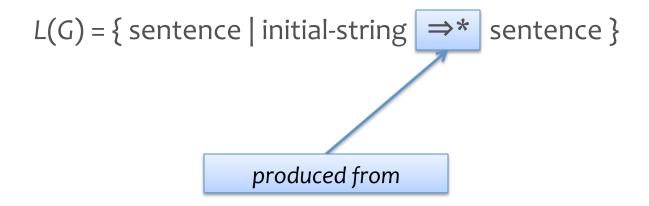
• RULES made up of strings expressing a relationship between two such entities and expressed as a \rightarrow b

initial string or seed

made up of vocabulary elements

grammar

The *language*, *L*, of a grammar, *G*, is the set of all sentences (i.e., without non-terminals) that are produced from the initial string



language

A rule is *applicable*

to the **current** string which is either the initial string or a string produced from the initial string

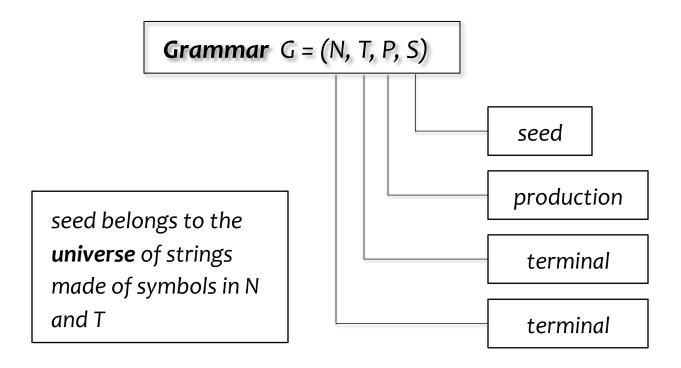
whenever

the left hand side of the rule 'occurs' in the object

in which case

it can be replaced by the right hand side of the rule under rule application

rule application



P(roduction) contain rules of the form $a \rightarrow b$ where a and b belong to the universe of strings made of symbols in T(erminal) and N(onterminal) where a cannot be empty.

formal definition

VOCABULARY is a limited set of symbols no two of which are similar or identical

If we are given a set of symbols V, then we can create a set V^* called the **UNIVERSE** (or **LEAST SET**) of V in the following manner:

The empty string e is in V*.

Every symbol in V is in V*.

If a and b are strings in V^* , so too is their juxtaposition (concatenation) ab in V^*

V* is closed under concatenation

We denote the set V^* – {e} by V^+ .

For any production $a \rightarrow b$, we have $a \in V^+$ and $b \in V^*$

vocabulary and universe

$$V = \{ 0, 1 \}$$

$$V^* = \{ e, 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$$

$$V^+ = \{ 0, 1, 00, 01, 10, 11, 000, 001, \dots \}$$

example - binary sequences

From S by applying rule $S \rightarrow oS1$ we get oS1That is, substitute the occurrence of the left hand side of the current rule in the current string by the right hand side. That is, $S \Rightarrow oS1$

By applying rule $S \rightarrow oS1$ again we get ooS11. That is, $S \Rightarrow oS1 \Rightarrow ooS11$. Or, $S \Rightarrow * ooS11$

If we apply rule $S \rightarrow 01$ we get $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$

$$G = (N = {S}, T = {0, 1}, P = {S \rightarrow oS1, S \rightarrow o1}, S)$$

What can we do with this grammar?

example of a grammar

PHRASE STRUCTURE GRAMMARS productions of the form $\alpha \rightarrow \theta$

CONTEXT SENSITIVE GRAMMARS

productions of the form $\alpha_1 A \alpha_2 \rightarrow \beta_1 B \beta_2$ equivalently, $|\alpha| \leq |\beta|$

CONTEXT FREE GRAMMARS

productions of the form $A \rightarrow B$ where A is a single variable

REGULAR GRAMMARS

productions of the form $A \rightarrow aB$ or $A \rightarrow a$ where A is a single variable

types of grammars

$$G = ($$

$$N = \{ S, A, B \},$$

$$T = \{ a, b \},$$

$$terminals$$

All strings with equal numbers of a's and b's.

$$A \rightarrow a$$
, $A \rightarrow aS$, $A \rightarrow bAA$,
 $B \rightarrow b$, $B \rightarrow bS$, $B \rightarrow aBB$ },
seed

What is the language L(G)?

a **cfg** example

S)

Note that if we can recognize whether a sentence is in a language then we can always generate the language simply by generating each element in the universe and checking whether the element is in the language

example:

given an integer i > 1, is it prime?

- 1. set j to 2
- 2. if $j \ge i$, then halt. i is prime.
- 3. if i /j is an integer, then halt. i is not prime.
- 4. set j to j+1 and go to 2.

grammars, procedures and algorithms

another example:

given an integer i > 1, is there a perfect integer greater than i?

- 1. set k = i
- 2. set k = k+1, sum= 0, j = 1
- 3. if j < k, go to 6
- 4. if sum | k, go to 2
- 5. Halt. There is a perfect integer.
- 6. if k/j is not an integer, go to 8.
- 7. set sum=sum+j
- 8. set j to j+1 and go to 3.

A set is **recursively enumerable** (r.e) if it can be generated by a procedure

Another way of looking at this is that there is a 1-1 correspondence between elements of the set and the natural numbers. In other words, we can "index" the elements of the set

A set is **recursive** if it can be generated by an algorithm

Languages of grammars are recursively enumerable

psl are recursively enumerable csl, cfl, rl are recursive

Equivalently, a set that is recursively enumerable is the language of some grammar

recursively enumerable and recursive

"the search for rigorous formulation in **linguistics** has a much more serious motivation than mere concern for logical niceties or the desire to purify well-established methods for **language** analysis

precisely constructed models for **linguistic** structure can play an important role, both negative and positive, in the process of discovery itself

by pushing a precise but inadequate formulation to an unacceptable conclusion, we can often expose the exact source of this inadequacy and, consequently, gain a deeper understanding of the **linguistic** data"

noam chomsky – syntactic structures