Rhinoceros
 NURBS modeling for Windows

Training Manual
Level 1

Version 4.0

Rhinoceros Level 1 Training Manual v4.0
© Robert McNeel \& Associates 2008
All Rights Reserved.
Printed in U.S.A.
Copyright © by Robert McNeel \& Associates. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission. Request permission to republish from: Publications, Robert McNeel \& Associates, 3670 Woodland Park Avenue North, Seattle, WA 98103; FAX (206) 545-7321; e-mail permissions@mcneel.com.

Credits:

Phil Cook, Simply Rhino Limited, UK, www.simplyrhino.co.uk for the exercises on SmartTrack and Constraints.

Table of Contents

List of Exercises. v
Part One: Introduction1
Before You Start 3
Course Objectives 3
Example Schedule 4
Rhino Basics 5
The Rhino for Windows Interface 5
The Rhino Screen 6
Menus 7
Toolbars 7
Graphics Area 8
Command Area 11
The Mouse 11
Entering Commands 11
Help 13
View the Command Line History 14
View Recent Commands 14
Navigating Around the Model 20
Move Objects 22
Copy Objects 24
Changing the View of Your Model 25
Panning and Zooming 26
Resetting Your View 26
Part Two: Creating Geometry. 31
Creating Two-Dimensional Objects 33
Drawing Lines 33
Drawing Free-form Curves 36
Modeling Aids 37
Model Setup 39
Saving Your Work 40
Layers 40
Selecting Objects 45
Precision Modeling 49
Absolute Coordinates 49
Relative Coordinates 50
Polar Coordinates 51
Distance and Angle Constraint Entry 52
Object Snaps 58
Other modeling aids 62
Viewports and Construction Planes 67
Analysis Commands 74
Drawing Circles 76
Drawing Arcs 81
Drawing Ellipses and Polygons 87
Modeling Free-Form Curves 93
Modeling Helix and Spiral 96
Editing Objects 103
Fillet 103
Blend 107
Chamfer 111
Move 115
Copy 117
Undo and Redo 118
Rotate 118
Group 119
Mirror 120
Join 121
Scale 121
Array 124
Trim 127
Split 129
Extend 130
Offset 133
Point Editing 139
Nudge Controls 144
Part Three: 3-D Modeling and Editing 147
Creating Deformable Shapes 149
Modeling with Solids 165
Creating Surfaces 173
Importing and Exporting Models 217
Importing and Exporting Rhino File Information 217
Rendering. 221
Rendering with Flamingo 228
Dimensions 231
Dimensions 231
Making a 2-D Drawing from a 3-D Model 234
Layout and Printing 235
Layouts and Details 235
Printing 239
Part Four: Customizing Workspaces and Toolbars 241
Rhino Settings 243
Options 243
Document Properties 246
Custom Toolbar Layouts 247
List of Exercises
Exercise 1-Rhino basics 15
Exercise 2-Display options 27
Exercise 3-Drawing lines 33
Exercise 4-Drawing interpolated curves 36
Exercise 5—Drawing curves from control points 37
Exercise 6-Drawing lines and curves using mode functions 38
Exercise 7-Layers 41
Exercise 8-Selecting objects 43
Exercise 9-Practice using selection options 45
Exercise 10-Setting up a model 49
Exercise 11-Entering absolute coordinates 50
Exercise 12-Entering relative coordinates50
Exercise 13-Entering polar coordinates 51
Exercise 14-Distance constraint entry 52
Exercise 15-Distance and angle constraint entry 53
Exercise 16-Practice using distance and angle constraint entry 54
Exercise 17-Practice using distance and angle constraints 57
Exercise 18-Using object snaps 59
Exercise 19-Smart Track 62
Exercise 20 - Tab Constraint 63
Exercise 21 - Project Constraint 64
Exercise 22 - Planar Constraint 65
Exercise 23-Viewports and construction planes 67
Exercise 24-Modeling in 3-D space 69
Exercise 25—Drawing circles76
Exercise 26-Using circle-related object snaps. 80
Exercise 27-Practice drawing arcs (1) 82
Exercise 28-Practice drawing arcs (2) 86
Exercise 29—Practice drawing ellipses and polygons 88
Exercise 30-Practice drawing curves (1) 93
Exercise 31-Practice drawing curves (2) 96
Exercise 32-Drawing free-form curves99
Exercise 33-Fillet 103
Exercise 34-Chamfer 111
Exercise 35-Practice with Fillet and Chamfer 113
Exercise 36-Move 115
Exercise 37-Copy 117
Exercise 38-Rotate 118
Exercise 39-Grouping 119
Exercise 40-Mirror 120
Exercise 41-Join 121
Exercise 42-Scale 121
Exercise 43-Polar Array 124
Exercise 44-Trim 127
Exercise 45-Split 129
Exercise 46-Extend 130
Exercise 47-Offset 133
Exercise 48-Practice 137
Exercise 49—Practice 137
Exercise 50-Practice 138
Exercise 51-Practice 138
Exercise 52-Control point editing 140
Exercise 53-Practice with curves and control point editing 146
Exercise 54-Creating a rubber duck 150
Exercise 55- Model a bar with text 166
Exercise 56-Basic techniques for making surfaces 174
Exercise 57-Extruding surfaces 177
Exercise 58-Lofted surfaces. 186
Exercise 59-Revolved surfaces 190
Exercise 60-Using a rail revolve 191
Exercise 61-Using 1-rail sweeps to create surfaces 192
Exercise 62-Using 2 -rail sweeps to create surfaces 194
Exercise 63-Using a network of curves to create surfaces 196
Exercise 64- Practice using one-rail sweeps: 197
Exercise 65- Creating a toy hammer: 199
Exercise 66- Creating a squeeze bottle: 208
Exercise 67- Exporting models 218
Exercise 68- Practice rendering a model 221
Exercise 69- Practice dimensioning 232
Exercise 70- Practice making a 2-D drawing for export 234
Exercise 71- Practice making layouts 235
Exercise 72- Practice printing 239
Exercise 73- Practice with options 243
Exercise 74- Practice with document properties 246
Exercise 75- Customizing a toolbar layout 247

Part One:
 Introduction

Notes:

Before You Start

This course guide accompanies the Level 1 training sessions. Level 1 shows you how to produce 3-D models using NURBS geometry.
In class, you will receive information at an accelerated pace. For best results, practice at a Rhino workstation between class sessions, and consult your Rhino reference manual and the Help file for additional information.

Duration:

3 days

Course Objectives

In Level 1, you learn how to:

- Utilize the features of the Rhino user interface
- Customize your modeling environment
- Create basic graphic objects—lines, circles, arcs, curves, solids, and surfaces
- Model with precision using coordinate input, object snaps, and SmartTrack tools
- Modify curves and surfaces with edit commands
- Use control point editing to modify curves and surfaces
- Analyze your model
- Display any portion of the model
- Export and import models to and from different file formats
- Render the model

Notes:

The Rhino for Windows Interface

Before learning individual tools, we will be acquainted with the Rhino interface. The following exercises examine the interface elements used in Rhino: the Rhino window, viewports, menus, toolbars, and dialog boxes.
There are many ways to access the commands in Rhino-the keyboard, menus, and toolbars. We will focus on the menus in this class.

To open Rhino:

- Double-click the Rhino icon from the Windows desktop.

Notes:

The Rhino Screen

Rhino divides its window into six areas that supply information or prompt you for input.

Screen Area	Description
Menu Bar	Access commands, options, and help.
Command area	Lists prompts, commands you enter, and information displayed by the command.
Toolbars	Access shortcuts to commands and options.
Graphics area	Displays the open model. Several viewports can be displayed. The default viewport layout displays four viewports (Top, Front, Right, and Perspective).
Viewports	Displays different views of the model within the graphics area.
Status bar	Displays the coordinates of the pointer, the status of the model, options, and toggles.

Rhino screen

Notes:

Menus

Most of the Rhino commands can be found in the menus.

Rhino View menu

Toolbars

Rhino toolbars contain buttons that provide shortcuts to commands. You can float a toolbar anywhere on the screen, or dock it at the edge of the graphics area
Rhino starts up with the Standard toolbar docked above the graphics area and the Main1 and Main2 toolbars docked on the left.

Notes:

Tooltips

Tooltips tell what each button does. Move your pointer over a button without clicking it. A small yellow tag with the name of the command appears. In Rhino, many buttons can execute two commands. The tooltip indicates which buttons have dual functions.

To start a Polyline, click the LMB, to start the Line Segments command click the RMB.

Flyouts

A button on a toolbar may include other command buttons in a flyout toolbar. Usually the flyout toolbar contains variations on the base command. After you select a button on the flyout, the flyout disappears.
Buttons with flyouts are marked with a small white triangle in the lower right corner. To open the flyout toolbar, hold down the left mouse button for a moment or press the right mouse button.

The Lines toolbar is linked to the Main1 toolbar. After the flyout is open you can pick any of the buttons on the toolbar to start a command.

Graphics Area

The Rhino graphics area, holding the viewports, can be customized to suit your preferences. The position of viewports can be arranged in different configurations.

Notes:

Viewports

Viewports are windows in the graphics area that show you views of your model. To move and resize viewports, drag the viewport title or borders. You can create new viewports, rename viewports, and use predefined viewport configurations. Each viewport has its own construction plane that the cursor moves on and a projection mode.
To toggle between a small viewport and one that fills the graphics area, double-click the viewport title.

Rearranged Rhino screen. Command line at the bottom, single maximized viewport, and toolbars docked in different locations.

Notes:

Viewport tabs

Viewport titles can be shown in tabs. The bold face tab designates the active viewport. Tabs make it easy to switch between viewports when using maximized or floating viewports. To activate Viewport Tabs: From the View menu, click Viewport Layout, and then click Show Viewport Tabs.

The tabs are located below the graphics area.

Notes:

Command Area

The command area displays commands and command prompts. It can be docked at the top or the bottom of the screen or it can float anywhere. The command window shows two lines by default. To open a window that displays the command history, press F2. The text in the Command History window can be selected and copied to the Windows clipboard.

The Mouse

In a Rhino viewport, the left mouse button selects objects and picks locations. The right mouse button has several functions including panning and zooming, popping up a context-sensitive menu, and acting the same as pressing the Enter key. Use the left mouse button to select objects in the model, commands or options on the menus, and buttons in the toolbars. Use the right mouse button to complete a command, to move between stages of commands, and to repeat the previous command. The right mouse button is used to initiate commands from some toolbar buttons.
Drag with the right mouse button to pan and rotate in viewports. Use the mouse wheel or hold down the Ctrl key and drag with the right mouse button to zoom in and out in a viewport. You must press and hold the right mouse button down to activate this feature.

Entering Commands

Use the command line to type commands, pick command options, type coordinates, type distances, angles, or radii, type shortcuts, and view command prompts.
To enter information typed at the command line, press Enter, Spacebar, or right mouse button over a viewport.

Note: Enter and Spacebar perform the same function.

Shortcuts are customizable key combinations. You can program the function keys and Ctrl key combinations to perform Rhino commands.

Clickable options

To use command options, click the option on the command line or type the underlined letter of the option and press Enter. (The interior capitalization is meaningless.)

Notes:

Autocomplete command name

Type the first few letters of a command name to activate the autocomplete command list. When enough letters of the command are typed so that it is unique, the command name completes on the command line. Press Enter to activate the command once the full command name appears. As you type command names, the autocomplete command list appears. As you type more letters, the list is narrowed down to the possible commands. Left click on the command in the list to start it.

Repeating commands

To repeat the last command, right-click in a viewport, press Enter, or press the spacebar. To repeat previous commands, right-click in the command line window and select from a list.

Canceling commands

To cancel a command, press Esc or enter a new command from a button or a menu.

Notes:

Help

Press F1 at any time to access Rhino Help. In addition to finding information about each command, Rhino help has conceptual information as well as many examples and graphics to help you complete your model. When you are confused or unsure about what to do, the first place you should look is the help file. You can also access help for a specific command by starting the command and press F1.
In addition, the CommandHelp command displays the help topics in a dockable window and displays help for the current command.
Most of the commands include short video clips that show how the command and the options work.

If Auto-update is checked, the help for the current command displays. If Auto-update is unchecked, you can type the name of the command that you want displayed and press enter to display the information.

Notes:

View the Command Line History

The command history window lists the last 500 command lines from the current Rhino session. Press F2 to view the command history.

View Recent Commands

Right-click the command line to view recently used commands. To repeat the command, select it from the popup menu.
The number of commands listed is set in Rhino Options. The default limit is twenty commands. When you use your twenty-first command the first one drops off the list.

Notes:

Exercise 1-Rhino basics

To get started:

1 On the Rhino Help menu, click Learn Rhino, Open Tutorial Models.
2 Double-click the Level 1 folder.
3 In the Open dialog box, select Start.3dm.
You will find this model in the Training folder. If you haven't copied the files to your hard drive from the
\square
Open Training folder on the Rhino CD, you should do this before you proceed.

Two parallel viewports and one perspective viewport.
This model contains five objects: a cube, a cone, a cylinder, a sphere, and a rectangular plane.

Notes:

4 Viewports

Three parallel viewports and one perspective viewport
5 In the Status Bar, click Snap to turn on the grid snap.
Grid snap may already be on in your system. Be careful that you do not turn it off instead of on. If grid snap is on, the word "Snap" will be black in the status bar. If it is off, the word "Snap" will be gray.

```
Snap Ortho Planar Osnap Record History
```

Note: This is an important step. Grid snap only lets your cursor move in certain intervals. In this model, by default, grid snap is set to one half of a grid line. Grid snap helps you line up your objects as if you were building with LEGO ${ }^{\circledR}$ blocks.

6 Click the mouse in the Perspective viewport to make it active.
The viewport title highlights when it is active. The active viewport is the viewport where all your commands and actions take place.
7 Click with the Right Mouse Button (RMB) on the Perspective viewport title, and then click Shaded.
The objects appear shaded. A shaded viewport lets you preview the shapes. The viewport will remain shaded until you change it back to a wireframe view. You can change any viewport to shaded mode. Later we will discuss the other viewport display options.

8 From the Render menu, click Render.
Rendering the model opens a separate render window. The model displays in render colors previously assigned to the objects. You can also set lights and a background color. You will learn about doing this later.
You cannot manipulate the view in the render display window but the image can be saved to a file.
9 Close the render window.

Shaded display.

Render.

Notes:

Shaded Viewport

Render

Notes:

10 In the Perspective

 viewport, click and drag with your right mouse button held down to rotate the view.The plane helps you stay oriented. If the objects disappear, you are looking at the bottom of the plane.
11 Right click on the Perspective viewport title, and then click X-ray.

12 Right click on the Perspective viewport title, and then click Ghosted.
13 Right click on the Perspective viewport title, and then click Rendered.

Rotate the view in shaded display.

Ghosted shade display.

X-Ray shaded display.

Rendered display

0
X-Ray Viewport

Ghosted Viewport

Rendered Viewport

Notes:

14 Change to

 Wireframe mode.15 To rotate your view, drag from the bottom of the view toward the top.
You are now under the objects looking up.
16 Change to Shaded mode.
The plane obscures the objects. In shaded mode, the plane helps you see when your viewpoint is below the objects.

Looking at the objects from the bottom in wireframe mode.

Looking at the objects from the bottom in shaded mode.

To get back to your original view:

- Press the Home key to undo your view changes.

If you are "lost in space" in the perspective view:

- From the View menu, click Viewport Layout, and then click 4 Viewports twice.

This takes you back to the default viewport settings.

Notes:

Navigating Around the Model

You have used the right mouse button to rotate in the Perspective viewport. You can hold Shift and drag with the right mouse button to pan. Dragging the right mouse button to move around does not interrupt any commands in progress.

To pan in a viewport:

1 In the Perspective viewport, hold the Shift and drag with the right mouse button to pan the view.

2 Pan the view in the parallel viewports by dragging with the right mouse button
In the parallel viewports it's not necessary to press the Shift key.

Panning with Shift and the right mouse button.

Panning in a parallel view with the right mouse button.

Notes:

Zooming in and out

Sometimes you want to get closer to your objects or move back so you can see more. This is called zooming. As with many things in Rhino, there are several ways to do this. The easiest way is to turn the mouse wheel to zoom in and out. If you don't have a wheel mouse, hold down the Ctrl key and drag up and down in a viewport with the right mouse button.

To zoom in and out:

1 In the Perspective Viewport, roll the wheel on your mouse forward to zoom in, roll it backward to zoom out.

The camera zooms at cursor position.
2 In the Perspective viewport, hold the Ctrl key, click and hold the right mouse button, and drag the mouse up and down.

Drag up to zoom in.
Drag down to zoom out.

Zooming with ctrl and the right mouse button.

Zooming extents

The Zoom Extents command, displays a viewport so the objects fill up the viewport as much as possible. You can use this command to make everything visible.

To zoom extents in a viewport:

- From the View menu, click Zoom, and then click Zoom Extents.

If you get lost, it is often handy to zoom extents in all your viewports at once, so there is a command to do just that.

To zoom extents in all viewports:

- From the View menu, click Zoom, and then click Zoom Extents All.

Notes:

Move Objects

Dragging follows the construction plane of the current viewport.
Now drag the objects around. You can drag in any viewport. In this model, Snap is set to one-half of a grid line. Using this snap, you should be able to line objects up with each other.

To move objects:

1 Click the cone and drag it.
The cone highlights to show it is selected.

The selected cone highlights.

Drag the cone to move it.

3 In the Front viewport, drag the cone to the top of the cylinder. Watch what happens in the Perspective viewport.
There are many times when you have to watch what is happening in other viewports to accurately place your objects.

Move the cone in the Front viewport.

Rendered Display.

Try on Your Own

1 Re-open the model. Do not save changes.
2 Drag the objects around.
Use the Front viewport to move the objects vertically and the Top or Perspective viewport to move them horizontally.

Notes:

Copy Objects

To create more objects, copy the shapes.

To start with a new model:

1 From the File menu, click Open.
2 Do not save the changes.
3 In the Open dialog box, select Start.3dm.

To copy objects:

1 Click the box to select it.
2 From the Transform menu, click Copy.
3 Click somewhere in the Top viewport.
It usually helps to click a spot that relates to the object like the middle or near a corner.

Select and copy the box.

4 Click where you want the first copy. Zoom in closer if you like.
5 Click other places to make more copies of the box.

6 When you have enough copies, press Enter.

Try on Your Own

- Make copies of more objects and move them around. See if you can build something.

Changing the View of Your Model

When you add detail to your models, you will need to see different parts of your model with different magnifications. You can use the view commands, the mouse, and the keyboard to change the view in a viewport. Each view corresponds to the view through a camera lens. The invisible target of the camera is located in the middle of the viewport.

Viewports

With Rhino, you can open an unlimited number of viewports. Each viewport has its own projection, view, construction plane, and grid. If a command is active, a viewport becomes active when you move the mouse over it. If a command is not active, you must click in the viewport to activate it.
Most viewport controls can be accessed through the viewport popup menu.
To open the popup menu, right click the viewport title.

Parallel vs. Perspective Projection

Unlike other modelers, Rhino lets you work in both parallel and perspective views.
To toggle a viewport between parallel and perspective view:
1 Right-click the viewport title, click Viewport Properties.
2 In the Viewport Properties dialog box, click Parallel or Perspective, and then click OK.

Notes:

Panning and Zooming

The simplest way to change the view is to hold down the Shift key and drag the mouse with right mouse button held down. This pans the view. To zoom in and out, hold down the Ctrl key and drag up and down or use the mouse wheel

You can also use the keyboard to navigate:

Key	Action	+ Ctrl
Left Arrow	Rotate left	Pan left
Right Arrow	Rotate right	Pan right
Up Arrow	Rotate up	Pan up
Down Arrow	Rotate down	Pan down
Page Up	Zoom in	
Page Down	Zoom out	
Home	Undo View Change	
End	Redo View Change	

You can change your view in the middle of a command to see precisely where you want to select an object or select a point.

There are additional Zoom controls that will be discussed in other exercises

Resetting Your View

If you get lost, four view techniques can help you get back to a starting place.
To undo and redo view changes:

- Click in a viewport, press your Home or End key on your keyboard to undo and redo view changes.

To set your view so you are looking straight down on the construction plane:

- From the View menu, click Set View, and then click Plan.

To bring all your objects into view:

- From the View menu, click Zoom, and then click Zoom Extents.

To bring all your objects into view in all viewports:

- From the View menu, click Zoom, and then click Zoom Extents All.

Exercise 2—Display options

Open the model

 Camera.3dm.You will use this to practice changing views. You will create views from six directions and an oblique perspective view.

Notes:

To change the number of viewports:

1 Make the Top viewport active.
2 From the View menu, click Viewport Layout, and then click Split Horizontal.
3 Make the Front viewport active.
4 From the View menu, click Viewport Layout, and then click Split Vertical.
5 Repeat this step for the Right Viewport.
6 Right click on the Top viewport title at the top, click Set View, then, click Bottom.
7 Right click on the Front viewport title on the left, click Set View, then, click Left.
8 Right click on the Right viewport title on the right, click Set View, then, click

Each viewport is Split down the middle either horizontally or vertically.

Split Viewport Vertically

Bottom View

Left View

Back View

To change the shape of viewports:

1 Move your cursor to the edge of a viewport until you see the resizing $\Leftrightarrow \stackrel{y}{\lessgtr}$ or cursor, hold the left mouse button down, and drag the bar. If two viewports share the edge, both resize.

2 Move your cursor to the corner of a viewport until you see the resizing cursor, hold the left mouse, and drag the intersection in any direction. If several viewports touch at that corner, all resize.

Notes:

To synchronize the viewports:

1 Adjust the size shape of the viewports.
2 Make the Front viewport active.

3 From the View menu, click Zoom, and then click Zoom Extents.
4 Right click on the Front viewport title, click Set Camera, and then click Synchronize Views.
5 Change the viewport displays to one of the shaded viewport settings.

All the views are sized to the same scale as the active viewport and aligned with each other.

Synchronize Views

0

Zoom Window

Notes:

To zoom a selected object:

1 Select the shutter release.
2 From the View menu, click Zoom, and then click Zoom Selected.

The view zooms to the selected object.

(8)

Zoom Selected

To rotate the view:

1 In a perspective viewport, drag with right mouse button.
2 In a parallel viewport, use the arrow keys.

To maximize and restore a viewport:

1 Double-click the viewport title to maximize it.
2 Double-click the title of the maximized viewport to restore it to its smaller size and reveal the other viewports.

Part Two:
 Creating Geometry

Notes:

Creating Two-Dimensional Objects

Drawing Lines

The Line, Lines, and Polyline commands draw straight lines. The Line command draws a single line segment. The Lines command draws multiple end-to-end line segments. The Polyline command draws a series of straight joined segments (a single linear curve with multiple segments).

Option	Description
Close	Closes the shape by drawing a segment from the last point picked to the first point picked. This ends the command.
Undo	Deletes the last point picked.

Exercise 3-Drawing lines

1 From the File menu, click New.
Do not save changes.
2 In the Template File dialog box, double click Small Object - Millimeters.3dm.
3 From the File menu, click Save As.
4 In the Save dialog box, type Lines, and then click Save.

To draw line segments:

1 From the Curve menu, click Line, and then click Line Segments to begin the Lines command.
2 Pick a point in a viewport.
3 Pick another point in a viewport.
A line segment appears between the two points.
4 Pick another point.
5 Continue to pick points. Additional segments appear.
Each segment meets but is not joined to the previous segment.
6 Press Enter to end the command.

Notes:

R

Line Segments
Right Click

To use the Close option:

1 Repeat the Lines command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Click Close.
The last line will end at the original start point. Line segments are individual lines that meet at a common endpoint.

To draw a polyline:

1 From the Curve menu, click Polyline, and then click Polyline to begin the Polyline command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Press Enter when done.
This makes an open polyline. A polyline is made of line segments that are joined together. It is one object.

Notes:

To use the Undo option:

1 Repeat the Polyline command.
2 Pick a Start point.
3 Pick 3 or 4 more points.
4 Click Undo on the command line.
Notice that your cursor moves back to the previous point and one segment of the polyline is removed.
5 Continue to pick points.
6 Press Enter or click Close to end the command.

To draw a single line segment:

1 From the Curve menu, click Line, and then click Single Line to begin the Line command.
2 Pick a Start point.
3 Pick an End point.
The command ends after one segment is drawn.

To use the Bothsides option:

1 From the Curve menu, click Line, and then click Single Line to begin the Line command.
2 Click Bothsides on the command line.
3 Pick a Middle point.
4 Pick an End point.
A segment is drawn with equal length on both sides of the middle point.

Notes:

Drawing Free-form Curves

The InterpCrv and Curve commands draw free-form curves. The InterpCrv command draws a curve through the points you pick. The Curve command uses control points to create a curve.

Option	Description
$\underline{\text { Close }}$	Closes the shape by drawing from the last point picked to the first point picked. This ends the command.
EndTangent	After choosing a point on another curve, the next segment will be tangent to the point you picked and end the command.
$\underline{\text { Undo }}$	Deletes the last point picked.
$\underline{\text { Degree }}$	You can set the degree of the curve.
Knots	Determines how the interpolated curve is parameterized. When you draw an interpolated curve, the points you pick are converted into knot values on the curve. The parameterization means how the intervals between knots are chosen. When you make a closed curve, it will come to a point instead of making a smooth closure as it normally does.

Exercise 4-Drawing interpolated curves

1 From the Curve menu, click Free-form, and then click Interpolate Points.
2 Pick a Start point.
3 Continue picking points.
4 Click Close to make a closed curve or, press Enter to end the command.

Exercise 5-Drawing curves from control points

1 From the Curve menu, click Free-form, and then click Control Points.

2 Pick a Start point.
3 Continue picking points.
4 Click Close to make a closed curve or, press Enter to end the command.

Notes:

Notice that most of the points you pick are off the curve as control points.

Modeling Aids

Modes are modeling aids that you can toggle on or off by pressing shortcut keys, a function key, typing a single letter command, or clicking a button.
Snap Ortho Planar Osnap Record History

Click the Snap, Ortho, Planar or History panes on the status bar to toggle these modeling aids on and off.

Snap

Forces the marker to snap on grid intersections.
You can also toggle Snap on and off by pressing F9 or typing the letter \mathbf{S} and pressing Enter.

Ortho

Restricts cursor movement to the points at a specified angle from the last point created. The default angle is 90 degrees.
You can also toggle Ortho on and off by pressing F8 or pressing and holding the Shift key down.
If Ortho is set to on, hold down the Shift key to toggle Ortho off. If Ortho is off, hold down the Shift key to toggle Ortho on. F8 or Shift.

Notes:

Planar

This is a modeling aid similar to Ortho. This helps you model planar objects by forcing input to be on a plane parallel to the construction plane that passes through the last point that you picked.
You can also toggle Planar On-Off by typing the letter \mathbf{P} and pressing Enter.

History

Records history and updates history-aware objects. With History recording and Update turned on, a lofted surface can be changed by editing the input curves.
In general, it is best to leave the Record option set to No and use the Record History status bar pane to selectively record history. Recording history uses computer resources and makes saved files larger.

Grid

Pressing F7 hides or shows a reference grid in the current viewport of the graphics screen at the construction plane.

Exercise 6-Drawing lines and curves using mode functions

1 Toggle Snap on and draw some lines.
The marker snaps to each grid intersection.
2 Toggle Snap off, toggle Ortho on and draw some lines and curves.
You can only input points that are at 90 degree intervals from the last point. Using Snap and Ortho toggles you can draw with precision. We will discuss other ways to get precision in a later session.

Model Setup

In Rhino you can create full-size models using precise measurements. You might need to change the modeling environment depending on the type of model you are creating; the default options may not always work.

To change the options:

1 From the File menu, click Properties.
2 In the Document Properties dialog box, under Rhino Options, click Modeling Aids.
Modeling Aids lets you control Ortho, Object Snap, Grid Snap, and other mode options.
3 Change the Ortho option to snap every $\mathbf{3 0}$ degrees.
4 In the Document Properties dialog box, click Grid.
5 In Grid properties, change the following settings.
You can change the appearance of the modeling environment by changing the grid elements. The grid spacing, the frequency of the major lines, and the number of grid elements can be changed. The Grid dialog box lets you configure grid settings.
6 Change the Grid Extents setting to $\mathbf{1 0}$.
7 Change the Minor grid lines every setting to 1.
8 Change the Major lines every setting to 4.
9 Change the Snap Spacing setting to .25, and click OK.
10 Draw some more lines and curves with Snap and Ortho on.
Notice that the marker now snaps between the grid intersections and that Ortho snaps at every 30 degrees.
11 Try to draw the closed polyline to the right with Snap and Ortho turned on.

To reset the modeling aids options:

1 From the Tools menu, click Options.
2 In the Rhino Options dialog box, click Modeling Aids.
3 Change the Ortho options to snap every $\mathbf{9 0}$ degrees.

Notes:

\square

Document Properties

The value for Grid extents is for each quadrant.

Saving Your Work

Save your work periodically during a session to keep it from being accidentally deleted.

To save your model:

- From the File menu, click Save.

Or, click one of the other options. You will have an opportunity to save your work.

Command	Description
Save	Saves your model and keeps it open.
SaveSmall	Save your model without render or analysis meshes and preview image to minimize file size.
IncrementalSave	Save sequentially numbered versions of your model.
SaveAs	Saves your model to a specified file name, location, and format.
SaveAsTemplate	Save as a template.

Layers

Rhino layers work like CAD layering systems. By creating objects on different layers, you can edit and view related portions of a model separately or as a composite. You can create as many layers as you like.

You can display all layers simultaneously or turn any of them off. You can lock layers so they are displayed but cannot be selected. Each layer has a color. You can assign a name to each layer (for example, Base, Body, Top) to organize the model or you can use preset layer names (Default, Layer 01, Layer 02, Layer 03).
The Layers window manages layers. Use it to set up layers for your model.

Layers - All Layers				X
[¢ \times	- -	8 ?		
Name	+1	Materal Libray	Linetype	Pint Width
Default	\checkmark -		Continuous	- Default
Layer 01	8 ㄷㅁ		Continuous	- Default
Layer 02	8 80		Continuous	- Default
Layer 03	8 -		Continuous	- Default
Layer 04	8 80		Continuous	- Default
Layer 05	8 - ${ }^{\text {a }}$		Continuous	\diamond Default

Notes:

\square

Save

It is good practice to save your model in stages under different names, using the Save As command. This lets you go back to an earlier version of your model for modifications if necessary.

Notes:

Exercise 7-Layers

To create a new layer:

1 From the Edit menu, click Layers, and then click Edit Layers.
2 In the Layers window, click New.
3 The new layer, Layer 06, appears in the list. Type Line and press Enter.
4 Click New.
5 The new layer, Layer 06, appears again. Type Curve and press Enter.

The Default layer is created automatically when you start a new model with no template. If you use a standard Rhino template, a few additional layers are also created.

Hue is controlled by moving the line around the circular portion of the color wheel.
Hue is the color that is referred to as a scale ranging from red through yellow, green and blue and then circularly back to red.
Saturation and Value are controlled by moving the small circle around in the square portion in the middle of the color wheel.
Saturation is the vividness of hue. Value is the relative lightness or darkness of a color.

Notes:

To make a layer current:

1 In the Status Bar, click the Layer pane.
2 In the Layer popup, click Line.
3 Draw some lines.
The lines are on the Line layer and they are colored red.
4 To make a different layer current, click the Layer pane of the status bar.
5 Click Curve.
6 Draw some curves.
They are on the Curve layer and are colored blue.
7 Draw more lines and curves on each layer.

Clicking the name or the checkbox sets the current layer.

To lock a layer:

1 In the Status Bar, click the Layer pane.
2 In the Layer popup, click the Lock icon on the row for the Line layer.
Locking a layer turns it into a reference only layer. You can see and snap to objects on locked layers. You cannot select any objects on locked layers. You cannot make a locked layer current without unlocking it.

To turn a layer off:

1 In the Status Bar, click the Layer pane.
2 In the Layer popup, click the On/Off icon (light bulb) in the row for Curve.
Turning a layer off makes all objects on it invisible.

Notes:

Exercise 8-Selecting objects

To select a single object:

- Move your pointer arrow over the object and left-click.

The object turns yellow, which is the default highlight color.

To select more than one object:

1 Move your pointer arrow over the first object and left-click.
2 While holding the Shift key down, move your pointer over another object and left click.

To select more than one object using a window:

1 Move your pointer arrow into an open area to the left of the objects you want to select.
2 Hold your left mouse button down and drag diagonally to the right until you have several objects inside the selection box.

The window selection box is a solid rectangle.
3 Release your mouse button.
All objects completely inside the selection box will be selected.
4 To add to your selection set, hold the Shift key down while making another selection.

To select more than one object using a crossing window:

1 Move your pointer arrow into an open area to the right of the objects you want to select.
2 Hold your left mouse button down and drag diagonally to the left until you have several objects inside or touching the box.
The crossing selection box is a dotted rectangle.
3 Release your mouse button.
All objects inside or touching the box will be selected.
4 To add to your selection set, hold the Shift key down while making another selection.

To hide an object:

1 Select an object.
2 From the Edit menu, click Visibility, and then click Hide.
The object becomes invisible.

To show hidden objects:

- From the Edit menu, click Visibility, and then click Show.

The Show command redisplays all hidden objects.

To lock an object:

1 Select an object.
2 From the Edit menu, click Visibility, and then click Lock.
The object becomes shaded gray. You can see the locked object, you can snap to it, but you cannot select it.

To unlock locked objects:

- From the Edit menu, click Visibility, and then click Unlock.

The Unlock command redisplays all locked objects.

To change an object from one layer to another:

1 Select an object.
2 From the Edit menu, click Layers, and then click Change Object Layer.
3 In the Layer for object dialog box, select the new layer for the object, and click OK.

Notes:

Q_{Hid}
Hide Objects
Q
Show Objects

Lock Objects

Unlock Objects

Notes:

Selecting Objects

Delete removes selected objects from the model. Use Delete to practice selecting objects.

Exercise 9—Practice using selection options

1 From the File menu, click Open.
2 In the Open dialog box click Delete.3dm and click Open, or double-click Delete.3dm to open the model.
3 Select the square and the circle.
4 From the Edit menu, click Delete or press the Delete key. The objects disappear.

Notes:

To start the first practice:

1 Select one of the lines on the hexagon in the Top viewport. Because there are several curves superimposed on each other, the selection menu appears, allowing you to select one of the curves.
2 Select the top curve from the list.
3 From the Edit menu, click Delete.
Observe one disappear in the Perspective viewport.

4 In the Top viewport, use a crossing box to select the surface and the polyline in the top right part of the drawing.
Both objects are selected.
5 From the Edit menu, click Delete.
6 Make a window to select the polyline and the cylinder in the lower right part of the drawing.
Only those objects that are completely inside the window are selected.

7 Hold the Ctrl key down and click on the cylinder to remove it from the selection set.
8 From the Edit menu, click Delete.
9 Continue deleting objects in the drawing.
Practice using different selection methods to select and deselect objects. Use crossing and window. The Shift key while selecting will let you add to your selection set. The Ctrl key while selecting will let you to remove objects from your selection set.

Notes:

To undo and redo deletions:

1 From the Edit menu, click Undo.
Each time you click, Undo takes you back one command.
2 From the Edit menu, click Redo.
Each time you click, the previous Undo is reinstated.
3 Undo all the deletions you made in the previous exercise.

Additional selection options

In addition to the selection options we just practiced, there are several other useful tools for selecting objects. In the next exercise we will use some of these tools.

Command	Button	Menu Label	Description
SelAll	All Objects (Ctrl + A)	Select all objects.	
SelNone	None (Esc)	Deselect all objects. Note: SelNone does not run inside a command to clear pre- selected objects. Deselects all selected objects and selects all visible objects that were not previously selected.	
SelPrev	Previous Selection	Re-selects the previous selection set.	
SelLast	Invert	Selects the last changed objects.	
SelPt	Objects	Select all point objects.	
SelCrv	Curves	Select all curves.	
SelPolyline	Polylines	Select all polylines.	
SelSrf	Surfaces	Select all surfaces.	
SelPolysrf	Polysurfaces	Select all polysurfaces.	

To select objects using select tools:
1 From the Edit menu, click Select Objects, and then click Curves.
All the curves are selected.
2 From the Edit menu, click Select Objects, and then click Invert.
Everything but the previously selected curves is selected.
3 From the Edit menu, click Select Objects, and then click None.
Everything is unselected.
4 From the Edit menu, click Select Objects, and then click Polylines.
All of the polylines are selected.
5 From the Edit menu, click Select Objects, and then click Surfaces.
The single surface is added to the selection set.
6 From the Edit menu, click Select Objects, and then click Polysurfaces.
The polysurfaces are added to the selection set.
7 From the Edit menu, click Select Objects, and then click None.
8 Draw a few lines and curves.
9 From the Edit menu, click Select Objects, and then click Last Created Objects.
The things you just created are selected.

Notes:

Invert Selection

Select Polylines

Select Surfaces

Select Polysurfaces

Select Last Created Object

Notes:

Set the units and tolerance of the model before you begin.

You can change the tolerance after you start, but objects created before the change still have the old tolerance value.

So far you have been drawing imprecise lines. Now you will try drawing lines at specific places. To do this you will use coordinates.
Whenever you draw a curve, or create a solid primitive, Rhino asks you for a series of points. You can tell that Rhino is asking for point input two ways: the command prompt has a prompt like Start of line, Start of polyline, Start of curve, or Next point and the arrow-shaped cursor turns into a cross-shaped cursor.
You can enter a point two ways: pick a point in a viewport with the mouse, or type coordinates at the command line.
Rhino uses a fixed Cartesian coordinate system called the world coordinate system (WCS), based on three axes (the $x-, y-$, and z-axes) that define locations in three-dimensional space.
Each viewport has a construction plane that defines coordinates for that viewport. We will work in the Top and Perspective viewports where the two coordinate systems are the same.

Absolute Coordinates

The first forms of coordinates you will use are called absolute coordinates. Absolute coordinates are exact locations relative to the $x-, y-$, and $z-a x e s$.

Exercise 10-Setting up a model

1 From the File menu, click New.
2 Click Small Object - Millimeters.3dm, and then click Open.
3 From the File menu, click Save As. Name the model BOXES.
Use the BOXES.3dm model to learn how to draw with absolute coordinates.

Notes:

Exercise 11-Entering absolute coordinates

1 Double-click the viewport title to maximize the Top viewport.
2 From the Curve menu, click Polyline, and then click Polyline.
3 To Start type $\mathbf{0}$ and press Enter.
If you are going to start at the origin of the sheet $(0,0,0)$ you can simply type $\mathbf{0}$ as a shortcut.
4 For the Next point type 5,0 and press Enter.
5 For the Next point type 5,5 and press Enter.
6 For the Next point type 0,5 and press Enter.
7 Click Close to close the polyline.

Relative Coordinates

Absolute coordinates can be slow and cumbersome, but they do work. Most of the time, relative coordinates are easier to use.
Every time you select a point, Rhino saves that point as the last point.
Relative coordinates are based on the last point entered, instead of on the origin $(0,0,0)$ of the construction plane.
Precede the x, y, z coordinates with a single \mathbf{R} (upper or lower case) to enter relative coordinates. Use the @ symbol instead of an \mathbf{R} to start relative coordinates if you prefer.

Exercise 12-Entering relative coordinates

1 From the Curve menu, click Polyline, and then click Polyline.
2 To Start type 8,0 and press Enter. These are absolute coordinates.
3 For the Next point type R5,5 and press Enter.
These are relative coordinates.
4 For the Next point type R-5,0 and press Enter.
5 Click Close to close the polyline.

Notes:

Polar Coordinates

Polar coordinates specify a point that is a distance and direction away from 0,0 in the current construction plane.
Vector directions in Rhino start with Zero degrees at 3 o'clock on a standard clock. They change in an anticlockwise direction as illustrated below.
For example, if you want a point four units away from the construction plane origin, at a 45° angle anticlockwise from the construction plane x-axis, type $4<45$, and press Enter.
Relative polar coordinates are preceded by \mathbf{R} or @; absolute polar coordinates are not.

Instead of using x-, y-, and $z-$ coordinates, enter relative polar coordinates like this: Rdistance<angle.

Exercise 13-Entering polar coordinates

1 From the Curve menu, click Polyline, and then click Polyline.
2 To Start type 0,8 and press Enter.
3 For the Next point type $\mathbf{R 5}<\mathbf{0}$ and press Enter.
4 For the Next point type R5<90 and press Enter.
5 For the Next point type R5<180 and press Enter.
6 Click Close to close the polyline.

Notes:

Distance and Angle Constraint Entry

Using distance constraint entry, you can specify a point by typing a distance and pressing Enter. Then as you move your cursor in any direction, the distance from the last point will be constrained. This is a good way to specify a line length quickly.
Using angle constraint entry, you can specify an angle by typing < followed by a value and pressing Enter. The next point is constrained to lines at multiples of the angle relative to the x-axis you specified.

Using the Shift key to toggle Ortho on and off:

When Ortho is off, hold the Shift key down to toggle it on. This method is an efficient way to draw perpendicular lines. In the following example, draw a line five units long using distance constraints.

Exercise 14-Distance constraint entry

1 From the Curve menu, click Polyline, and then click Polyline.
2 To Start type 8,8 and press Enter.
3 For the Next point type 5 and press Enter.
4 Hold the Shift key down and pick a point to the right. Ortho constrains the marker to 0 degrees.
5 For the Next point type 5 and press Enter.
6 Hold the Shift key down and pick a point up.

Ortho constrains the cursor to 90 degrees
7 For the Next point type 5 and press Enter.
8 Hold the Shift key down and pick a point to the left. Ortho constrains the cursor to 180 degrees.
9 Click Close to close the polyline.

Notes:

Exercise 15-Distance and angle constraint entry

1 From the Curve menu, click Polyline, and then click Polyline.
2 To Start type 16,5 and press Enter.
3 For the Next point type 5 and press Enter, then type <45 and press Enter.

As you drag your cursor around, the marker snaps to a distance of 5 and an angle of 45 degrees.

4 Pick a point down and to the right.
The angle constraint sets the angle.
5 For the Next point type 5 and press Enter, then type <45 and press Enter.
6 Pick a point up and to the right.
The angle constraint sets the angle.
7 For the Next point type 5 and press Enter, then type <45 and press Enter.
8 Pick a point up and to the left.
The angle constraint sets the angle.
9 Click Close to close the polyline.
10 Save your model. You will use this model for another exercise.

Exercise 16-Practice using distance and angle constraint entry

1 Start a new model, use the Small Objects - Millimeters.3dm template. Save as Arrow.
Since the object is symmetrical, you will only draw the lower half of the model.

Draw the arrow with a polyline, using a combination of absolute coordinates (x, y), relative coordinates ($R x, y$), polar coordinates (Rdistance<angle), and distance constraint.
The following is an example of the command line input that you might use:

Absolute x, y

2 From the Curve menu, click Polyline, then click Polyline.
3 For the Start of Polyline type -11,0.

Relative x, y

4 For the Next point, type r-2,-2.

Distance constraint

5 For the Next point, type 8 and press Enter, turn Ortho on and then pick to the right.

Relative x, y

6 For the Next point, type r1,1.

Relative polar

7 For the Next point, type $\mathbf{r 1 1}<\mathbf{0}$.

Distance constraint

8 For the Next point, type 1 and press Enter, turn Ortho on and then pick down.

Relative $\mathbf{x , y}$

9 For the Next point, type $\mathbf{r 6}, \mathbf{2}$.
10 For the Next point, press Enter to end the command.
11 Save your model.

Notes:

To make a copy of the polyline:

1 Select the polyline.
2 From the Transform menu, click Copy.
3 For the Point to copy from, pick a point near the polyline.
4 For the Point to copy to, type 6 and press Enter, turn Ortho on and pick above the selected polyline.

ㅁㅁㅁㅁㅁ
 Copy

To make a mirror image of the polyline:

1 Select the original polyline.
2 From the Transform men, click Mirror
3 For the Start of mirror plane, type $\mathbf{0}$ and press Enter.
4 For the End of mirror plane, turn Ortho on and then pick to the right.

S
 Mirror

To make it 3-D:

1 Select the original polyline and the mirror copy.
2 From the Solid menu and click Extrude Planar Curve, click Straight.
3 For the Extrusion distance, type 1 and press Enter.

Notes:

To make it 3-D (alternate):

1 Select the copy of the polyline.
2 On the Status bar, click Osnap.
3 On the Osnap toolbar check End.

4 From the Surface menu, click Revolve.
5 For the Start of revolve axis, select the end of the polyline.
6 For the End of revolve axis, select the other end of the polyline along the centerline.

7 Press Enter to use the default Start angle.
8 Press Enter to use the default Revolution angle.

Your arrow is now a threedimensional model.

Your arrow is now a threedimensional model.

Notes:

Exercise 17-Practice using distance and angle constraints

1 Start a new model using the Small Objects - Millimeters.3dm template. Save as V-Block.
2 Double-click the viewport title in the Front viewport to maximize it.
Create the following model in the front construction plane.
3 Draw the object below using a combination of absolute coordinates (x, y), relative coordinates ($r x, y$), and relative polar coordinates (rdistance<angle).
4 Start your model at $\mathbf{0}$ in the Front viewport.

Try to create the model using a single polyline.

5 Double-click the viewport title of the Front viewport to restore your views.
6 Select the polyline.
7 From the Solid menu, click Extrude Planar Curve, and then click Straight.
8 For the Extrusion Distance type 60 and press Enter.
You can view the model as a three-dimensional object in the Perspective viewport.
9 Save your model.

Notes:

Object Snaps

Object Snaps are tools for specifying points on existing objects. Use osnaps for precision modeling and to get accurate data. Object snaps are often referred to as osnaps. In Rhino, reliable modeling and easy editing depends on objects actually meeting at specified points. Objects snaps give you precision you cannot get using the "eyeball" method

To open the Osnap toolbar

- Click the Osnap pane in the status bar.

This toolbar controls persistent object snaps. Use persistent objects snaps to maintain an object snap through choosing several points without having to reactivate the object snap.
$\|$ End Γ Near Γ Point \quad Mid \quad Cen \quad Int \quad Perp \quad Tan \quad Quad \quad Knot \quad Project \square STrack \square Disable

When an object snap is active, moving the cursor near an eligible point on an object causes the marker to jump to that point and a tooltip to appear.

Check a box to turn on the object snap. You can place the toolbar anywhere on your desktop.

Command	Button	Description
End	End snaps to the end of a curve, surface edge corner or polyline segment end.	
Point	Near snaps to the nearest point on an existing curve or surface edge.	
Mid	Point snaps to a control point or point object.	
Cen	Center snaps to the center point of a curve. This works best with circles and arcs.	
Int	Intersection snaps to the intersection of two curves.	
Perp	Perpendicular To snaps to the point on a curve that makes a perpendicular to the last selected point. It doesn't work on the first point that a command prompts you to pick. Tangent To snaps to the point on a curve that makes a tangent to the last selected point. It doesn't work on the first point that a command prompts you to pick. Quad snaps to the quadrant point. The quadrant point is the maximum or minimum direction on a curve in the x or y construction plane direction. Knot snaps to knot points on curves or surface edges. Projects the snap point to the construction plane.	
SmartTrack	SmartTrack is a system of temporary reference lines and points that is drawn in the Rhino viewport using implicit relationships among various 3-D points, other geometry in space, and the coordinate axes' directions. Temporarily turns off persistent object snaps, retaining settings	
Disable		

Notes:

Exercise 18-Using object snaps

1 Open the model Osnap.3dm.
2 Toggle Snap and Ortho off.

Using End and Midpoint object snaps:

1 Click the Osnap pane on the status bar.
You can leave the Osnap toolbar displayed.

Osnap bar with End and Mid on.
2 Check End and Mid.
You can check and clear individual object snaps to make modeling with precision easy.
3 From the Curve menu, click Polyline, and then click Polyline.
4 For the Start of Polyline, move your cursor close to the end of the line at the lower left corner of the first square and pick when the marker snaps to the end of the line.
The line starts exactly at that corner.
5 For the Next point, move your cursor close to the midpoint of the vertical line at the right side of the square on the right, pick when the marker snaps to the midpoint.

The marker snaps to the midpoint of the line that the cursor touches, making the new line cross to exact midpoint of that side.
6 For the Next point, move your cursor close to the end of the line at the upper left corner of the first square, pick when the marker snaps to the end of the line.
The marker snaps to the end of the line.

7 Press Enter to end the command.

Notes:

Using Near and Perpendicular to object snaps:

1 In the Osnap toolbar check Near and Perp, clear End and Mid.
2 From the Curve menu, click Line, and then click Single Line.
3 For the Start of line, pick on the lower edge of the circle at the top right.
The marker snaps to the point on the circle nearest to where the cursor is positioned.
4 For the End of line, pick the top horizontal edge of the second square.

The marker snaps to a point making a perpendicular to the previous point.

Using Intersection and Tangent to object snaps:

1 In the Osnap toolbar check Int and Tan; clear Near and Perp.
2 From the Curve menu, click Line, and then click Single Line.

3 For the Start of line, pick the intersection where the diagonal line crosses the vertical line on the first square.

The marker snaps to the intersection between the two lines.

4 For the End of line, pick the top, left edge of the circle on the right.
The marker snaps to a point tangent to the circle.

Using Center of object snap:

1 In the Osnap toolbar check Cen, clear Int and Tan.
2 From the Curve menu, click Line, and then click Single Line.
3 For the Start of line, pick on the edge of a circle.

The marker snaps to the center of the circle.
4 For the End of line, pick on the edge of the other circle.

The marker snaps to the center of the circle.

Using Quadrant of object snap:

1 In the Osnap toolbar check Quad, clear Cen.
2 From the Curve menu, click Polyline, and then click Polyline.
3 For the Start of Polyline, pick a point on the top edge of the first circle.
The marker snaps to the quadrant point of the circle.
4 For the Next point, pick the left edge of the circle.
The marker snaps to the quadrant point of the
 circle.

5 For the Next point, pick the bottom edge of the circle.
6 For the Next point, pick the right edge of the circle.
7 Click Close to finish.
8 Use the SaveAs command to save the model. Name it Analyze. We will use it for a later exercise.

Notes:

Other modeling aids

As well as allowing the user to work in a completely unconstrained free-form manner Rhino has a number of modeling aids and constraints that help with precision modeling. This section outlines these aids and constraints.

Exercise 19-Smart Track

Smart Track creates a set of temporary reference lines and points that work in conjunction with Rhino's object snaps. Using Smart Track obviates the need to create dummy reference lines and points. Smart Track works on 2D and 3-D objects. It can be used in conjunction with the Project and Planar constraints described later in this section.

To use the Smart Track tool:

1 Open the Constraints.3dm model and maximize the Top Viewport.
2 Make sure that the following object snaps are turned on: End, Near, Point, Mid, Cen and Int.
3 Turn on Smart Track on the Osnap toolbar.
4 From the Curve menu, click Point Object, then click Single Point.
5 Hover the cursor over the lower left corner of the green rectangle, the End snap will be displayed and a white marker point becomes visible.
6 Repeat this process on the bottom left hand corner of the gold rectangle.

7 Now move the cursor towards the apparent intersection point of these two corners. Two temporary construction lines are displayed.
The point is positioned on the intersection of these two construction lines.
8 Click to place the Point Object.
Smart Track will work with any of the available object snaps. Experiment with some alternatives.

Notes:

Exercise 20 - Tab Constraint

The Tab constraint allows the user to fix a direction to a reference point and thereby constrain cursor movement. The following example shows a simplistic use of the Tab constraint.

To use the Tab Constraint:

1 We will work with the Constraints.3dm file as previous and again maximize Top view.
2 Turn off Smart Track.
3 From the Curve menu click Line, then click Single Line.
4 For the Start of Line snap to the End of the bottom left hand corner of the gold rectangle.
5 For the End of Line, hover the mouse over the bottom left hand corner of the green rectangle, when the End snap appears press the Tab key.
Note that the line now becomes white and the direction is constrained.
6 For the End of Line, drag your mouse to the desired location and click.
The Tab constraint will work in conjunction with all object snaps and all tools that require a directional input, for example Move, Copy, and Rotate.

Notes:

Exercise 21 - Project Constraint

By default 2-D geometry is created on the active construction plane. Object snaps override this behavior and snapping to objects that are not on the construction plane will cause the geometry to be non-planar. The Project constraint ignores objects snaps and pushes all the geometry onto the active construction plane.

To use the Project Constraint:

1 We will again work with the Constraints. $3 \mathbf{d m}$ file as previous.
2 Make sure that the Ortho constraint is On.
3 Turn Layer 01 off and turn Layer 02 on. The surfaces on Layer 02 are located at different elevations.
4 Working in Top viewport, draw a Polyline around the perimeter of the three rectangles.
Notice how the how the planar nature of the polyline is overridden by the object snaps.

5 Delete the Polyline.
6 Turn on the Project constraint on the Osnap toolbar.
7 Again, working in Top viewport, draw a Polyline around the perimeter of the three rectangles.
Look in the Perspective viewport as you draw the polyline and note how the object snaps for the endpoints of the green and blue rectangles are projected to the construction plane.

The Project constraint forces all the segments of the polyline onto the construction plane. The resulting polyline is planar.
8 Save the File

Notes:

Exercise 22 - Planar Constraint

The Planar constraint limits successive picked locations to the same construction plane elevation as the previous location. For example a command such as Polyline can be started off the construction plane and the Planar constraint will override Rhino's default behavior of snapping back to the construction plane.

To use the Planar Constraint:

We will first look at what happens with the Planar constraint Off. Then, we will turn the Planar constraint On to see what changes.
1 We will again work with the Constraints.3dm file as previous.
2 Turn off the Ortho and Planar constraints.
3 Start the Polyline command.
4 Working in the Top Viewport, start the Polyline at the lower left corner of the Green rectangle.
5 Add some more segments without snapping to any of the objects.
Look at the Perspective viewport and notice how the polyline pulls back onto the construction plane after the initial point.
6 To override this behavior and create a planar curve delete the Polyline and turn on the Planar constraint.
7 Draw the Polyline again.
Note how it now remains planar.
8 Delete the Polyline.

Notes:

To create a Planar curve that starts above the active construction plane and references object snaps at different heights:
First we will draw a polyline without the Project constraint activated. Then we will use the Planar constraint in conjunction with the Project constraint to see what changes.
1 Turn the Planar constraint On.
2 In the Top viewport, draw a new Polyline starting again at one of the corners of the Green rectangle.
3 Create some additional points this time snapping to some of the Blue and Gold rectangle corner points.
Look at the Perspective view and note how the object snaps override the Planar constraint.
4 Delete the Polyline.

5 In the Perspective viewport, draw a new Polyline starting again at one of the corners of the Green rectangle.
6 After making the first point, turn the Project constraint On.
7 Create some additional points, snapping to some of the Blue and Gold rectangle corner points.
Note that the points stay planar to the first point, even though you are snapping to points that are at different elevations.

Notes:

Viewports and Construction Planes

In the following exercise, we will practice using Osnaps while learning more about Viewports and Construction planes.

Exercise 23-Viewports and construction planes

- Open the Chair. $\mathbf{3 d m}$ model.

Viewports

Viewports are windows in the Rhino graphics area that show you a view of your model. To move and resize viewports, drag the viewport title or borders. The cursor moves along a construction plane, which is defined for each viewport. You can create new viewports, rename viewports, and use predefined viewport configurations. To activate a viewport click anywhere in the viewport and the title highlights. If you are in a command sequence, you simply have to move your cursor into a viewport to activate it.

Construction planes

The construction plane is the guide used for modeling Rhino objects. Points you pick are always on the construction plane unless you use coordinate input, elevator mode, or object snaps.

Each construction plane has its own axes, a grid, and an orientation relative to the world coordinate system.
The grid is a plane of perpendicular lines lying on the construction plane. On default grids, every fifth line is slightly thicker. The red line represents the construction plane x-axis.

The green line represents the construction plane y axis. The red and green lines meet at the construction plane origin.
The icon in the left hand corner always shows world coordinates, which are different from the construction plane axes.
Default construction planes are provided with the default viewports.

- The Top construction plane x - and y-axes align with the world x - and y-axes.
- The Right construction plane (x - and y-axes) align with the world y - and z-axes.
- The Front construction plane (x - and y-axes) align with the world x - and z-axes.
- The Perspective viewport uses the Top construction plane.

Notes:

Next, we will turn on layers that illustrate how the default construction planes relate to each other. Each layer contains an image for a chair. Later in this exercise we will create our own chair.

- Turn the CP-Top, CP-Front, CP-Right layers on.
Each of the layers contain an image of a view of a tubular chair.

Notice that all the Chair images intersect at the origin of the model $(0,0,0)$.

When you draw on any viewport the geometry will be located on the construction plane, unless you use Osnaps, Planar mode, or Elevator mode.

Notes:

Exercise 24-Modeling in 3-D space

Rhino makes it easy to draw in 3-D space. You can draw on a different construction plane by simply moving your cursor into a different viewport. Another useful tool for modeling in 3-D space is elevator mode.
In the following exercise we will draw in different viewports and use elevator mode to move some points in 3-D space.
Elevator mode lets you pick points that are off the construction plane. Elevator mode requires two point picks to completely define the point. The first specifies the base point. The second specifies how far the final point is above or below the base point.
After the base point is specified, the marker is constrained to a tracking line perpendicular to the construction plane that passes through the base point.
Pick a second point to specify the coordinate of the desired point. You can pick a point with the mouse, or type a single number to specify the height above the construction plane. Positive numbers are above the construction plane; negative numbers are below.
You will use Snap, Ortho and Elevator mode to draw in different viewports.

1 Toggle Planar off and Snap on. Toggle Ortho on as needed.
2 Turn on the Point osnap.
3 From the Curve menu, click Polyline, and then click Polyline.
4 Move your cursor into the Front viewport.
5 To Start click at the lower left side of the tubular chair image.
6 Use coordinate input and the image to draw the first part of the chair frame.

7 After you complete the profile lines, move your cursor to the Right viewport to draw a horizontal line.

Notes:

8 Move your cursor to the Front viewport until it snaps to the point at the lower end of the diagonal line. Don't click at this time.
9 While the cursor is locked onto the point, hold down the Ctrl key, and pick.
Holding the Ctrl key while clicking with the left mouse button activates elevator mode.
10 Release the Ctrl key, move your cursor to the Perspective viewport and drag the point until it snaps to the last point, and pick.

11 Continue drawing the rest of the chair frame using the same technique.
Snap to the next point in the Front viewport, activate elevator mode, then move your mouse to the Perspective viewport to position the point.

12 For the last segment you can click Close on the command line or snap to the start point and click.

Notes:

To make a custom construction plane:

We now want to draw along the chair back, so we will change the construction plane.
1 On the Status Bar, click Osnap, and check End.
2 Change to the Perspective viewport and turn on the Grid, if necessary, by pressing F7.
3 From the View menu, click Set CPlane, and then click 3 Points.
4 For the CPlane origin, pick vertex (1).
5 For X axis direction, pick vertex (2).

6 For the CPlane orientation, pick vertex (3).
The construction plane is aligned with the back of the chair.

To create a named construction plane

1 From the View menu, click Set CPlane, then click Named CPlanes.
2 In the Named CPlanes dialog, click Save.
3 In the Save CPlanes dialog, type ChairBack, then click OK.
You have a custom cplane that can be restored as needed. This custom cplane is saved to the file.

Notes:

To create a named view:

1 From the View menu, click Set View, click Plan.
The view changes. You are looking straight down on the new construction plane.
2 From the View menu, click Set View, click Named Views.
3 In the Named Views dialog, click Save.
4 In the Save Views dialog, type ChairBack, then click OK.

This creates a custom view that can be restored
 as needed.

5 Change back to the Perspective view.
6 From the View menu, click Set View, then click Perspective.
7 Draw some lines on the new construction plane.

To make it solid:

1 Change to the Chair Frame layer.
2 Select the chair frame.
3 From the Solid menu, click Pipe.
4 For the Start and End Radius, type $\mathbf{3}$ and press Enter.
The chair has a solid frame.
5 Save the model.

On your own:
Try some variations and add some features.

Notes:

Analysis Commands

Rhino provides analysis tools for finding lengths, angles, areas, distances, and the volume and centroid of solids. Additional commands let you analyze curve curvature, determine continuity between curves, and find unjoined edges.

Command	Description
Distance	Displays the distance between two points.
Length	Displays the length of a curve object or surface edge. Angle
Radius	Displays the angle between two lines. Measures the radius of curvature of a curve, circle, or arc at the point where you pick the curve and displays it on the command line.
EvaluatePt	The Cartesian coordinates of the point, in both world and construction plane coordinates are displayed on the command line in x, y, z format.

To find the distance between two points:

1 Open the Analyze.3dm that you saved from an earlier exercise.
If you didn't get a chance to save the model, open the Analyze-01.3dm instead.
2 From the Analyze menu, click Distance.
3 Pick the intersection where a diagonal line intersects a vertical line.
4 Pick the intersection where the other diagonal line intersects the same vertical line.

Use object snaps.
5 Press $\mathbf{F 2}$ to display the information.
CPlane angles and deltas: $x y=90$ elevation $=0$
$d x=0 d y=3.077 d z=0$
World angles and deltas: $x y=90$ elevation $=0$
$\mathrm{dx}=0 \mathrm{dy}=3.077 \mathrm{dz}=0$
Distance $=3.077$ millimeters

To find the length of a line:

1 From the Analyze menu, click Length.
2 Select the line between the centers of the circles. Length $=8.000$ millimeters

Notes:

To measure the angle between two lines:

1 From the Analyze menu, click Angle.
2 Select a point that defines the vertex of an angle line.
3 Select a point that defines the end of an angle line.
Use object snaps as appropriate.

4 Select a point that defines the vertex of the second angle line.

5 Select a point that defines the end of the second angle line.
The angle displays on the command line in the following format: Angle $=21.7711$

To measure the radius of a circle:

1 From the Analyze menu, click Radius.
2 Select one of the circles.
This also measures the radius of a point on a curve.
The radius displays on the command line in the following format: Radius $=2.5$

To evaluate a point:

1 From the Analyze menu, click Point.
2 Snap to the end point of the tangent line.
The x, y, z point is displayed for the world coordinate plane and the current construction plane.
Point in world coordinates $=8.203,11.488,0.000$
CPlane coordinates $=8.203,11.488,0.000$

Notes:

Drawing Circles

You can create circles using a center point and radius, center point and a diameter, two points on the diameter, three points on the circumference, and tangent points to two coplanar curves and a radius.

Button	Command	Description
(0)	Circle	Draw a circle using the center and radius.
6	Circle 3Point	Draw a circle through three points on its circumference
8	Circle Diameter	Draw a circle using two diameter points.
(1)	Circle Tangent, Tangent, Radius	Draw a circle tangent to two curves with a given radius.
0	Circle Tangent to 3 Curves	Draw a circle tangent to three curves.
(8)	Circle AroundCurve	Draw a circle perpendicular to a curve at the chosen point.
(-)	Deformable	Draws an approximation of a circle with a defined number of control points..
-2.	Vertical	Draw a circle perpendicular to the construction plane.

Exercise 25-Drawing circles

- Open the Circles.3dm.

Notes:

To draw a center, radius circle:

1 From the Curve menu, click Circle, and then click Center, Radius.
2 For the Center of circle snap to the intersection of the centerlines.
3 For the Radius type 4 and press Enter.
A circle is created around the centerline intersection.

To divide a curve by the number of segments:

For the next part of this exercise, we need to find some specific points to locate the two of the circles. We will use the Divide command to create the points.
1 From the Curve menu, click Point Object, then click Divide Curve by, and then click Number of segments.
2 Select the bottom line as the curve to divide, press Enter.
3 For the Number of segments type 4 and press Enter.
A line is divided into four segments with a point at the end of each segment.

To draw a diameter circle:

1 Turn On the Point osnap.
2 From the Curve menu, click Circle, and then click 2 Points.
3 For the Start of diameter pick snap to the second point from the left end of the line you divided.
4 For the End of diameter type 4 and press Enter, then turn Ortho on and pick to the straight up.

A circle is created with the two points you picked as the diameter, and the diameter was constrained to a value of 4.
5 Repeat these steps for the second diameter circle.

Notes:

To draw a tangent, tangent, radius circle:

1 From the Curve menu, click Circle, and then click Tangent, Tangent, Radius.

2 For the First tangent curve, select the top line.
3 For the Second tangent curve, select the left line.
4 For the Radius, type $\mathbf{2}$ and press Enter.

A circle is created that is tangent to the two lines you selected with a radius of 2 .
5 Repeat these steps for the second TTR circle.

Notes:

To make it 3-D:

1 Select the lines that form the rectangle.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 For the Extrusion Distance, type 2 and press Enter.
The rectangle generates a box.

4 Select the four smaller circles.
5 From the Solid menu, click Extrude Planar Curve, and then click Straight.
6 For the Extrusion Distance type, -6 and press Enter.
The circles generate cylinders.

7 Select the large circle in the center.
8 From the Solid menu, click Extrude Planar Curve, and then click Straight.
9 For the Extrusion Distance ,type 4 and press Enter.
The circle generates a cylinder.

Exercise 26-Using circle-related object snaps

1 Open the Link.3dm.
2 Complete the model as shown.

3 Draw the three large circles first.
Snap to the centerline intersections to place the circles.
4 Draw the small holes next.
Use object snaps to snap to the centers of the large circles

Notes:

To draw the tangent lines:

1 From the Curve menu, click Line, and then click Tangent to 2 Curves.
2 For the first tangent point pick on the edge of one of the circles near where you want the tangent line to attach.
3 For the second tangent point pick on the edge of another circle. Rhino will find the tangent points for you.
4 Continue to use this command to complete the model.

Drawing Arcs

You can create arcs using various points on the arc and construction geometry.
You can continue an existing curve with an arc to an existing curve, to a point or by an angle.

Button	Command
Arc : Start, End, Point on Arc	Draw an arc from three points.

Exercise 27-Practice drawing arcs (1)

- Open the model Arc1.3dm.

To draw a center, start, end or angle arc:

1 From the Curve menu, click Arc, and then click Center, Start, Angle.
2 For the Center of arc snap to the center of the circle at the lower left.
3 For the Start of arc snap to the end of the line.
4 For the End point or angle snap to the end of the other line.

Notes:

To draw a start, end, direction arc:

1 From the Curve menu, click Arc, and then click Start, End, Direction.
2 For the Start point snap to the upper end of the vertical line.
3 For an End point snap to the adjacent end of the horizontal line at the top.
4 Toggle Ortho on and drag straight up for the tangent at the start point and pick.

5 Make another Direction Arc at the upper right.
6 For the Start point snap to the right end of the horizontal line.
For an End point type R2,-2 and press Enter.
8 Toggle Ortho on and drag straight down for the tangent at the start point and pick.

Arc: Start, End, Direction at Start

To add more arc segments using extension option:

1 From the Curve menu, click Arc, and then click Center, Start, Angle.
2 Click Extension on the command line.
3 For the Select near curve end pick near the end of the arc you just made.
4 For the End of arc, type 4 and press Enter.
5 With Ortho on pick a point below the first point. The arc will be tangent to the curve you chose.

Notes:

To add more arc segments using the extension option:
1 From the Curve menu, click Arc, and then click Center, Start, Angle.
2 Click Extension on the command line.
3 For the Select near curve end pick near the end of the arc you just made.
4 For the End of arc, snap to the end of the horizontal line.

To draw a tangent, tangent, radius arc:

1 From the Curve menu, click Arc, and then click Tangent, Tangent, Radius.
2 For the First tangent curve pick the lower right side of the top circle.
3 For the Radius type 3 and press Enter.
4 For the Second tangent curve pick the upper right side of the lower circle.
5 Move your cursor and pick when the correct arc is displayed.

6 From the Curve menu, click Arc, and then click Tangent, Tangent, Radius.
7 For the First tangent curve pick the upper left side of the top circle.
8 For the Radius type 6 and press Enter.
9 For the Second tangent curve pick the lower left side of the lower circle.
10 Move your cursor and pick when the correct arc is displayed.

Extend: By Arc to Point

Arc Tangent, Tangent, Radius

Notes:

To make it solid:

First you will have to trim the two small circles, then you can extrude the remaining curves.
1 Select the two arcs you just completed.
2 From the Edit menu, click Trim.
3 For the objects to trim pick on the inner edge of each small circle.
You will be left with a slot.
4 Use the Circle command to draw the circle concentric to the arc on the right.

5 Select all the curves.
6 From the Solid menu, click Extrude Planar Curve, and then click Straight.
7 For the Extrusion distance type 1 and press Enter.
The curves have been extruded and capped.

Notes:

Exercise 28-Practice drawing arcs (2)

Draw construction centerlines first: use their intersection point to draw your arcs and circles.
1 Start a new model, use the Small Objects Inches.3dm template. Save as Arc2.
2 Create this model using object snaps and the Line, Circle, and Arc commands.

To make it solid:

1 Select the curves.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 For the Extrusion distance type 1 and press Enter.
The curves have been extruded and capped.

Notes:

Drawing Ellipses and Polygons

You can draw ellipses from the center or by the ends. You can draw polygons from a center point or an edge. You can draw a rectangle from diagonal corners or by choosing three points.

Ellipses

Button	Command	Description
Ellipse	Draw an ellipse by specifying the center point and axis ends.	
Ellipse Diameter	Draw an ellipse by specifying the axis ends.	
Ellipse FromFoci	Draw the ellipse from the focus points	
AroundCurve	Draw an ellipse whose axis is perpendicular to a curve.	

Polygons

Button Command Description

Poly	Polygon	Creates a polygon from its center and radius.
Polygon Edge	Draw a polygon by specifying the ends of one edge.	
Polygon options	Draw a star from a polygon.	

Polygon options

Exercise 29-Practice drawing ellipses and polygons

- Start a new model, use the Small Objects Millimeters.3dm template. Save as Toy.

To draw a rectangle from diagonal corners:

1 From the Curve menu, click Rectangle, and then click Corner to Corner.
2 For the First Corner, type -10,-5 and press Enter.
3 For the Length, type 20 and press Enter.
4 For the Width, type 10 and press Enter.

Rectangle

Notes:

Draw rectangles from a center point with a length and width, and rounded corners:
1 From the Curve menu, click Rectangle, and then click Center, Corner.
2 Type R, and press Enter to give the rectangle rounded corners.
3 For the Center of rectangle, type $\mathbf{0}$ and press Enter.
4 For the Length, type 19 and press Enter.
5 For the Width, type 9 and press Enter.
6 For the Radius, type 1, and press Enter.
If you are creating a rounded rectangle, you can choose to select a point in the corner to set its curvature instead of typing a radius value.

To change the type of corner, click Corner on the command line to toggle from circular rounded corners to conic rounded corners.
7 Repeat these steps for a second rounded rectangle with a length of 18 and a width of 8 with .5 radius corners.

To draw an ellipse from its center and axis ends:

1 From the Curve menu, click Ellipse, and then click From Center.
2 For the Ellipse center, type $\mathbf{0}$ and press Enter.
3 For the End of first axis, type 4, and press Enter.
4 Toggle Ortho on and pick to the right.
5 For the End of second axis, type 2.5, and press Enter.
6 Pick a point.

To draw a polygon from its center and radius:

1 From the Curve menu, click Polygon, and then click Center, Radius.
2 Click NumSides on the command line, type 3 and press enter to change the number of sides for the polygon.
3 For the Center, type -7,-2 and press enter to locate the center point for the polygon.
4 For the Corner, type 1.5, and press Enter.
5 Pick a point to orient the polygon.
6 Continue drawing the rest of the polygons. Use the same radius for each one.

(0)

Rectangle: Center, Corner

To make the rounded rectangles solid:

1 Select the larger rounded rectangle.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 Drag it down to set the thickness and click.
4 Select the smaller rounded rectangle.
5 From the Solid menu, click Extrude Planar Curve, and then click Straight.
6 Click Bothsides on the command line.
7 Drag it down until it is slightly above the previous solid and click. The smaller rounded rectangle is protruding out of the larger one.

To make the rounded rectangle hollow:

1 Select the solid outer rounded rectangle.
2 From the Solid menu, click Difference.
3 Select the inner rounded rectangle, and press Enter.

Notes:

0
Extrude closed planar curve

Notes:

To make the rectangle solid:

1 Select the rectangle.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 Set the Bothsides option to No.
4 Drag it up to set the thickness and click.

To cut the ellipse solid from the rectangle:

1 Select the solid rectangle.
2 From the Solid menu, click Difference.
3 Select the solid ellipse, and press Enter.

Notes:

To extrude the polygons:

1 Select the polygons.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 Pick to set the thickness.

To cut holes with the solid polygons:

1 Select the solid rectangles.
2 From the Solid menu, click Difference.
3 On the command line click DeleteInput.
4 For the second set of surfaces or polysurfaces, select the solid polygons and press Enter.
Holes will be cut, but the objects will remain.

Notes:

Modeling Free-Form Curves

The use of free-form curves allows more flexibility to create complex shapes.

Button	Command	Description
7	Curve	Curve by control points draws a curve from specified control points. Control points mostly do not lie on the curve, but they determine its shape.
	InterpCrv	Therpolated curve creates a curve going through specified interpolate points.
	The on the curve and determine its curvature.	

Option	Description
Undo	Allows you to back up one point.
Close	Makes a closed curve.
Autoclose	Move the cursor close to the start point of the curve, and pick. The curve will close automatically. Press ALT to suspend autoclose.
Sharp	If Yes, when you make a closed curve, it will have a kink at the start/end point instead of making a smooth (periodic) closure.
Degree	Allows you to set the degree of the curve.

Exercise 30-Practice drawing curves (1)

1 Open the model Curve.3dm.

In this exercise, you will learn how to make a curve by control points, an interpolated curve, and a conic curve to compare the differences between the three methods.
A common method to create with free-form curves is to draw lines that are accurately measured to use as guidelines or a background image made from a sketch or a photograph. In this exercise the guidelines have been created for one of the exercises and an image has been included for the other exercise.
2 In the Osnap toolbar, check End and Near, clear all others.
If you click End with your right mouse, it will clear all the others.
3 Toggle Ortho and Snap off.

Notes:

To draw a curve by control points:

1 From the Curve menu, click Free-form, and then click Control Points.
2 For the Start of Curve, snap to the end point of the polyline guideline.
3 For the Next point, snap on the polyline guideline using the Near object snap.
4 Continue to snap to the guideline until you get to the end.
5 Press Enter.
A free-form curve is drawn. The control points, while on the guideline, were not on the curve itself except at the two ends.

To draw a curve interpolate through points:

1 Change to the Interpolated Curve layer.
2 From the Curve menu, click Free-form, and then click Interpolate Points.
3 For the Start of Curve, snap to the intersection of the centerline and the image using the Near object snap.
4 For the Next point, continue to pick points along the edge of the image until you get to the other end, then use the Near object snap to snap to the intersection of the centerline and the image.
5 Press Enter.
A free-form curve is created from specified interpolate points. These points lie on the curve and determine its curvature.

To draw a conic curve:

1 Change to the Conic layer.
2 From the Curve menu, click Conic.
3 Snap to the point (1) at the lower left.
4 Snap to the point (2) above and to the right from the previous point.
5 Snap to the point (3) in between the previous points.
6 Pick a point for the desired curvature.

${ }^{y} x$

${ }^{\circ}$
Control Point Curve

Control points control the curvature of the curve, but the points are usually not on the curve.

Curve: Interpolate Points

So
 Conic

Notes:

To make the control point curve into a surface:
1 Select the control point curve.
2 From the Surface menu, click Revolve.
3 For the Start of revolve axis, snap either end of the curve.
4 For the End of revolve axis, snap to the other end of the curve.

5
For the Start angle, click FullCircle.

To make the interpolated curve into a surface:

1 Select the interpolated curve.
2 From the Surface menu, click Revolve.
3 For the Start of revolve axis, snap either end of the curve.
4 For the End of revolve axis, snap to the other end of the curve.
5 For the Start angle, click FullCircle.

Notes:

Modeling Helix and Spiral

The use of free-form curves allows more flexibility to create complex shapes. If you need to control precision, you can make construction lines that define your overall parameters.

Button	Command	Description
${ }^{\text {Cla }}$	Helix	Draw a helix. User can specify a radius, the number of turns, the length and direction of the axis.
(1)	Spiral	Draw a spiral. User can specify two radii, the number of turns, the length and direction of the axis.
Option	Description	
Vertical	The helix or spiral axis will be perpendicular to the construction plane in the active viewport.	
AroundC	Select a curve for the helix or spiral to wind around to create "phone cord" shapes.	
Flat	Lets you draw a planar spiral.	
Mode	Determines whether the number of turns or the distance between turns is used to create the helix or spiral	
Turns	Allows you to set the number of turns along the axis.	
Pitch	Allows you to set the distance between turns along the axis.	
Reverse	Allows you to reverse the twist direction of the helix or spiral.	

Exercise 31-Practice drawing curves (2)

1 Open the model Helix-Spiral.3dm.
In this exercise, you will learn how to make a curve by control points, an interpolated curve, and a conic curve to compare the differences between the three methods.

A common method to create with free-form curves is to draw lines that are accurately measured to use as guidelines. In this exercise the guidelines have been created for you.
2 In the Osnap toolbar, check End and Point, clear all others.
If you click End with your right mouse, it will clear all the others.
3 Toggle Ortho and Snap off.

Notes:

To draw a helix

1 Change to the Helix layer.
2 From the Curve menu, click Helix.
3 For the Start of axis, snap to the end of the vertical line (1) in the Perspective viewport.
4 For the End of axis, snap to the end of the vertical line (2) in the Perspective viewport.
5 Click Mode on the command line until it is set to Mode=Turns.
6 Click Turns on the command line.
7 For the Number of turns, type $\mathbf{1 0}$ and press Enter.

2 From the Curve menu, click Spiral.
3 For the Start of axis, snap to the end of the other vertical line (1) in the Perspective viewport.
4 For the End of axis, snap to the other end of the same line (2).
5 Click Mode on the command line until it is set to Mode=Pitch.
6 Click Pitch on the command line.
7 For the Pitch, type 15 and press Enter.
8 Click ReverseTwist on the command line until it is set to Reverse Twist=Yes.

9 Snap the point (3) for the radius of the base of the spiral.
10 Snap to the other point (4) for the ending radius.
A spiral is created with a reverse twist and a pitch of 15 .

Notes:

To draw a helix around a curve:

1 Change to the HelixAlongCurve layer.
2 From the Curve menu, click Helix.
3 Click AroundCurve.
4 Select the free-form curve.
5 Click Mode=Turns.
6 Click Turns
7 Type 25 and press Enter.
8 Click ReverseTwist=No.
9 For the Radius type 5 and press Enter.
$\mathbf{1 0}$ Pick a point for the Start point
A helix is created around the curve.

Notes:

Exercise 32—Drawing free-form curves

In the following exercise we will draw the guidelines and free-form curves for a toy screwdriver.
1 Start a new model, use the Small Objects - Millimeters.3dm template. Save as Screwdriver.
2 Create Construction and Curve layers.
Make them different colors.

To create the construction lines:

1 Change to the
Construction layer.
2 Draw a Polyline, in the Top viewport, using these dimensions for the guideline.

A good starting point for the Polyline would be $\mathbf{- 7 0 , 0}$.

To create the curve by control points:

1 Change to the Curve layer.
2 Use the Curve command to draw the shape for the toy screwdriver.
3 Save your model.

Notes:

To make it solid:

1 Toggle Snap and Ortho on.
2 Select the curve.
3 From the Surface menu and click Revolve.
4 For the Start of revolve axis, snap to the end of the curve.
5 For the End of revolve axis, snap to the other end of the curve.
6 For the Start angle, click FullCircle.

Your model is now a three-dimensional surface.

Add details on your own:

Since we haven't discussed many of the commands that you need to complete this model, use Command Help for assistance. Following is a list of procedures for one method to finish the model.

1 In the Top view draw a Single Line that will be used to slice the flat part from the screwdriver blade.
2 Extrude the line to make a surface that intersects the blade end.

3 Use the Dir command to check the normal direction of the surface.

4 Make sure the direction arrows are pointing toward the blade. Use the Flip option if needed.

5 Mirror the surface around the origin to get a surface for cutting both sides of the blade.

6 Use the BooleanDifference command to remove the surfaces from the blade.

7 Draw a Curve along the top of the handle to be used for cutting grooves.
If you do this in the Front viewport, you will eliminate any problems that might arise from having one of the slots along the seam of the surface.
8 Use the Pipe command to make a surface on the curve.

9 Use the ArrayPolar command to make copies of the pipe around the handle.

Notes:

10 Use the BooleanDifference command to remove the pipes from the handle.

11 Try using the Render command to make a rendering of the finished screwdriver.

Notes:

Editing Objects

Once you create objects, you can move and edit them to produce complex and detailed variations.

Fillet

Fillet connects two lines, arcs, circles, or curves extending or trimming them to touch or to join with a circular arc.

Option	Description
Radius	Sets the fillet radius. A radius of 0 extends or trims the curves to a corner, but does not create a fillet. Join
Yes, joins the fillet to the curves. No, does not join the fillet to the curves. Trim	Yes, trims the curves to the fillet arc. No, does not trim the curves.

Exercise 33-Fillet

- Open the model Fillet.3dm.

Rules to follow when filleting curves:
The curves must be coplanar.
The created fillet is determined by picking on the curve portion to keep.
The radius cannot be so large that it runs past the end of the curve.

Notes:

To fillet lines at a zero radius:

1 From the Curve menu, click Fillet Curves.
2 Click Radius to change the radius.
3 Type 0, and press Enter.
This Radius option remains the default until you change it.
4 Select an outer vertical line.
5 Select an adjacent horizontal line.
The ends of the lines are trimmed to a corner.

6 Press Enter to repeat the command.
7 Fillet the other corners, as shown.

To join the filleted objects:

1 Select lines you just filleted.
2 From the Edit menu, click Join.
The objects are joined together. Curves join only if they touch.

Notes:

To fillet lines using an arc

1 From the Curve menu, click Fillet Curves.
2 Type 2 and press Enter to change the radius.
This is another method to change the radius
3 Click Join to change the Join option to Yes. This option joins the curves as they are filleted.
4 Select an outer vertical line.
5 Select an adjacent horizontal line.
The ends of the lines are trimmed to a radius.
6 Press Enter to repeat the command.

7 Fillet the other corners as shown.
8 Press Enter to repeat the command.
9 Type 1 and press Enter.
This radius will be used for the smaller object.
10 Select an inner vertical line.
11 Select an adjacent horizontal line.
12 Fillet the other corners as shown.

To fillet circles:

1 From the Curve menu, click Fillet Curves.

2 Type 3 and press Enter.

3 Select the right edge of a circle.
4 Select the right edge of the other circle.

5 Repeat the command for the left side of the circles.
6 Select the two fillets you just created.
7 From the Edit menu, click Trim.
8 For the objects to trim pick on the inner edge of each circle.

To fillet and join arcs and lines:

1 From the Curve menu, click Fillet Curves. Set Join=Yes and Trim=Yes.
2 Select the line in the lower left part of the viewport.
Make sure you pick on the left half of the line.
3 Select the adjacent arc right above the selected line.
4 Repeat this procedure for the two arcs below the line and the arc you just filleted.

Notes:

$\underbrace{8}$

Fillet corners

Blend

Blending is another method to connect lines, arcs, or curves. There are two blend commands that work on curves, Blend (default blend) and BlendCrv (adjustable blend). Blend offers many additional options for how the curves connect.

Option	Description
Perpendicular	When Continuity=Tangent or Curvature, allows you to blend a curve to a surface edge perpendicular to the surface with continuity.
AtAngle	When Continuity=Tangent or Curvature, orients the direction of the blend curve other than perpendicular to the edge.
Continuity	Continuity describes the relationship between curves and surfaces. Types of continuity: Position (G0), Tangent (G1), and Curvature (G2).

To blend two curves:

1 From the Curve menu, click Blend Curves.
2 Select the Curves to blend near the ends that you want to connect. The arcs are connected with a smooth curve. The default continuity is Curvature.
3 Delete the blend curve.

Notes:

To blend two curves with Adjustable curve blend:

1 Since there is no menu pick for this command, type BlendCrv on the command line or select the Adjustable curve blend icon from the Curve Tools toolbar.

2 Select the Curves to blend near the ends that you want to connect.
You will see a preview of the default blend with control points displayed.
3 For the control point to adjust, select the point (1) and drag it further up the curve and click.

4 For the next control point to adjust, select the point to the right of (2), drag it closer to (2) and click.
5 After making your adjustments, press Enter to make the blend.

Notes:

To make a lofted surface with closed curves:

1 Change to the Surfaces layer

2 Select the two squares in the upper left part of the Top viewport.
3 Change to the Perspective viewport.
4 From the Surface menu, click Loft.
The two squares show a seam direction arrow. They should point the same direction.
If the seams don't line up at corresponding points on the two curves, drag the seam point until it does.

5 Press Enter.

6 In the Loft Options dialog box, click OK.
A surface is generated between the two closed polylines.
7 Repeat the procedure for the rounded squares.
8 In the Loft Options dialog box, click OK.
9 Save your model.

Notes:

To make a lofted surface with open curves:
1 Repeat the Loft command for the three open curves.

2 In the Loft Options dialog box, change the Style to Loose, click Preview.

3 Change the Style to Straight sections, click Preview.

4 Change the Style to Normal.

5 For the Cross-section curve options, change to Rebuild with, change the number of control points to 12, click Preview.

6 Change to Refit within, click Preview.

Notes:

Chamfer

Chamfer connects two curves by extending or trimming them to intersect or to join with a beveled line. Chamfer works on convergent or intersecting curves.

Option	Description
Distances	The first chamfer distance specifies the distance from the chamfer end on the first curve to the point where the two curves would intersect. The second chamfer distance specifies the distance of the chamfer end on the second curve to the intersection point.
A chamfer distance of 0 trims or extends that curve to the intersection point. If the chamfer distance is non- zero, a chamfer line is created that far from the intersection, and the curve is extended to the chamfer line. If you enter 0 for both distances, the curves are trimmed or extended to their intersection, but no chamfer line is created.	

Exercise 34-Chamfer

- Open the model Chamfer.3dm.

To chamfer lines:

1 From the Curve menu, click Chamfer.
2 For the Distance, type 1,1, and press Enter, to set the distances.
3 Set Join=Yes.
4 Select one of the inner vertical lines.
5 Select an adjacent horizontal line.
6 Continue creating chamfers on all of the corners.

7 Press Enter to repeat the command.
8 For the Distance, type 3,2 and press Enter.
9 Select one of the outer horizontal lines.
10 Select an adjacent vertical line.
The first value is the distance along the first curve selected, the second value is the distance along the second line selected.

Notes:

11 Continue creating chamfers on all of the corners as shown.

To turn the curves into surfaces:

1 Change to the Surfaces layer.
2 From the Edit menu, click Select Objects, and then click Curves.
3 From the Surface menu, click Loft.
4 Adjust the seam line if necessary, press Enter.
5 In the Loft Options dialog box, click OK.
A surface is generated between the two chamfered rectangles.

Exercise 35-Practice with Fillet and Chamfer

1 Open the model

 Filletex.3dm

2 Use Fillet and Chamfer to edit the drawing as shown.

All fillets and rounds use a radius of 0.5 units.

To make it solid:
1 From the Edit menu, click Select Objects, and then click Curves.
2 From the Solid menu, click Extrude Planar Curve, and then click Straight.
3 For the Extrusion distance, type 1 and press Enter.

To fillet the top edge of the solid:
1 From the Solid menu, click Fillet Edge, and then click Fillet Edge.
2 Change the CurrentRadius to $\mathbf{0 . 2 5}$.
3 Select the edges around the top of the solid, press Enter.

Notes:

Move

Use Move to move objects without changing orientation or size.

Option	Description
Vertical	Moves the selected objects vertical to the current construction plane.

Exercise 36-Move

1 Open the model Move.3dm.

2 Turn off both Ortho and Snap so you can move objects freely.
3 Turn Cen object snap on.

To move using object snaps for placement:

1 Select the small circle at the bottom left side of the Top viewport.
2 From the Transform menu, click Move.
3 For the Point to move from, snap to the center of the small circle.
4 For the Point to move to, snap to the center of the arc at the lower left of the object.

Notes:

To move using absolute coordinates:

1 From the Edit menu, click Select Objects, and then click Curves.
2 From the Transform menu, click Move.
3 For the Point to move from, snap to the end of the line at the lower part of the object.

4 For the Point to move to, type $\mathbf{0 , 0}$ and press Enter.

The end of the line is exactly at point $\mathbf{0 , 0}$ in the Top viewport.

To move using relative coordinates:

1 Select the large slotted circle in the middle of the object. You will move the slotted circle relative to the part.
2 From the Transform menu, click Move.
3 Pick any point in the Top viewport.
It is usually better if you pick near the object you are going to move.
4 For the Point to move to, type r0,-. 25 and press Enter.
The circle moved down . 25 units.

Notes:

Copy

Copy duplicates selected objects and places them in a new location. The command can repeat to create more than one copy in the same command sequence.

Option	Description
Vertical	Copies the selected objects vertical to the current construction plane.
InPlace	Duplicates the object at the current location.

Exercise 37-Copy

To copy using object snaps for placement:

1 Select the small circle at the lower left of the object.
2 From the Transform menu, click Copy.
3 For the Point to copy from, snap to the center of the small circle.
4 For the Point to copy to, snap to the center of the arc at the upper left of the object.

5 Pick to place the object, and press Enter.

To make multiple copies

1 Select the small circle at the lower left of the object.
2 From the Transform menu, click Copy.
3 For the Point to copy from, snap to the center of the small circle.
4 For the Point to copy to, begin picking points on the screen. Each time you pick, a circle will be copied to that location.
5 Press Enter to end the command.
6 Undo the multiple copies.

Undo and Redo

If you make a mistake or do not like the results of a command, use Undo. If you decide you want those undone results back after all, use Redo command. Redo restores the last thing undone.

Rhino Button	Mouse Button	Command	Description
\sim	Left-click or Ctrl+Z	Undo	Cancels the effects of the last command.
	Right-click or Ctrl+Y	Redo	Restores the effects of undo.

The number of undos kept in memory can be set in Rhino Options on the General page.
If a command has an Undo option, type \mathbf{U} to enter it, or click Undo on the command prompt.
You cannot use the Undo command after you exit the modeling session or open a different model.

Rotate

Use Rotate to move objects in a circular motion around a base point. For precise rotation, enter a number of degrees to rotate. Positive numbers rotate counterclockwise; negative numbers rotate clockwise.

Option	Description
Copy	Duplicates the object as it is rotated

Exercise 38-Rotate

1 Select the large slotted circle in the middle of the object.
2 From the Transform menu, click Rotate.
3 For the Center of rotation, snap to the center of the slotted circle.
4 For the Angle, type -28 and press Enter.

Notes:

Notes:

Group

Grouping objects allows all members of the group to be selected as one. You can then apply commands to the entire group.

Rhino Button	Mouse Button	Command	Description
Q	Left-click or Ctrl+G	Group	Makes a group from selected objects.
0	Left-click or Ctrl+Shift+ G	Ungroup	Removes grouping.
Q_{0}	Left-click	AddToGroup	To add objects to a group.
0	Left-click	RemoveFromGroup	To remove objects from a group.
8	Left-click	SetGroupName	To name groups

Exercise 39-Grouping

To group selected objects:

1 Select the two circles that you placed.
2 From the Edit menu, click Groups, and then click Group.

To add objects to a group:

1 Select the polyline on the left, the original circle, and the slotted circle in the center.

2 On the command line type AddToGroup or pick the AddToGroup icon from the Grouping toolbar, press Enter.
3 Select one of the circles in the previous group.
The objects are part of the group.

Notes:

To remove an object from a group:

1 On the command line type RemoveFromGroup or pick the RemoveFromGroup icon from the Grouping toolbar.
2 For the Select objects to remove from group, select the slotted circle, press Enter.
The slotted circle is removed from the group.

Mirror

Mirror creates a copy of the objects flipped over a specified axis on the construction plane.

Exercise 40-Mirror

1 Select the group.
2 From the Transform menu, click Mirror.
3 Type $\mathbf{0 , 0}$ or snap to the end of the line at the lower right of the part.
4 Toggle Ortho on and pick directly above the previous point.
Since you mirrored a group, in addition to having a mirror image

3

Mirror

Ungroup

Notes:

Join

Join unites curves that meet at a common end, making a single curve. Join can unite curves that do not touch, if you select them after the command has started. As you select non-touching curves, a dialog box asks if you want to fill the gap.

Exercise 41-Join

1 Select the two polylines.
2 From the Edit menu, click Join.

Scale

Scale changes the size of existing objects without changing their shape. This command scales three-dimensional objects equally along all three axes. There are also 2 -dimensional, one-dimensional, and non-uniform scale commands.

Option	Description
Copy	Preserves the object as it creates a new scaled one.
Scale factor	Inputs a value for scale factor. Less than one reduces the size, more than one increases the size.

Exercise 42-Scale

1 From the Edit menu, click Select Objects, and then click Curves.
2 From the Transform menu, click Scale, and then click Scale 2-D.
3 For the Origin point, type $\mathbf{0}$ and press Enter.
4 For the Scale factor, type . 75 and press Enter.
The whole part scaled to 75 percent of its original size.

To scale using the reference point option:
1 Select the slotted circle.
2 From the Transform menu, click Scale, and then click Scale 2-D.
3 For the Origin point, snap to the center of the slotted circle.
4 For the First reference point, snap to the quadrant of the slotted circle.

The radius of the slotted circle is the reference for the scale factor.

5 For the Second reference point, type 1.375 and press Enter.
The slotted circle now has a larger radius of 1.375 . Everything else was scaled proportionally.

To make it solid:

1 From the Edit menu, click Select Objects, and then click Curves.
2 From the Solid menu, click Extrude Planar Curves, and then click Straight.
3 For the Extrusion distance, type 1 and press Enter.

Notes:

To scale in 3-D:

1 From the Edit menu, click Select Objects, and then click Polysurfaces.
2 From the Transform menu, click Scale, and then click Scale 3-D.
3 For the Origin point, type $\mathbf{0}$ and press Enter.
4 For the Scale factor, type 1.5 and press Enter.
The solid is larger in every dimension.

To scale in one dimension:

1 From the Edit menu, click Select Objects, and then click Polysurfaces.
2 From the Transform menu, click Scale, and then click Scale 1-D.
3 For the Origin point, type $\mathbf{0}$ and press Enter.
4 For the First reference point, snap to the Perpendicular point at the
 top of the part.

5 For the Second reference point, type . 5 and press Enter. The object is half as thick.

Notes:

Array

Use the Array commands to make multiple copies of selected objects. Array Rectangular makes rows and columns of objects. Array Polar copies objects in a circle around a center point

Exercise 43_Polar Array

To create a polar array:

1 Open the model Array.3dm.
2 Select the small circle in the Top viewport.
3 From the Transform menu, click Array, and then click Polar.
4 For the Center of polar array, snap to the center of the large circle.
5 For the Number of items, type $\mathbf{1 0}$ and press Enter.
6 For the Angle to fill, check to see if it is set to 360, press Enter.

The small circle is arrayed around the larger one.
7 Save your model.

To make the shape for the column:

1 Window select the circles.
2 From the Curve menu, click Curve Edit Tools, then click Curve Boolean.
3 For the Regions to keep, click inside the large curve.
The inside of the circle, excluding the smaller circles is shaded.
4 On the command line, click DeleteInput, click All, press Enter.

Notes:

To make the column:

1 Select the new polycurve.
2 From the Solid menu, click Extrude Planar Curve, then click Straight.
3 For the Extrusion distance, type 14, press Enter.

To make a partial polar array:

1 Turn on the Base layer.
2 Select the column base, the column, and the column cap.
3 From the Edit menu, click Groups, then click Group.
The three parts are grouped into one.
4 Select the group.
5 From the Transform menu, click Array, and then click Polar.
6 For the Center of polar array, type $\mathbf{0}$, press Enter.
7 For the Number of items, type 6 and press Enter.

8 For the Angle to fill, type -180, press Enter.
Six columns are arrayed to fill 180 degrees in the negative direction.

Notes:

To create a rectangular array:

1 Select the same column group as the last exercise.
2 From the Transform menu, click Array, then click Rectangular.
3 For the Number in \mathbf{X} direction, type 4, press Enter.
4 For the Number in Y direction, type 4, press Enter.
5 For the Number in \mathbf{Z} direction, type 1, press Enter.
6 For the \mathbf{X} spacing, type 12 and press Enter.
7 For the \mathbf{Y} spacing, type 12 and press Enter.
The columns are visible.

8 At this stage you can change the number in each direction or the spacing.
If you need to make a change, click the option in the command line and then make the adjustment.
9 Press Enter to accept.
10 Turn on all the layers to see the result.

Notes:

Trim

Trim cuts and deletes portions of an object to make it end precisely at its intersection with another object.

Exercise 44-Trim

In this exercise, we will to pre-select the cutting objects.

To trim curves:

1 Open the model Trim-Split.3dm.
2 Zoom Window around the grid in the lower left corner of the Top viewport.
3 Pre-select the cutting objects by selecting the two outside vertical lines in the grid.
4 From the Edit menu, click Trim.
5 Select each of the horizontal lines at their left and right ends.
The lines are trimmed to the cutting edges.
6
6 Press Enter.

To trim surfaces:

1 Zoom Window around a sphere and surface in the Perspective viewport.

2 Select the surface that intersects the sphere in the Perspective viewport as the cutting object.

3 From the Edit menu, click Trim.

4 For the Object to trim, pick the right side of the sphere.
The sphere is trimmed at the surface.

5 Press Enter

Notes:

Split

Splits one object with another into objects, splits a curve at a point you specify. The Split command breaks the object where it intersects the cutting object but does not delete anything.

Exercise 45-Split

In this exercise, we will to pre-select the object or objects we are going to split.

To split a curve:

1 Zoom Window around the closed curve in the lower right corner of the Top viewport.
2 Select the closed curve.
3 From the Edit menu, click Split.
4 Select the lines and press Enter.
The curve is separated into four curves precisely where the lines intersect it.

To split a surface:

5 From the View menu, click Zoom, and then click Extents All.
6 From the Edit menu, click Split.
7 Select the sphere, and press Enter.

8 Select the surface that intersects the sphere and press Enter.
The sphere is separated into two pieces precisely where the surface intersects it.

Notes:

Extend

Extend lengthens an object to make it end precisely at its intersection with another object or you can lengthen an object when there is no intersection.

Exercise 46-Extend

1 Open the model Extend.3dm.
2 From the Curve menu, click Extend Curve, and then click Extend Curve.

3 For the boundary objects, select the line at the left and the curve at the
 right.

4 Press Enter.
5 For the curve to extend, select the left end of the line and the middle curve. The line and curve extend to touch the boundary edge on the left.

6 For the next curve to extend, click Type=Natural on the command line.
7 Change to Type=Line.
8 Select left end of the bottom curve and the right end of the line.
The curve and line extend to touch the boundary. The extension is a straight segment.

Notes:

9 For the next curve to extend, click Type=Line on the command line.
10 Change to Type=Arc.
11 Select the right end of the middle curve.
The curve extends with a tangent arc to touch the boundary.

12 For the next curve to extend, click Type=Arc on the command line.
13 Change to Type=Smooth.
14 Select the right side of the bottom curve.
The curve extends with a curvature (G2) continuous extension to touch the boundary.

15 Press Enter to end the command.

To extend with a set extension length:

1 From the Curve menu, click Extend Curve, and then click Extend Curve.
2 Enter extension length, type 4 and press Enter.
3 Select the upper end of the curve on the right. The curve extends exactly 4 units.

4 Press Enter to end the command.

To extend a curve dynamically:
1 From the Curve menu, click Extend Curve, and then click Extend Curve.
2 Press Enter for a dynamic extension.
3 Select the lower end of the curve on the right.

The curve continues with the cursor.
4 Click to end the extension.
5 Press Enter to end the command.

To extend to a surface:

1 From the Curve menu, click Extend Curve, and then click Extend Curve.
2 For the boundary objects, select the cylinder on the left and the surface on the right.
3 Press Enter.
4 Change the type to Type=Arc.
5 Select both ends of the line and the curve.
The curves extend to the surface of the cylinder and to the surface.

Notes:

Offset

Offset creates an object parallel or concentric to another object. Use Offset to create specialized copies, such as parallel lines, concentric circles, and concentric arcs, through specified points or at pre-set distances.

Exercise 47-Offset

1 Open the model Offset.3dm.
2 Maximize the Top viewport.
3 Select the line.
4 From the Curve menu, click Offset Curve.
5 For the Side to offset, pick on the upper right side of the line.
A parallel line is created.

To offset with the through point option:

1 Turn on the End osnap.
2 Select the circle.
3 From the Curve menu, click Offset Curve.
4 For the Side to offset, pick click Throughpoint on the command line.
5 For the Thoughpoint, snap to the lower right end of the line you offset.
A concentric circle is created that goes through the endpoint of the line.

Notes:

To offset a polyline with sharp corners:

1 Select the polyline.
2 From the Curve menu, click Offset Curve.
3 Type 1 and press Enter to change the offset distance.
4 For the Side to offset, pick inside the polyline.
The polyline is offset with sharp corners.

To offset a polyline with round corners:

1 Select the polyline.
2 From the Curve menu, click Offset Curve.
3 Click Corner=Sharp on the command line.
4 Change the type to Corner=Round.
5 Pick outside the polyline.
The polyline is offset, but the corners are rounded with arcs.

Other corner options include Smooth and Chamfer. Smooth makes a tangent curve that is smoother than an arc at each vertex, while Chamfer makes a
 bevel at each vertex.

To offset a curve with the bothsides option:

1 Select the free-form curve.
2 From the Curve menu, click Offset Curve.
3 Click Bothsides on the command line.
4 For Side to offset, pick on either side of the curve.
Free-form curves are created on both sides of the selected curve.
5 Repeat this process on the arc.
Concentric arcs are created on both sides of the selected arc.

Notes:

To offset a surface:

1 Select one of the open surfaces.
2 From the Surface menu, click Offset Surface.
3 Place your cursor over the surface and click your left mouse button.
Notice that the direction of the arrows changed. The normal direction of the surface was flipped by the mouse click. If you have a positive number for offset distance, the surface will be offset in the direction of the normal. If you have a negative number it will offset the opposite direction.

4 Press Enter.

The surface is offset in the direction of the normals.

The normals should point toward the concave side of the surface.

Notes:

To offset a surface to a solid:

1 Select the other open surface.
2 From the Surface menu, click Offset Surface.
3 Click on the surface to change the normal direction if necessary.
4 Choose the Solid option.
5 Press Enter to create the offset surface and the surfaces needed to make the solid.

To offset a polysurface:

Offsetting polysurfaces usually doesn't give the desired results. In this example we will demonstrate some of the problems.

1 Select the cylinder.
2 From the Surface menu, click Offset Surface.
The normals on a closed polysurface will always point to the outside.
3 Press Enter.
Each surface of the polysurface is offset as a separate piece.

Exercise 48-Practice

1 Start a new model, use the Small Objects - Inches.3dm template. Save as Gasket1.

2 Use Circle, Arc, Trim, Fillet, and Join to create the part shown.
3 Use Extrude Planar Curve > Straight on the Solid menu to create the 3-D part. The extrusion thickness is . 125

Exercise 49-Practice

1 Start a new model, use the Small Objects - Inches.3dm template. Save as Cam.

2 Use Circle, Arc, Line, Trim, Join, and Array to draw the part shown.
3 Use Extrude Planar Curve > Straight on the Solid menu to create the 3-D part. The extrusion thickness is $\mathbf{0 . 5}$.

Notes:

Exercise 50-Practice

1 Start a new model, use the Small Objects Inches.3dm template. Save as Link.

2 Use Line, Arc, Trim, Offset, Join, Fillet and Circle to draw the part shown.
3 Use Extrude Planar Curve > Straight on the Solid menu to create the 3-D part. The extrusion thickness is $\mathbf{0 . 5}$.

Exercise 51-Practice

1 Start a new model, use the Large Objects - Inches.3dm template. Save as Building.
2 Use Line, Arc, Trim, Offset, Curve, Fillet and Circle to draw the layout of the building shown.

Notes:

You can display the control points or the edit points of an object so that you can adjust the shape of an object, rather than manipulating the whole object at once. That is called control point editing.
You can use point editing on meshes, curves, and surfaces, but not on polysurfaces or solids.
Rhino's curves are represented internally with non-uniform rational B-splines (NURBS). Three things determine the shape of a NURBS curve:

- A list of points called control points
- Degree
- A list of numbers called knots

If you change any of these things, it changes the shape of the curve.
A few facts about control points, edit points, and knots

- Control points do not have to be on the curve.
- Edit points are always on the curve.
- Rhino lets you edit curves and surfaces by moving control points and edit points.
- Knots are parameters (that is, numbers, not points).
- Adding knots to a curve or surface lets you control the movement of the object during control-point editing.

Exercise 52-Control point editing

In this exercise we are going to experiment with moving control points. Understanding how curves and lines react when control points are moved is very important to understanding NURBS modeling.

To edit control points:

1 Open the model Control Point.3dm.
There are pairs of curves with different degrees in the model.
2 Turn Ortho and Snap on.
3 From the Edit menu, click Select Objects, and then click Curves.
4 From the Edit menu, click Control Points, and then click Control Points On. (Press F10.)

5 In the Front viewport, select the middle row of points.
6 Drag the points vertically, 8 units.
Notice that the degree 1 curves (polylines) come to a point at each moved control point and the control points are exactly on the curve.
The degree 3 and 5 curves are smooth. The degree 3 curves have more curvature than the degree 5 curves

Individual points have more influence on a small area of the curve with degree 3 curves, while points have greater influence over a wider span of the curve with degree 5 curves.

To check the differences:

1 Turn off the control points by pressing the F11 key or use the Esc key.
2 Turn the Plane layer on.
3 Select the curves and the plane.
4 From the Curve menu, click Curve from objects, then click Intersection.
Lines are shown on the surface showing the intersections.

5 Note the difference between the degree 3 and 5 curves.
The higher the degree, the greater the influence over the span of a curve, when you edit control points.
As you can see by the illustration, editing one point out of 11, on the degree 5 curve, influenced most of the curve. The degree 3 curve has a sharper curvature, because the influence of one point takes place over a shorter span.
6 Undo twice, until you get back to seeing just the curves.
The intersections will disappear, and the Plane layer is off.

To continue editing control points:

1 In the Front viewport, select the third two rows of points on either side of the center.
2 Drag the points vertically, 5 units.
3 Turn off the control points by pressing the F11 key or use the Esc key.
When a curve or polyline bends at a point, like this, it is called a kink.
If you create a surface from a curve that has a kink, it will have a seam at the kink.

To make a lofted surface:

1 Select the curves.
2 From the Surface menu, click Loft.
3 In the Loft options dialog box, click OK.
Because the degree 1 curves were included in the loft, a polysurface is created with a seam at each kink.
4 Select the surface.
5 Turn on the control points.
The points do not turn on and the following message is displayed on the command line: Cannot turn on points for polysurfaces.
6 Undo the loft.

To change the polylines into curves without kinks:

1 Select both polylines.
2 From the Edit menu, click Rebuild.
3 In the Rebuild Curve dialog box change the point count to $\mathbf{1 1}$ and the degree to 3, and click OK.
A degree 3 curve cannot have kinks. The curve smoothes and changes shape.

గٌ응
 Rebuild

To loft a surface over the curves

1 Select all of the curves.
2 From the Surface menu, click Loft.
3 In the Loft Options dialog box, click OK.
A single surface appears over the curves. The surface can be edited with control points.
4 Select the surface.
5 Turn on the control points.
Note that there are more control points than what you started with. Rhino adds control points to make the surface conform the original curves.

To rebuild a surface:

1 Turn off the control points.
2 Select the surface.
3 From the Edit menu, click Rebuild.
4 In the Rebuild Surface dialog, change the point count to $\mathbf{8}$ in U direction and $\mathbf{1 3}$ in the V direction. Change the degree to $\mathbf{3}$ for both U and V. Check Delete input.
The surface is smoother with fewer control points.

Nudge Controls

Another method to move control points and other geometry in a more subtle way is to use the Nudge keys. The nudge keys are the arrow keys on the keyboard activated with the Alt, Alt+Ctrl, and Alt+Shift keys.

To change the nudge settings:

1 From the Tools menu, click Options.
2 In the Options dialog box, on the Modeling Aids page, note the Nudge settings.
Any of these values can be changed.

To use Nudge keys to move control points:

1 Select one or two control points in the Front viewport.
2 Hold down the Alt key down and press an arrow key.

Notice that it moves (nudges) the point a small amount.
3 Hold the Alt and the Ctrl key down and press another arrow key.

The movement is much smaller.
4 Hold the Alt and the Shift key down and press another arrow key.

The movement is magnified.
5 Hold the Alt and press the PageUp or PageDown key to nudge in the \mathbf{Z} direction.

To use set points to adjust points:

1 Select all the points in one row along the top of the surface.

2 From the Transform menu, click Set Points.

3 In the Set Points dialog box, check

4 In the Right viewport move the points and click.
The control points are aligned in the World Z direction.
5 Repeat this on some of the other rows of points.

Exercise 53-Practice with curves and control point editing

1 Start a new model, use the Small Objects Millimeters.3dm template. Save as Glass.
2 Use the Curve command to create a half crosssection of the glass.
3 Use control point editing to adjust the curve until you get the desired shape.

To make it 3-D

1 From the Surface menu, click Revolve.
2 Select the curve you created, and press Enter.

3 For the Start of revolve axis, pick one end of the curve.

4 For the End of revolve axis, pick the other end of the curve.

5 For the Start Angle, click Deformable=Yes.
This changes the structure of the revolved surface to make it easier to deform without creating kinks.
6 For the Start Angle, click FullCircle.
7 Save your model.
8 Experiment with adjusting the control points to see what happens.

9 Incremental Save your model.
10 Delete the surface.

11 Change the original curve and make another revolved surface.

12 Incremental

 Save your model.

Part Three: 3-D Modeling and Editing

Notes:

Creating Deformable Shapes

When building models in Rhino, you should first determine which methods should be used for each part of the project. There are two basic ways to model in Rhino-free-form and accurate. Some models require more attention to exact dimensions because they might have to be manufactured or parts may have to fit together. Sometimes it is the shape of the object, not the accuracy that is important. These techniques can be merged together to create accurate, free-form shapes. This tutorial focuses only on the free-form, squishy aspect. The exact size and placement of the objects is not critical. The overall form is the main objective.
This exercise shows:

- Simple surface creation
- Surface rebuilding
- Control point editing
- Curve creation (drawing, projecting)
- Splitting surfaces with curves and surfaces
- Blending between two surfaces
- Lighting and rendering

When you model the rubber ducky, you will use similar modeling techniques for the head and the body. You will create spheres that will be deformed to make the shapes.
If you need to know more about control points and surfaces, search the Rhino Help index for "control points."

Notes:

Exercise 54-Creating a rubber duck

1 Start a new model, use the Small Objects - Millimeters.3dm template. Save as Duck.
2 You can use layers to separate your parts, but for this model, it is not necessary.
For more information about layers, look up "layer" in the Rhino Help index.

Create the body and head shapes

The body and head of the ducky are created by modifying two spheres. The size and placement of the spheres does not need to be exact.

To create the basic shapes:

1 From the Solid menu, click Sphere, and then click Center, Radius.
2 Pick a point in the Front viewport.
3 Pick another point in the same viewport to create a sphere.
4 Repeat this procedure for the second sphere.

Notes:

To make the spheres deformable:

1 Select both spheres.
2 From the Edit menu, click Rebuild.
3 In the Rebuild Surface dialog box, change the Point Count to 8 for both \mathbf{U} and v.

4 Change the Degree to 3 for both \mathbf{U} and \mathbf{V}.
5 Check Delete Input, clear Current Layer, and click OK.
The spheres are now deformable. Having more control points allows more control over smaller parts of the surface. A degree-three surface will have a smoother shape when deformed.

Rebuild Surface

Notes:

To modify the body shape:

1 Select the large sphere.
2 From the Edit menu, click Control Points, and then click Control Points On.
3 In the Front viewport select the control points

- Align to World

C Align to CPlane

> OK Cancel near the bottom of the sphere.
To window select, drag a box left to right around the control points.
4 From the Transform menu, click Set Points.
5 In the Set Points dialog box check Set Z, and Align to World as illustrated above.

6 Drag the selected control points up, snap to one of the upper most points.
This aligns all of the selected control points to the same world z-value (vertical in Front viewport), flattening the surface.

To scale the sphere shape:

1 Turn off control points and select the body shape.
2 From the Transform menu, click Scale, and then click Scale1D
3 For the Origin point, pick a point near the center of the body sphere.
4 For the First reference point, with Ortho on, pick a point to the right in the Front viewport.

5 For the Second reference point, pick a point

$\overbrace{0}^{0}$

Control Points On

$\stackrel{\substack{\circ \rightarrow 0 \\ 0 \rightarrow 0}}{\substack{\rightarrow 0}}$

Set XYZ Coordinates

Notes:

To reshape the chest and tail

1 Turn the control points on.
2 Window select the control points at the top right of the body, and drag them to the right to bulge out the chest.

3 Window select the control points at the upper left edge of the body, and drag them up to form the tail.
Notice in the Top viewport that two control points are selected, though in the Front viewport, it looks like only one is selected. This is because the second control point is directly behind the one you can see in the Front viewport.

Notes:

To add control for further shaping the tail:

Before we start to edit the tail further, we will add an additional set of points to the tail portion of the body.

1 From the Edit menu, click Control Points, and then click Insert Knot.
2 For the Surface for knot insertion, pick the body surface.
A surface isocurve will be displayed. It will either be in the U or the V direction.
3 Change the direction if necessary.
4 For the Point on surface to add knot, pick a point midway between the tail and the center of the body.

5 Press Enter to end the command.
A new set of isocurves and a new row of points have been added to the body.
6 Window select the control points at the upper part of the new isocurve, and drag them down to further form the tail and the body.
7 You can adjust the control points further until you get the shape you want.
8 Save your model.

Notes:

To create the head:

1 In the Front viewport, select the small sphere.
2 From the Edit menu, click Control Points, and then click Control Points On.
3 Select the control points on the right side and drag them to begin forming the bill.

4 Window select the control points further back on the same isocurve and drag them forward to widen the bill.

5 Window select control points at the top of the bill and drag them down as shown.
6 Press Esc to turn control points off.

Remember to use a window to select the control points. There may be multiple control points in the same location in this view.

Notes:

Separate the bill from the head

For the final rendering, the bill must be a different color from the body. To do this, they must be separate surfaces. You can split a single surface into multiple surfaces many ways. The following technique is just one.

To split a surface with a curve:

1 In the Front viewport create a curve that looks like the illustration on the right.
2 Select the head.
3 From the Edit menu, click Split.
4 For the Cutting object, pick the curve you just created.
5 Press Enter.
The bill and head are now separate surfaces.
This will allow you to render the surfaces with different colors.

Notes:

Create the duck's neck

The ducky needs a neck. You will first make an edge on the surface of the head and a corresponding edge on the surface of the body so you can create a blended surface between the two edges.

To trim the head and the body:

1 Draw a Line across the bottom of the head.
2 Make a copy of the line and adjust it so that it intersects the top of the body as illustrated on the right.
It is important that the lines intersect the bottom of the head and the body completely.
Select the lines.
From the Edit menu, click Trim.

5 For the Object to trim, pick the bottom of the head and the top of the body.
The bottom of the head and the top of the body is trimmed.

6 Save your model.

Notes:

To create the blend surface between the head and body:

1 From the Surface menu, click Blend Surface.
2 For the Segment for first edge, pick the edge curve at the bottom of the head.

3 If the whole edge is not selected, click All on the command line.
4 Press Enter to go to the next stage of the command.
5 For the Segment for second edge, pick the edge curve at the top of the hole in the body.
6 If the whole edge is not selected, click All on the command line.
7 Press Enter to go to the next stage of the command.

8 In the Blend Bulge dialog box, check the Preview check box.
The blend surface between the body and the head is displayed.
9 Make any adjustments you desire by moving the slider bars in the dialog box, click OK when
 finished.
If you check the box at the left of the sliders the surface adjustments are symmetrical.
10 Save your model.

To join the parts:

1 Select the body the blend surface and the back of the head.
2 From the Edit menu, click Join.
The three surfaces are joined into one. The bill is left separate for rendering purposes.

Notes:

To make an eye:

For this part of the exercise we will make a curve and revolve it to get the surfaces for the eye.
1 Toggle Ortho and Snap on to help.
2 From the Curve menu, click Conic.
3 In the Front or Right viewport make a conic curve as illustrated.
Start of Conic (1), End of Conic (2), Apex (3), Curvature point.

4 Use SmartTrack, with Point, End and Int osnaps on, to help place the two points as illustrated.
These points will be used for placement of the eye on the head.

5 From the Curve menu, click Point Object, then click Multiple Points.
6 For the Location of point object, hover over the end of the conic until the point activates, drag you cursor down and click to place the point.
The point should be placed above the lower end of the conic.
This will be the insertion point for eye.
7 For the Location of point object, hover over the point you just made until the point activates, drag you cursor left and click when you reach the intersection point.
This point is for scaling and rotating the eye.

Notes:

To split the curve:

1 Draw a line that intersects the conic
2 Select the conic curve,
3 From the Edit menu, click Split.
4 For the Cutting object, select the line.
Splitting the curve allows you to assign a different color and material properties for the eye and the pupil.
This step can be done at this stage or after you make the surface.

To make the surface:

1 Select both parts of the conic curve.
2 From the Surface menu, click Revolve.
3 For the Start of revolve axis, snap to the point.
4 For the End of revolve axis, snap to the end of the conic.
5 For the Start Angle, click FullCircle.

Notes:

To assign display color and material color:

1 Select the top of the eye.
2 From the Edit menu, click Object Properties.
3 For the Display color, choose a contrasting color.
4 In the Properties window, on the Material page, click Basic, click on the Color button, and select a color for the pupil of the eye, like black.
5 Repeat these steps for the lower part of the surface. Set the color for both object display and material to white.

Object Properties

To place the eye on the head:

1 In the Top viewport, select both parts of the eye.
2 From the Edit menu, click Groups, then click Group.
The eye parts are grouped as one object.
3 Select the group.
4 From the Transform menu, click Orient, then click On Surface.
5 For Reference point 1, snap to the point at the center of the eye.
6 For Reference point 2, snap to the point at the edge of the eye.
7 For Surface to Orient on, pick the head.

Notes:
8 In the Orient on Surface dialog, check Uniform and Rigid, click OK.
9 For the Point of surface to orient to, pick a point on the head.

10 Mirror the eye to the other side of the head.

Render a picture of the ducky

Rendering creates a "realistic" picture of your model with colors you assign. These render colors are different from the layer colors you might be using, which control the display in wireframe and shaded mode.

To render the ducky:

1 Select the beak.
2 From the Edit menu, click Object Properties.
Render
3 In the Properties window, on the Material page, click Basic and click the color swatch.
4 In the Select Color dialog box, select a color for the beak, like orange.
5 Select the body.
6 From the Edit menu, click Object Properties.
7 In the Properties window, on the Material page, check Basic and select a color for the body, like yellow.
8 From the Render menu, click Render.

Notes:

Modeling with Solids

Modeling solids in Rhino is easy. There are several commands that enable you create and edit solid objects. Solids in Rhino are closed surfaces or polysurfaces that enclose a volume. Some of the solid primitives are closed single-surfaces carefully edge-matched, others are polysurfaces.
Rhino's polysurface objects are deformable by using the new UDT (Uniform Deformation Technology) tools. You can also extract surfaces and deform the surfaces with control point editing like the last exercise.
In this part of the class we will focus on making some solids, separating the parts, making changes and then joining the parts back together to make a solid.

Button	Command	Description
\square	Box	Draw a rectangular box from two diagonal corners and a height.
	Box 3Point	Draw a box from two adjacent corners, a point on the edge across from them, and a height.
0	Sphere	Draw a sphere from a center point and a radius.
	Sphere 2Point	Draw a sphere from the two ends of a diameter.
	Sphere 3Point	Draw a sphere from three points on its surface.
\bigcirc	Cylinder	Draw a solid cylinder from a center point, a radius, and a height.
-	Tube	Draw a solid tube from a center point, two radii, and a height.
Δ	Cone	Draw a solid cone from a base point, a base radius, and a height.
0	TCone	Draw a truncated cone that ends in a circular plane from a base point, two radii, and a height.

Notes:

Button	Command	Description
8	Ellipsoid	Draw an ellipsoid from a center point, and three axis endpoints.
Draw a solid Torus from a center point, a radius for the center of the tube, and a tube radius.		

Exercise 55- Model a bar with text

In the following exercise we will make a solid primitive, extract some surfaces, rebuild a surface and deform it, join the new surfaces into a solid, fillet the edges, add text to a surface, and do a Boolean operation on the solid.

1 Start a new model using the Small Objects - Millimeters template. Save as Bar.
2 From the Solid menu, click Box, and then click Corner to Corner, Height.
3 For the First corner type 0,0 and press Enter.
4 For the Length type 15 and press Enter.
5 For the Width type 6 and press Enter.
6 For the Height type 1 and press Enter.

Notes:

To edit a surface:

1 From the Solid menu, click Extract Surface.
2 For the Surface to extract, select the top and both end surfaces, press Enter.
3 Select the two ends and delete them.

4 Select the top surface.
5 From the Edit menu, click Rebuild.
6 In the Rebuild Surface dialog box, set the Point count to 4 and the Degree to $\mathbf{3}$ for both \mathbf{U} and \mathbf{V}, click OK.
7 Press F10 to turn Control Points On.

ก는

Rebuild Surface
\sum_{0}^{n}
Control Points On

8 In the Right viewport, window select the middle points.
9 Drag the points up approximately one unit.
$\mathbf{1 0}$ Press F11 to turn Control Points Off.

Notes:

To make the bar solid:

1 Select all of the surfaces.
2 From the Edit menu, click Join.
The surfaces are joined making an open polysurface.
3 Select the polysurface.
4 From the Solid menu, click Cap Planar Holes. Two end caps are created.

To fillet the edges:

1 From the Solid menu, click Fillet Edge, and then click Fillet Edge.
2 Set the Current Radius=1.0.
3 For Select edges to fillet, pick the four vertical edges, press Enter.
4 For Select fillet handle to edit, press Enter.

5 Repeat the Fillet Edge command.
6 Set the Current Radius=0.2.
7 For Select edges to fillet, window select the entire bar to get the horizontal edges, press Enter.
8 For Select fillet handle to edit, press Enter.

Notes:

To make a copy of the bar on a different layer:

We need to make a copy of the finished bar for the next part of this exercise. On one of the copies we will engrave text, on the other we will emboss text.
1 Select the finished bar.
2 From the Edit menu, click Layers, then Copy objects to layer.
3 In the Select layer to copy objects dialog, pick Layer 01 and click OK.
4 Turn Layer 01 off.

To make solid text:

1 Change the layer to Layer 02.
2 From the Solid menu, click Text.
3 In the Text Object dialog box, select a bold Font, like Arial Black.
Under Create click Solids.
Under Text size, set the Height to 3.00, the Solid thickness to $\mathbf{1 . 0 0}$, check Group objects, click OK.
4 For the Insertion point position the text in the center of the bar in the Top viewport and click.
5 In the Front or Right viewport, drag the text until it protrudes through the top surface.

Notes:

To engrave the text in the bar:

1 Select the bar.
2 From the Solid menu, click Difference.
3 For Select second set of surfaces or polysurfaces, set DeleteInput=Yes, select the text, press Enter.
The text is engraved into the bar.

Using a model for illustration

Occasionally you will want to use your 3-D model for illustration purposes. In this case we're going to divide the top surface into pieces. Each piece can then be assigned a material property. When the part is rendered or displayed in a rendered viewport, it will appear like a label.

To make a label:

1 Turn Layer 01 on and turn the Default layer off.
2 From the Solid menu, click Extract Surface.
3 Select the top surface, press Enter.
4 Select the lower part of the bar and Lock it.
5 Make the Top viewport active.
6 From the Solid menu, click Text.
7 In the Text Object dialog box, under Create, click Curves, click OK.

8 For the Insertion point position the text in the center of the bar in the Top viewport and click.

Notes:

To split the top surface of the bar with the text:

1 In the Top or Perspective viewport, select the extracted top surface.
2 From the Edit menu, click Split.
3 Select the text curves, press Enter.
Since the Group objects box was checked when you created the text, you can pick all of the text by clicking on one element.
The curves have split the surface. Each part of the text is a separate surface.
4 Hide the original text curves.

5 Select the text surfaces.
Remember to leave the center of letters like R and O out of the selection set.
6 From the Edit menu, click Group, and then click Group.
The text surfaces are now grouped for easier selection.
7 Select the group.
8 In the Properties window, on the Material page, click Basic and select another color for the text.
9 Right click on the Perspective viewport title.
10 Select Rendered from the popup menu.
The letters render in a different color.

To emboss the text in the bar:

1 From the Edit menu, click Select Objects, and then click Previous Selection.
This selects the text surfaces again.
2 From the Solid menu, click Extrude Surface, and then click Straight.
3 For the Extrusion distance, click Bothsides=Yes, Cap=Yes, and DeleteInput=Yes on the command line.
4 For the Extrusion distance, type . 1 and press Enter.
The surfaces are extruded perpendicular to the active construction plane by .1 in both directions. Notice that the top of the text follows the curvature of the original surface and the bottom of the text penetrates into the bar.

Notes:

Boolean Union

Notes:

Creating Surfaces

A Rhino surface is similar to a piece of stretchy fabric. It can take on many different shapes.
Surfaces are bounded by curves called edges. To visualize the surface shape Rhino displays a grid of isoparametric curves (isocurves) on the surface.
Surfaces have an area, their shape can be changed by moving control points, and they can be meshed.

Button	Command	Creates a surface by picking three or four points in space for corners.
Creates a surface by selecting two, three, or four existing curves whose ends meet exactly.		

Notes:

Button	Command	Description
ExilRevolve	Revolves a shape curve holding one end along a rail curve. This command is very useful for putting a smooth end cap on an irregularly shaped surface. Extrudes a curve perpendicular to the construction plane with option to taper the surface with a draft angle.	
ExtrudeCrvalongCurve	Extrudes a curve following along a second curve.	
Plane	Extrudes a curve to a point.	
Plane 3Point	Creates a rectangular planar surface parallel to the construction plane from two diagonal points. Creates a rectangular planar surface from 3 points.	
	Creates a rectangular planar surface from 3 points that is vertical to the construction plane.	

Exercise 56-Basic techniques for making surfaces

In this exercise, you will model some simple surfaces.
1 Start a new model, use the Small Objects - Millimeters.3dm template. Save as Surfaces.
2 Turn on Snap and Planar.
3 From the Surface menu, click Plane, and then click Corner to Corner.
4 For the First corner of plane, pick a point.
5 For the Other corner, pick another point to make a rectangular plane.

To create a vertical plane:

1 From the Surface menu, click Plane, and then click Vertical.
2 For the Start of edge, snap to the endpoint at the right side of the surface.
3 For the End of edge, snap to the other endpoint at the right side of the surface.
4 Drag your cursor up and pick.

Notes:

To create a plane from 3 points:

1 From the Surface menu, click Plane, and then click 3 Points.

2 For the Start of edge, snap to the endpoint at the left of the first surface.

3 For the End of edge, snap to the other endpoint at the left side of the first surface.

4 For the Height, use SmartTrack to track a point from the top of the vertical plane. Drag the tracking point until the surface is tilted slightly and click.

To create a plane from corner points:

1 From the Surface menu, click Corner Points.
2 For the First corner, snap to an endpoint at the edge of the first surface.
3 For the Second corner, snap to the endpoint at the edge of the second surface.
4 For the Third corner, snap to an
 endpoint at the edge of the third surface.

5 For the Fourth corner, snap to the other endpoint at the edge of the third surface. A surface will be created with corners at the points you selected.

Notes:

To create a surface from planar curves:

1 Turn Planar mode on.

2 Draw a curve that starts and ends at the top of the two vertical surfaces as shown below.
Planar mode keeps this curve on the same plane as the surface corners.

3 From the Surface menu, click Planar Curves.
4 Select the curve you just created.
5 Select the top edge of the three surfaces and press Enter.
A surface is created.

To create a surface from edge curves:

1 From the Surface menu, click Edge Curves.
2 Select the four surface edges.
A surface is created.

Surface from Planar Curves

Surface from 2, 3, or 4 Edge Curves

Notes:

Exercise 57-Extruding surfaces

In this exercise, you will be creating a cordless phone using extrusions. To aid in organizing the model, surface and curve layers have been created. Make sure you change layers as you are making the extrusions.

To extrude a curve:

1 Open the model Extrude.3dm

2 Make the Top Surface layer current.
3 Select the curve as shown.
4 From the Surface menu, click Extrude Curve, and then click Straight.
5 For the Extrusion distance, type -3.5 and press Enter.
If the object being extruded is a planar curve, the curve is extruded perpendicular to the plane of the

Notes:

To extrude a curve along another curve:

1 Select the curve (1) on the left of the first extruded surface.
2 From the Surface menu, click Extrude Curve, and then click Along Curve.
3 Select the path curve (2) near its right end.
The curve is extruded along the path of the secondary curve.
 curve.

If you do not get the answer you expected, undo and try picking near the other end of the path

To extrude a curve with a taper (draft angle):

1 Select the curve on the right.
2 From the Surface menu, click Extrude Curve, and then click Tapered.
3 For the Extrusion distance, click DraftAngle on the command line.
4 For the Draft angle, type -3 and press Enter.
5 For the Extrusion distance, type .375 and press Enter.

The curve is extruded with a three-degree draft angle in the positive direction on the y-axis.

Notes:

To create a surface from planar curves:
1 From the Surface menu, click Planar Curves.
2 Select the edge curves that bound the openings of the tapered extrusion at the top.
3 Press Enter.
A surface is created at the end.

4 Select the four surfaces.
5 From the Edit menu, click Join.

To make the extruded surfaces for the other half of the phone:

Next, we will repeat the previous steps for the other half of the phone.
1 Make the Bottom Surface layer current.

2 Select the curve as shown.
3 From the Surface menu, click Extrude Curve, and then click Straight.
4 For the Extrusion distance, type -3.5 and press Enter.
If the object being extruded is a planar curve, the curve is extruded perpendicular to the plane of the curve.

Surface from Planar Curves

Extrude Straight

5 Select the curve (1) on the left of the first extruded surface.
6 From the Surface menu, click Extrude Curve, and then click Along Curve.
7 Select the path curve (2) near its right end.
The curve is extruded along the path of the secondary curve.

8 Select the curve on the right.
9 From the Surface menu, click Extrude Curve, and then click Tapered.
10 For the Extrusion distance, type -1.375 and press Enter.

The curve is extruded with a threedegree draft angle in the negative direction on the y-axis.

11 From the Surface menu, click Planar Curves.
12 Select the edge curves that bound the openings of the tapered extrusion at the top.
13 Press Enter.
A surface is created at the end.
14 Select the four surfaces.
15 From the Edit menu, click Join.

Notes:

To create an extruded surface on both sides of a curve:

1 Turn on the Extrude Straight-

 bothsides layer.2 Select the freeform curve as shown
3 From the Surface menu, click Extrude Curve, and then click Straight.
4 For the Extrusion distance, click Bothsides on the command line.
5 For the Extrusion distance, drag
 the extrusion and pick.

Make sure the surface extends past the other surfaces in both directions.
The curve is extruded symmetrically from the curve.

To trim the surfaces:

1 Select the joined Top and Bottom polysurfaces, and the surface you just extruded.
2 From the Edit menu, click Trim.
3 For the Object to trim, pick the outer edge of each surface.

Notes:

To split the trimmed surface:

1 Select the trimmed extruded surface.
2 From the Edit menu, click Split.
3 For Select cutting objects, click Isocurve on the command line.
4 Drag you cursor along the surface to determine which isocurve direction is selected. Click Toggle on the command line if it's not the correct direction.
5 For the Split point, snap to the intersection where all three surfaces intersect.

To join the surfaces:

Next you will join the surface and the polysurface for the Top and the Bottom of the handset.
1 Select the upper part of the split surface and the top polysurface
2 From the Edit menu, click Join.
3 Select the lower part of the split surface and the bottom polysurface 4 From the Edit menu, click Join.

Notes:

To round the edges of the polysurfaces:

1 From the Solid menu, Fillet Edges, then Fillet Edges. Use a radius of . 2 to round the edges.

2 For the Select edges to fillet, select the edges around the top of the top polysurface and the two horizontal edges at the front, press Enter.
3 For the Select fillet handle to edit, click Preview.

4 Check to make sure the fillet is doing what you expect, press Enter.

5 Repeat these steps for the Bottom polysurface.

To create an extruded surface from a curve to a point:

1 Turn on the Extrude to a point layer.
2 Select the U-shaped curve.
3 From the Surface menu, click Extrude Curve, and then click To Point.
4 For the Point to extrude to, snap to the point object near the top surface.

The curve is extruded to the point.

Notes:

5 Use the BooleanDifference command (Solid menu > Difference) to remove the surface from the top of the phone.
If the result is not correct, flip the normal of the top polysurface and the extruded surface with the Dir command. The normal of the top polysurface and the extruded surface should point toward each other.

6 Select the circle.
7 From the Surface menu, click Extrude Curve, and then click To Point.
8 For the Point to extrude to, snap to the point object inside the bottom surface.
The curve is extruded to the point.

9 Use the BooleanDifference command (Solid menu > Difference) to remove the surface from the top of the phone.
The normal of the bottom polysurface and the extruded surface should point toward each other.
10 Save your model as Phone.

Notes:

To create the buttons:

1 Turn on the Curves for Buttons layer.
2 In the Front view, window select the first column of buttons.
Three curves are selected.
3 From the Solid menu, click Extrude Planar Curve, and then click Straight.
4 Type -. 2 and press Enter.

5 Repeat these steps for the other columns of buttons.
6 Use the FilletEdge command (Solid menu > Fillet Edge > Fillet Edge) with a radius of .05 to round the edges.
The button edges are rounded.
7 Save your model.

Notes:

Exercise 58-Lofted surfaces

1 Open the model Loft.3dm.
2 Window select all of the curves.

3 From the Surface menu, click Loft. A surface is fitted over the curves.

4 In the Loft Options dialog box, switch Style to Straight sections, and then click Preview.
A surface is fitted through the curves, but the sections are straight between the curves.

Notes:

5 In the Loft Options dialog box, switch
Style to Loose, and then click Preview.
A surface is created that uses the same control points as the curves. The surface follows the curves more loosely.
Use this option when you want the surface to conform to the control points of the input curve.

6 In the Loft Options dialog box, switch Style to Normal, and then click OK.

To make a seat:

1 Turn the Hull Curves layer off and turn the Seat Curves, and Seat layers on.
2 Make the Seat Curves layer current.
3 In the Front view, select the rounded rectangles.
4 From the Curve menu, click Curve From Objects, and then click Project.

Project uses the current construction plane to determine the direction of projection. Make sure you select the curves and surface to project onto in the Front viewport.

Notes:

A surface is fitted over the curves that fits exactly with the shape of the hull.

To create section curves from the surfaces:

1 Select the hull.
2 Change to the Sections layer.
3 From the Curve menu, click Curve From Objects, and then click Section.

4 For the Start of section, in the Top viewport, pick a point to the left at the center of the hull.

5 For the End of section, with Ortho on, drag a line to the right and pick. A curve is generated on the surface. Repeat this at various locations.

Notes:

To create contour curves across the hull surfaces:
1 Select the hull.
2 Change to the Contours layer.
3 From the Curve menu, click Curve From Objects, and then click Contour.

4 For the Contour base point, snap to the left end of the canoe.

For the Direction perpendicular to contour planes, snap to the other end of the canoe.
6 For the Distance between contours, type 12 and press Enter.
A curve is generated every foot along the hull.

To create an edge curve from the surfaces:

1 Change to the Top Rail layer.
2 From the Curve menu, click Curve From Objects, and then click Duplicate Edge.
3 Pick the top edge of the hull.
4 Pick the other top edge and press Enter.
Two curves are generated at the edges of the hull

Notes:

Exercise 59—Revolved surfaces
1 Open the model Revolve.3dm.
2 Select the freeform curve
3 From the Surface menu, click Revolve.
4 Select one end of the curve for the Start of revolve axis.

5 Select the other end of the curve for the End of revolve axis.
6 Press Enter to use the default Start Angle.
7 Press Enter to use the default Revolution Angle. A surface is revolved around the axis line.

Notes:

Exercise 60-Using a rail revolve

Rail Revolve lets you revolve around an axis and along a path curve.
To create a rail revolve:
1 Open the model Rail Revolve.3dm.
2 For the Profile Curve, select the conic shaped curve.
3 From the Surface menu, click Rail Revolve.
4 For the Rail curve, select the heart shaped curve.
5 Select one end of the RailRevolve axis line.

6 Select the other end of the RailRevolve axis line.
A surface is revolved around the axis that follows along the curve at the end of the object.

7 Turn the Bowl layer on and other layers off.
8 Repeat the previous steps to make a bowl.

Notes:

Exercise 61—Using 1-rail sweeps to create surfaces

One cross-section:

1 Open the model 1 Rail Sweep.3dm.
2 Select the two curves on the left.
3 From the Surface menu, click Sweep 1 Rail.
4 In the Sweep 1 Rail Options dialog, click OK.

Multiple cross-sections:

1 Select the four curves on the right.
2 From the Surface menu, click Sweep 1 Rail.
3 In the Sweep 1 Rail Options dialog, uncheck Global shape blending.
4 In the Sweep 1 Rail Options dialog, click OK.

Two cross-sections:

1 Select the three curves in middle.
2 From the Surface menu, click Sweep 1 Rail.
3 In the Sweep 1 Rail Options dialog, check Global shape blending.
4 In the Sweep 1 Rail Options dialog, click OK.

To create a 1-rail sweep to a point:

1 Make Surface 02 layer group current and turn off Surface 01 layer group.
2 From the Surface menu, click Sweep 1 Rail.
3 For the Rail, select the open freeform curve.

4 For the Select cross section curves, select the three closed curves, then click Point on the command
 line.

5 For the Pick end point, snap to the End of the free-form curve.
6 In the Sweep 1 Rail Options dialog, click OK.

To create a roadlike 1-rail sweep:

1 Make Surface 03 layer group current and turn off Surface 02 layer group.
2 Select the helix.
3 From the Surface menu, click Sweep 1 Rail.
4 For the Select cross section curves, select the closed curve, press Enter.

5 Change the style to Roadlike Right, click Preview.
6 Change the style to Roadlike Front, click Preview.
7 Change the style to Roadlike Top, click Preview, click OK.

Notes:

Exercise 62—Using 2-rail sweeps to create surfaces

- Open the model 2 Rail Sweep.3dm.

To create the base -Part 1:

In the first part of this exercise, we will explore one of the Sweep2 options. To illustrate the option we will use one cross-section. In the second part we will use the same rail curves with two cross-sections. Lastly, we will use two rails that converge to a single point.

1 Change to the Base Surface layer.
2 From the Surface menu, click Sweep 2 Rails.
3 Select the two rail curves (1).
4 Select the cross-section curve (2).
5 Press Enter twice.
Since we only picked one cross-section, the surface doesn't conform to the circle at the top of the sweep.

6 In the Sweep 2 Rail Options dialog, check Maintain height, click Preview.
Notice that the cross-section maintains the same height thoughout the sweep.
7 In the Sweep 2 Rail Options dialog, click Cancel.

To create the base-Part 2:

1 Select the two rail curves (1).
2 From the Surface menu, click Sweep 2 Rails.
3 Select both cross-section curves (2).
4 Press Enter twice.
5 In the Sweep 2 Rail Options dialog, click OK.
A surface is created whose edges match the rail curves and the cross-section curves.

To create the housing:

1 Turn the Housing Surface, Housing Curves, and Mirror layers on.
2 Make the Housing Surface layer current.
3 From the Surface menu, click Sweep 2 Rails.
4 Select the two rail curves (1).
5 For the cross-section, select the outer edge of the cylinder, press Enter twice.
6 In the Sweep 2 Rail Options dialog, click OK. A surface is created.

To join the two parts:

1 Select the base and the housing surfaces.
2 From the Solid menu, click Union.
3 Use FilletEdge with a radius of .25 to round the intersecting
 edge.

Notes:

Exercise 63-Using a network of curves to create surfaces

1 Open the model Networksurf.3dm.

2 From the Surface menu, click Curve Network.

3 For Select curves in network, pick the two edge curves and the crosssection curves, and press Enter.

4 In the Surface From Curve Network dialog box, change the edge matching to Curvature, click OK.
A surface is created that has curvature continuity with the other two surfaces.

Notes:

Exercise 64- Practice using one-rail sweeps:

In this exercise you use one rail sweeps to make an end table with free-form tapered legs.

To create the legs:

1 Open the model Table.3dm.
2 From the Surface menu, click Sweep 1 Rail.
3 Select the path curve for the leg.
4 Select the shape curve for both
 ends of the leg.

Press Enter.
6 Press Enter.
7 In the Sweep 1 Rail Options dialog box, click OK.
The table leg is created. Note the nice transition from one cross-section curve to the other.

To create the brace:

1 Change to the Braces layer.
2 Repeat the previous process to create the brace.

Notes:

To create the top and finish the table:

1 Change to the Top layer.
2 From the Surface menu, click Sweep 1 Rail.
3 Select the ellipse.
4 Select the shape curve.

5 Press Enter.
6 In the Sweep 1 Rail Options dialog box, click OK.
The surface for the rim of top is created.
7 Select all of the surfaces you created.
8 From the Solid menu, click Cap Planar Holes.
Six caps were created.
9 Use Mirror to copy the brace and the leg to finish the model. Mirror them around $\mathbf{0 , 0}$ in the Top viewport.

Notes:

Exercise 65- Creating a toy hammer:

In this exercise you will use most of the techniques that you've learned in the previous sessions.

Some models require more attention to detail. This is an example of a model that requires precise modeling techniques. This exercise also requires a number of different surface creation techniques. The technical drawing is included to help you create a very precise model.

1 Open the model Hammer.3dm.

In addition the following layers have been created: Construction Lines, Curves, Handle, Tang, Head, Hole, Cutout, and Claw. Use the appropriate layer when constructing the model.

2 Draw outlines for the hammer in the Top viewport.
Drawing outlines helps while drawing the curves. You can either draw lines, polylines, or rectangles to create the outlines. Use the dimensions on the technical drawing to get accurate outlines.

Notes:

To create the claw:

When modeling the shape of the claw, you will use circles, arcs, and curves. You can trim the circles and arcs and then join them together to create a closed curve. You can rebuild the curve and adjust the control points to get a more sculptural shape.

1 Change to the Curves layer
2 Draw a curve defining the shape of the claw in the Top viewport.
You can use a free-form curve or use a combination of arcs and circles that are trimmed and joined to create the curve. Following is a systematic approach to creating the curve for the claw part of the hammer using arcs and circles.
Start by drawing two circles.
3 Use the Circle command (Curve menu > Circle > Tangent to 3 curves) to create a circle at the lower end of the claw.

Draw the circles tangent to the construction geometry
4 Use the Circle command (Curve menu > Circle > Tangent, Tangent, Radius) to create a circle at the upper end of the claw that is tangent to the upper right corner with a 4 mm radius.

Draw the circles tangent to the construction geometry.

5 Use the Arc command (Curve menu > Arc > Tangent, Tangent, Radius) to create arcs that are tangent to the two circles.

Notes:

6 Use the Trim command (Edit menu > Trim) to trim the inside part of the circles.
7 Use the Join command (Edit menu > Join) to join the arc segments.

8 Change to the Claw layer.
9 Select the joined segments.
10 Use the ExtrudeCrv command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve on both sides of the construction plane.

Notes:

To create the head:

1 Change to the Curves layer.
2 Use the Curve command (Curve menu > Free-form > Control Points) to create the curve for the cross-section of the head.
Make sure the curve intersects the claw part. This makes joining the two pieces easier.

3 Change to the Head layer.
4 Use the Revolve command (Surface menu > Revolve) to revolve the curve.
Use the midpoint of the construction line for the revolve axis.
5 Save your model.

To add the head to the claw part:

1 Use the BooleanUnion command (Solid menu > Union) to join the head with the claw.
If the result is not correct, flip the normal of the head surface with the Dir command. The normal of the head surface should be towards out.
2 Use the FilletEdge command (Solid menu > Fillet Edge) fillet the intersection between the head and the claw.
3 Save your model.

To create slot for the claw part of the hammer:

1 Use the Curve command (Curve menu > Freeform > Control Points) to draw a curve for the slotted part of the claw.

Make sure the curve is symmetrical.
2 Use the Line command (Curve menu > Line > Single Line) to draw a line between the endpoints.
3 Use the Join command (Edit menu > Join) to join the curve and the line

4 Drag the closed curve closer to the claw.
5 Use the Rotate command (Transform menu > Rotate) to rotate the curve to align more closely with the curve of the claw.
6 Change to the Claw layer.
7 Use the ExtrudeCrv command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve through the claw.

8 Save your model.
9 Use the BooleanDifference command (Solid menu > Difference) to subtract the slot from the claw.
10 Use the FilletEdge command (Solid menu > Fillet Edge) to make the fillets around the top and bottom of the claw, and the slot.

Notes:

To create the shape curve for the tang and the handle:

Create the shape curve for the tang in the Right viewport. This curve will also be used for the handle.

1 Change to the Curves layer and turn on Ortho.
2 Use the Curve command (Curve menu > Freeform > Control Points) to draw a curve for the upper cross-section of the tang.
Make sure the curve is symmetrical.

z
-

Notes:

To create the tang:

1 Use the Curve command (Curve menu $>$ Freeform > Control Points) to draw one of the curves for the tang of the hammer.
Make sure that it intersects the claw.
2 Use the Mirror command (Transform menu > Mirror) to create the other curve.
3 Change to the Tang layer.

4 Use the Sweep 2 command (Surface menu > Sweep 2 Rails) to make the surface.
5 Use the Cap command (Solid menu > Cap Planar Holes) to make the tang a closed polysurface.
6 Save your model.

To finish the hammer head:

1 Select the tang and the claw.
2 Use the BooleanUnion command (Solid menu > Union) to join the tang with the claw and the head.
3 Use the FilletEdge command (Solid menu > Fillet Edge) to make the fillets at the intersection between the tang and the claw.
The edge has a round on it.
4 Save your model.

Notes:

To create the handle:

1 Change to the Curves layer.
2 Use the Curve command (Curve menu > Free-form > Control Points) to draw a curve for the top edge of the handle.
Make it start at the endpoint of the tang profile curve and end on the centerline.
3 Use the Mirror command (Transform menu > Mirror) to make the other half.

4 Change to the Handle layer.
5 Use the Sweep 2 command (Surface menu > Sweep 2 Rails) to make the surface using the tang curve as the profile curve.
A surface is created.
6 Use the Cap command (Solid menu > Cap Planar Holes) to cap the open end.

7 Save your model.

Notes:

To create the hole for the handle:

1 Use the Circle command (Curve menu > Circle > Center, Radius) to make a circle 25 mm from the end of the handle.
You may have to draw a construction line to help you position the circle.
2 Use the ExtrudeCrv command (Solid menu > Extrude Planar Curve > Straight) to extrude the curve on both sides of the construction plane.

Make sure the extrusion intersects both sides of the handle.
3 Save your model.
4 Use the BooleanDifference command (Solid menu > Difference) to subtract the hole from the handle.
5 Use the FilletEdge command (Solid menu > Fillet Edge) to make the fillets at the edges of the hole.
The edges have rounds on them.
6 Save your model.

Notes:

Exercise 66- Creating a squeeze bottle:

Some models require more attention to detail. This is an example of a model that requires precise modeling techniques. This exercise also requires a number of different surface creation techniques.
The technical drawing is included to help you create a very precise model.

1 Start a new model, use the Small Objects - Inches.3dm template.
2 Save as Bottle.
3 Make the following layers: Construction, Curve, Bottle, BottleTop, Threads, Cap1, Cap2, and CapTop.
4 Change to the Construction layer.

Notes:

Create the bottle shape

To create the bottle shape, you will draw a curve that defines the bottom and top edge, and then draw a curve that represents the side shape. You will then create a surface from these defining curves.

To draw the construction curves:

1 Use the Rectangle command (Curve menu > Rectangle > Corner to Corner) to make rectangles in the Front and Right views that define the overall size of the bottle shape of the bottle.
The rectangles will be used as guides for building the bottle curves.
2 Use the Lock command (Edit menu > Visibility > Lock) to lock the two rectangles.
3 Use the Ellipse command (Curve menu > Ellipse > From Center) to make the shape for the bottom of the bottle.

4 Snap to the intersection of the rectangles for the center of the ellipse.
5 Use the Move command (Transform menu > Move) to move the ellipse up .25 in the Front view.
6 Use the Circle command (Curve menu > Circle > Center, Radius) to draw a circle for the top shape of the bottle.
7 Snap to the intersection at the top of the rectangles for the center of the circle.

Rectangle

Ellipse

Notes:

To draw the profile curves:

1 Change to the Curve layer.
2 Use the Curve command (Curve menu > FreeForm > Control Points) to define the edge of the bottle in the Front and Right viewport.

Use the rectangle and object snaps to help you establish the correct size. The curve will be used to create the surface of the bottle.

3 Use the Mirror command (Transform menu > Mirror) to create the other curves.

To create the surface for the bottle:

1 Change to the Bottle layer.
2 Use the Loft command (Surface menu > Loft) to make the bottle surface.
3 For Select curves to loft, select the profile curves in a clockwise direction, press Enter.
4 In the Loft Options dialog, check Closed loft, set the Style=Normal, click OK.

[^0]
Cap the top and bottom

If you close the bottle, thereby creating a solid, Rhino can calculate the bottle's volume. If you were creating this bottle in real life, knowing the volume would be important. Normally, a bottle would have to be designed to hold a specified volume.
If the edges of the remaining open surfaces are planar curves, you can use the Cap command to close them. The open edges on the bottle are the top circular shape and the bottom elliptical shape, and they are planar.

To cap the top and bottom:

1 Select the surface.

2 Use the Cap command (Solid menu > Cap Planar Holes) to close the holes.

Notes:

Notes:

Flatten the sides

In this part of the exercise you will create a custom surfaces to trim an area on each side of the bottle for a label. The new surface will have curvature in only one direction.

To create the trimming surface:

1 Change to the Curve layer.
2 In the Front viewport, draw three lines. One line in the middle and one on each side.
Make sure the lines extend a little below and above the height of the bottle.
3 In the Right viewport, Move the lines so that they will intersect the bottle, like the illustration on the right.
The technical drawing gives dimensions for these curves, but for this exercise you can use the construction rectangles to help. If you would like to go further, try to figure out on your own how to draw the curves to the exact specifications.
4 Select the three curves you just created.
5 Use the Loft command (Surface menu > Loft) to make the cutting surface.
6 In the Loft Options dialog, uncheck Closed loft, click OK.
A lofted surface intersects the bottle.
7 Mirror the surface to the other side of the bottle.
8 Save your model.

Notes:

To remove the surface from the bottle:

1 Change to the Bottle layer.
2 Use the Dir command (Analyze menu > Direction) to check the surface normal direction. Flip the normals if necessary.
The normals should be pointing toward the center of the bottle.
3 Select the bottle.
4 Use the BooleanDifference command (Solid menu > Difference) to subtract the two lofted surfaces from the bottle.

Create the bottle's top

To create the bottle throat, you are going to revolve a profile curve to create the surface, and then add threads.

To create the profile curve:

1 Change to the Curve layer.
2 In the Front viewport, use the Lines command (Curve menu > Line > Line Segments) and the Arc command (Curve menu > Arc > Center, Start, Angle) to create a profile curve for the outside and the inside of the top.
3 Use the drawing to the right to draw the correct dimensions.
4 Begin the drawing anywhere in the viewport.
You will move it to a precise location after it is made.
5 Use the Join command (Edit menu > Join) to join the segments together.

Notes:

Tip When drawing line segments, you can use object snaps, the distance constraint, and ortho to draw precisely. For example, for the first line type $.5,7.25$ for the starting point, then simply type .25 to constrain the line to .25 units. Turn Ortho on and drag the line to the right and click. The line stops at . 25 units from the beginning of the line. For the vertical line on the left, use the End object snap to pick the end of the first line, type .375 to constrain the distance, and drag the line in an upward direction.

6 Use the Move command (Transform menu > Move) to move the profile from the midpoint of the bottom edge to the quadrant of the top of the bottle.
7 Change to the Bottle Top layer.

To create the top surface:

1 Select the profile curve.
2 Use the Revolve command (Surface menu > Revolve) to make the surface.
3 Type $\mathbf{0}$ and press Enter for the first axis point
4 Turn Ortho on and pick another point up or down from the first point for the other axis point.
5 For the Start Angle, click FullCircle.
The top is created.

Note: Practice additional surface modeling techniques by creating threads on the bottle top and the caps for the model. Use the technical drawing to help.

Notes:

Adding the threads

To add the threads, you will sweep a profile shape along a path drawn with the Helix command.

To create the path curve helix:

1 Change to the Curve layer.
2 From the Curve menu, click Helix.
3 Snap to the center point at the bottom of the area to be threaded.
4 Snap to the center at the top of the area to be threaded.
5 Click Turns.
6 Type 1.5 and press Enter.
7 Pick a point near the edge that is slightly smaller than the outside edge of the area to be threaded.

To draw the thread profile:

1 Draw a triangle using the Polygon command for the thread as shown below.
2 Select the triangle you created.
3 From the Transform menu, click Array, and then click Along Curve.
4 Select the helix near the bottom.
5 In the Array Along Curve Options dialog, change the Number of items to 5, click Roadlike then click OK.

6 Click in the Top viewport.
It might be a good idea at this point to change your perspective view so you can see the profile curves more easily.
7 Delete the first and last profile curve.
You will use the remaining profile curves to create a surface.

Notes:

To create the thread surface:

1 Change to the BottleTop layer.
You can see the helix and profile curves easier if you Hide the bottle top at this point.
Use the Sweep1 command to create a surface that starts a point at one end of the helix, goes through each profile, and ends at a point at the other end of the helix.
2 From the Surface menu, click Sweep 1 Rail.
3 Select the helix.
4 To start the surface at a point, at the Select cross-section curves (Point) prompt, type \mathbf{P} and press Enter.

5 Use the End object snap to pick one end of the helix.
6 Select the profile curves in order.
7 To end the surface at a point, at type \mathbf{P} and press Enter.
8 Use the End object snap to pick the other end of the helix.
9 Press Enter
10 In the Sweep 1 Rail Options dialog box, change the Style to Roadlike Top, and click OK.

11 Show the bottle.
12 Select the helical thread and the bottle top.
13 Use the BooleanUnion command (Solid menu > Union) to join the thread and the bottle top.

Notes:

10
 Importing and Exporting Models

Rhino supports many different import and export formats, making it possible to model in Rhino and then export your model to downstream processes. For a complete list of import and export options refer to Rhino Help. Search the index for "import and export."

Importing and Exporting Rhino File Information

When you export to a format like 3DS, STL or DWG, Rhino has to convert from smooth NURBS surfaces to a polygon mesh representation made of triangles. To do a good approximation of the curved surfaces, Rhino can sometimes use many polygons. The density of triangles can be adjusted when exporting. You can create a mesh object and export it, or Rhino can create the mesh during the export process.
There are two methods to export models to other formats. You can "Save As" and choose a specific export format to export an entire model. You can select some objects and "Export Selected" then choose a specific export format to export a portion of the model. In the following exercise you will use the "Save As" method to export three of the most common file formats.

Notes:

Exercise 67- Exporting models

To export a model to a mesh format:
1 Open the model Export.3dm.
2 From the File menu, click Save As
3 In the Save dialog box, change the Save as type to Stereo lithography (*.stl).
4 In the file name box type Export and click Save.
5 In the STL Mesh Export Options dialog box, set the Tolerance to 0.01, and click Preview.

6 Set the Tolerance to $\mathbf{0 . 1}$, click Preview, and then click OK.
7 In the STL Export Options dialog box, select Binary, check Export open objects, and click OK.
Detailed mesh controls are discussed in more depth in the Level 2 training class.

Notes:

To export a model to IGES:

1 From the File menu, click Save As.
2 In the Save dialog box, change the Save as type to IGES (*.igs).
3 In the IGES Export Options dialog box, select Pro E Windows solids as the IGES type, click Detailed Controls.
Detailed controls allow the user more input. Click Cancel to terminate, or OK to create the IGES file.

To export a model to STEP:

1 From the File menu, click Save As.
2 In the Save As dialog box, change the Save as type to STEP (*.stp, *.step).
3 In the STEP Options dialog box, use the default setting.

Notes:

Rendering is available for showing your model as if it was photographed. While the Rhino renderer may be good enough for much of your work, use another rendering program such as Rhino's Flamingo plug-in for higher quality results. Flamingo is available as a plug-in to Rhino 2.0. Visit www.flamingo3d.com for more information.
Rhino's renderer uses color, spotlights, displays shadows, and does antialiasing. It also allows the attachment of textures and bump maps. In this exercise we will focus on the full rendering capability.

Exercise 68- Practice rendering a model

1 Open the model Render.3dm.

2 From the Render menu, click Current Renderer, and then click Rhino Render.
3 Right click on the Perspective title bar, and then click Rendered display.

The viewport mimics but does not exactly duplicate what you will get in a Render.

Notes:

To assign a color to the handle:

1 In the Layers dialog box, click on the Materials column for the Handle layer.
2 In the Material dialog box, click Basic,
To give the handle a highlight, change the Gloss finish setting.

A highlight of 0 means that the object is not shiny at all and it will not have a specular highlight. A low value of highlight makes the shiny spot to be small, and the object will look glossier. As the highlight increases in value, the shiny spot gets large-this makes the object look more like it is made out of a reflective material.
The shiny spot only appears when you are looking at an object at a certain angle relative to the angle of the light.

3 Change the Gloss finish setting to 90, and then click the Color swatch.
4 In the Select Color dialog box, select a color, like Red, and click OK.
5 Repeat the steps above to assign a material to the Blade layer.

6 From the Render menu, click Render.

A display window appears with the current viewport rendered in colors, but it will probably lack detail. You can close the Display Window without disturbing your model. Placing lights will add depth and detail to the rendered image.

Notes:

To place a light:

Start with a standard lighting scheme. You can experiment to develop your own lighting schemes later.
1 Zoom out in the Top and the Front viewport.
2 Change to the Lights layer.
3 From the Render menu, click Create Spotlight.
4 For the Base of cone, type $\mathbf{0}$ and press Enter.
5 For the Radius, pick a point so that the circle is larger than the entire screwdriver in the Top viewport.
6 For the End of cone, hold down the control key, and pick a point below and to the right in the Top viewport.

This starts elevator mode.
7 For the End of cone, pick above the object in the Front viewport.
This will be your main light.
8 Click in the Perspective viewport.
9 From the Render menu, click Render. The image has some highlights and shadows.

To place a second light:

1 Zoom out in the Top and the Front viewport.
2 From the Render menu, click Create Spotlight.
3 For the Base of cone, type $\mathbf{0}$ and press Enter.
4 For the Radius, pick a point so that the circle is larger than the handle of the screwdriver in the Top viewport.
5 For the End of cone, hold down the control key, and pick a point below and to the left in the Top viewport.

This starts elevator mode.
For the End of cone, pick above the object in the Front viewport.
This will be your secondary (fill) light.
7
Click in the Perspective viewport.
8 From the Render menu, click Render.

To assign properties to the light:

1 Select the new light.
2 From the Edit menu, click Object Properties.
3 On the Light page, change the Shadow intensity to $\mathbf{0}$ and the Spotlight hardness to 60.

Experiment with these settings to get the desired effect.
4 Click in the Perspective viewport.
5 From the Render menu, click Render.

Notes:

To add a bumpy surface to the handle:
1 In the Layers dialog box, click on the Materials column for the Handle layer.

2 In the Material Editor dialog box, check Bump.
You can use any bitmap file for a bump.

The bumps come from the pattern of light and dark in the bitmap image.
3 In the Open Bitmap dialog box, select HandleBump.jpg, and then click Open.
4 In the Material Editor dialog box, for Bump Tiling, click Modify.
5 In the Offset and Tiling dialog box, change the \mathbf{U} tiling to 4.0 and the \mathbf{V} tiling to 6.0 , click OK.

6 Click OK to close the Material Editor dialog box.
7 From the Render menu, click Render. The surface of the handle has a bumpy appearance.

Notes:

To add a texture to the handle:

1 In the Layers dialog box, click on the Materials column for the Handle layer.

2 In the Material Editor dialog box, uncheck Bump.
3 In the Material Editor dialog box, check Texture.

4 In the Open Bitmap dialog box, select Wood.jpg, and then click Open.
5 In the Offset and Tiling dialog box, change the \mathbf{U} tiling to 4.0 and the \mathbf{V} tiling to 6.0, click OK.

6 Click OK to close the Material Editor dialog box.
7 From the Render menu, click Render.
The surface of the handle has a wood texture appearance.

Notes:

To make the handle transparent:
1 In the Layers dialog box, click on the Materials column for the Handle layer.
2 In the Material Editor dialog box, uncheck Texture.

3 In the Material Editor dialog box, change the Transparency setting to $\mathbf{5 0}$.
4 Click OK to close the Material Editor dialog box.
5 From the Render menu, click Render. The handle will look transparent.

To add a surface for a ground plane:

1 Use the Plane command (Surface menu > Plane > Corner to Corner) to draw a flat surface in the Top viewport.
2 Select the surface.
3 Use the Properties command (Edit menu > Object Properties...) on the Material page, click Basic.
4 In the Texture section assign the Wood.jpg to the plane.

5 From the Render menu, click Render.

Rendering with Flamingo

In this part of the exercise you will use Flamingo to assign materials from the material library and set up an environment. You will use the same lights and model.

To assign a material:

1 Select the flat surface.
2 Use the Hide command (Edit menu > Visibility > Hide) to hide it.
3 From the Render menu, click Current Renderer, and then click Flamingo Raytrace.
4 In the Layers dialog box, click on the Materials column for the Handle layer.
5 In the Material Editor dialog box, click Plug-in, and then click Browse.
6 In the Material Library dialog box, in the Plastics library, in the Transparent folder, select a material, press OK.
7 In the Material Editor dialog box, press OK.
8 Repeat this process for the Blade layer.
9 Choose a shiny metal material, like Metal\Steel\Polished\Plain.
10 Render the model.

Notes:

To set up an environment:
1 Use the Options command (Tools menu > Options...) to setup the Flamingo environment options
2 In the Rhino Options dialog box, on the Flamingo page, click the Environment button.
3 On the Environment dialog box, change to a 3 Color Gradient.
Use the default setting.
4 Check the Ground Plane check box.
5 On the Ground Plane page, click the Material button, and select a material for the ground plane, like Metal\Aluminum \Satin \Checker Plate.
6 On the Environment dialog box, press OK.
7 On the Rhino Options dialog box, press OK.
8 Render the model.
Notice that you also get reflections.

A more complete discussion of Flamingo rendering is included in Level 2 training.

For extra practice use the canoe, the hammer, or the bottle you made in the earlier exercises.

Notes:

$\int 2$ Dimensions

Dimensions

You can create simple dimensions on all viewports.

Dimension Types

Button	Command	Description
$\overline{\mathbf{I}_{\mathrm{T}_{\mathrm{H}}^{0}}^{0}}$	Dim	Linear Dimension creates a horizontal or a vertical dimension.
2	DimAligned	Creates an aligned dimension.
8	DimRotated	Creates a rotated dimension.
\%	DimAngle	Creates an angular dimension.
\sqrt{R}	DimRadius	Creates a radius dimension.

Button	Command	Description
Tex	DimDiameter	Creates a diameter dimension.
Text	Creates 2-D annotation text.	
Properties	Draw an arrow leader.	
Edit dimensions and text.		

Exercise 69- Practice dimensioning

1 Open the model Dimension.3dm.
2 From the Tools menu, click Options.
3 In the Rhino Options dialog box, on the Dimensions page, make the following changes.

Notes:

Options

Notes:

4 From the Dimension menu click Linear Dimension.
5 Snap to the lower left end of the part in Top viewport.
6 Snap to the lower right end of the part in the Top viewport.
7 Pick a point below the part in the Top viewport.

8 From the Dimension menu, click Radial Dimension.
9 Select the lower right quadrant of the arc in the Top viewport.
10 Click to place the dimension text.
11 From the Dimension menu, click Diameter Dimension.
12 Select the upper right quadrant of the hole in the Top viewport.

13 Click to place the dimension text.
14 Dimension the rest of the drawing using leaders, text blocks, horizontal, vertical, radius, and diameter dimensions.
15 Save your model.

${ }_{\mathrm{I}}^{\mathrm{I}} \mathrm{m}$

Linear dimension

Use object snaps to locate the extension line origins.

To move extension line or text locations for dimensions, turn on control points for the dimension and move the control points.
$)^{-\sqrt{R}}$
Radial dimension

Diameter dimension

Notes:

Making a 2-D Drawing from a 3-D Model

Rhino has the ability to generate a two-dimensional drawing from a three-dimensional model, by projecting the geometry to the world coordinate plane, and aligning the views. Options for first angle projection or third angle projection are available. In addition to the three orthographic views, a two-dimensional perspective drawing is also generated. Hidden lines are removed and placed on a separate layer.
Options for creating four views > three parallel viewports and a perspective viewport, or single views of individual viewports are supported.
The Make2-D command makes a two-dimensional drawing for all four views.

Exercise 70- Practice making a 2-D drawing for export

1 Open the model Make2D.3dm.
2 From the Dimension menu, click Make 2-D Drawing.
3 In the 2-D Drawing Options dialog box, click 4-view (USA) and check Show hidden lines, and then click OK.
The 2-D drawings are created on the Top CPlane near the origin on the world xy plane. View them in the Top viewport.
4 Dimension the 2-D drawing.

Notes:

1.3 Layout and Printing

Layouts and Details

Layout viewports can include various views of the model and annotations like title blocks and notes. When these viewports are tabbed with the model viewports, they can be easily accessed from the tabs.
Geometry in a layout viewport does not appear in the model viewports. Layout viewports include a background with one or more detail views of the model. The detail edge appearance is controlled with the Properties command and has exactly the same object properties as any curve, including Layer, Display Color, Print Color, and Print Width.
The Print Width—No Print property is set by default. Detail properties include Locked status and Scale.

Exercise 71- Practice making layouts

1 Open the model

SimpleLayout_Print.3dm.

2 Click in the Top viewport.
3 From the View menu, click Page Layout, click New Page Layout.
4 In the New Page Layout dialog, click Landscape. Set the Initial Detail
Count to 4. Adjust any other options appropriate for your printer or plotter,
 click OK.

A layout page opens and tabs appear at the lower edge of the Rhino window labeling the modeling windows and the layout page.

Notes:

The new layout has four detail views, showing the object from the same direction as the four default Rhino viewports.
Rhino turns on the tabbed viewports to make it easier to navigate among multiple layouts and modeling viewports.

Details are windows into the 3-D model. They can be activated as modeling viewports by doubleclicking in the viewport.

5 Double-click in the Right

 viewport.

Set scale and lock details:

1 If the Properties window is not open, open it now (Edit>Object Properties) and dock it to one side.

With nothing selected, the properties window shows the viewport properties

With no detail active, the properties shown are for the layout as a whole.

2 Click the Edit button to edit the title, and size and printer properties.
3 On the command line, for the Distance on page (mm), set it to 1, press Enter.
4 On the command line, for the Distance in model (\mathbf{m}), set it to 1, press Enter.
5 Change the title to Right Profile, and Lock the detail.
6 Repeat this in the Top and Front details to set all of these details to the same scale.
7 Activate the Perspective detail.
8 From the View menu, click Shaded.

Notes:

To draw borders and title blocks in the layout space:

1 Double-click in the Perspective detail to deactivate it and make the layout space active.
2 Draw a Rectangle (Curve>Rectangle>Corner to corner) around the viewports on the Layout.
3 From the File menu, click Insert.
4 On the Insert dialog, check Prompt for Insertion point, uncheck Prompt for Scale and Rotation.
5 On the Insert dialog, click File..., select TitleBlock.3dm, click Open, click OK.

6 For the Insertion Point, snap to the lower right corner of the rectangle. A title block is inserted on the layout.
7 You can add information to the title block with the text command. To edit the text on the title block, explode it first.

Notes:

To set linetypes and line weights for curves:

These are used in printing and can be displayed in the Rhino views using the PrintDisplay and LinetypeDisplay commands.
1 From the Edit menu, click Layers, then click Edit Layers.
2 On the Layers dialog, in the Print Width column, change the width of some of the layers.
3 Select the Border rectangle and the Title Block.
4 On the Object Properties dialog, change the Print Width to a thicker weight.
5 Type PrintDisplay on the command line, click State=Off on the command line, change it to $\mathbf{O n}$.
Note the difference in thickness of the curves.
Linetypes can be adjusted the same way.

Printing

Exercise 72- Practice printing

To print the layout:

1 From the File menu, click Print.

2 On the Print dialog, set the print Destination to the desired printer.
In addition to your Windows printers, the list of printers includes pdf print drivers, if available, as well as Image File which allows printing to an image file like *.png, *.jpg., *.bmp, *.tif, or *.tga.

The detailed settings below the list of destinations will change, depending on the selected printer or driver. Generally, the settings control print quality, orientation (landscape or portrait), paper size, number of copies to print, and a button to access the printer properties.
3 For Printer output, set it to raster.
To print layouts or viewports that contain a shaded display, the raster settiing is required.
To print layouts or viewports as curves or lines only, use the vector setting.

Notes:

4 For the Output color, set it to Print Color.

Output color can be set on any one of the following:
Print Color uses object color for the print color. This can be set to any color per object or per layer. An object that is displayed with a blue wireframe in the viewport can print to any other color.
Display Color is the default setting in the print dialog. Objects print the color of the wireframe in the viewport.
Black and White forces black and white printing only, ignoring the display or print colors of objects.
In the SimpleLayout file, the wireframes of the various objects are of varying color. Some of them correspond to the layer color of the layer they are on, like the hull, which displays green. Others have their display color set by object to override the layer color.

5 Set the View and Output Scale. Set the View to Extents, and the Scale to 1:1.
The reason we can set this to $1: 1$ is because we set up our layout to the paper size and we scaled the viewports to the correct scale.
6 Cancel the Print, unless you have a printer available.

Part Four:
Customizing Workspaces and Toolbars

Notes:

14
 Rhino Settings

Options

The Rhino Options dialog box displays most of the settings that affect your modeling environment. Use it to toggle the settings or redefine them.
The Document Properties settings are saved with the Rhino model. The Rhino Options settings are saved in the Windows registry and affect every Rhino model.

Exercise 73- Practice with options

To change modeling aids:

1 From the Tools menu, click Options.
2 In the Rhino Options dialog box, click the Modeling Aids page. The Modeling Aids page controls Grid Snap, Ortho, Planar mode, and Object Snap options.
These options can be toggled on and off from the dialog box or from the status bar. To change the options for Ortho or object snap, type new values in the boxes. In an earlier exercise you changed the Ortho setting so that it snapped every 30 degrees.
3 Modeling Aids also contains pages for SmartTrack options, Nudge controls, and Cursor ToolTips.

```
Grid snap
    \Gamma Grid Snap on
    \GammaOtho Snap every \90.0}\mathrm{ degrees
\Gamma ~ P l a n a r ~ m o d e ~ o n ~
bject snaps
     Disable object snaps
     Project object snaps to CPlane
    | Snap to locked objects
    V Use apparentintersections
    Snap radius: }\quad15\geqslant\mathrm{ pixel
Dynamic object snap display
    - Black on white
    C}\mathrm{ White on black
    CNone
Constuction planes
    - Standard construction planes
    C Universal construcion planes
```


Notes:

To change Rhino's screen appearance:

1 Click the Appearance page.
The Appearance page controls the appearance of the Rhino window.
2 Click the white rectangle next to Background color and change it to a different color.
3 Check the Crosshairs box.

To change or create shortcuts:

1 Open the Keyboard page.
The Keyboard page sets up shortcut keys for Rhino commands.
2 Type DisableOsnap _Toggle in the box next to the F4 key. This gives you a key that toggles your persistent object snaps between on and disabled.

Notes:

To change or create command aliases:

1 Click the Aliases page.
The command Aliases page allows the user to create custom aliases for Rhino commands.
2 Click New.
A cursor moves into the white area of the dialog box.
3 Type L, press the tab key.
4 Type! Lines.
The exclamation point acts as a cancel.
Now you will be able to type \mathbf{L} and press Enter at the command line, to begin the Lines command.

To change view options:

- Click the View page.

The View page has pan, zoom, rotate, and redraw controls.

To change general options:

- Click the General page.

The General page controls the number of undo's retained in memory, startup commands, recent command list limit, AutoSave control, and do not repeat commands, default isocurve density for new surfaces.

To set file options:

1 Click the Files page.
The Files page sets the location of template files and the autosave files.
2 Click OK to close the Options dialog box.
3 Try the Lines alias and the DisableOsnap toggle.
Note how your cursor has changed.

Document Properties

Document properties are all of the settings that are saved with the Rhino model.

Exercise 74- Practice with document properties

Notes:

Document Properties

To change the grid:

1 From the File menu, click Properties.
2 Click the Grid page.
The Grid page configures grid, grid axes, and axis icons. You changed the snap spacing in an earlier exercise.

To change render options:

1 Click the Rhino Render or Flamingo page.
The Render page controls most of the render options.
2 Click the Mesh page.
This page controls the mesh properties. It will also affect performance.
To set units:

- Click the Units page.

The Units page controls the unit system and the tolerance settings.

Notes:

7.5 Custom Toolbar Layouts

The toolbar layout is the arrangement of toolbars containing command buttons on the screen. The toolbar layout is stored in a toolbar collection file that you can open and save. Rhino comes with a default toolbar layout, and automatically saves the active toolbar layout before closing. You can create your own custom layouts and save them for later use.
You must use an external file manager to delete a toolbar collection file.

Exercise 75- Customizing a toolbar layout

1 Begin a new model.

2 From the Tools menu, click Toolbar Layout.
3 In the Toolbars dialog box, from the File menu, click Save As.
4 In the Save Toolbars Collection dialog box, in the File name box type Level 1, and click Save.
A new toolbar collection file has been created. Toolbar collection files are saved with
a .tb extension. You will use this new toolbar collection to do some customization.

To show another toolbar:

1 From the Tools menu, click Toolbar Layout.
2 In the Toolbars dialog box, check Curve Tools to show the toolbar.
3 In the Toolbars dialog box, clear Curve Tools to hide the toolbar.

[^1]
Notes:

5 To dock the Curve Tools toolbar at the bottom, drag down until it changes to a horizontal shape, then releasing your mouse button.

To save your toolbar layout:

- In the Toolbars dialog box, from the File menu, click Save.

To create a new toolbar:

1 From the Tools menu, click Toolbar Layout.
2 In the Toolbars dialog box, from the Toolbar menu, click New.
3 In the Toolbar Properties dialog box, in the Name box, type Test, and click OK.
A new toolbar is created with one blank button in it.
4 Close the Toolbars dialog box.

To edit the new button:

1 Hold down the Shift key and right-click the blank button.
2 To enter the tooltips for the left and right mouse buttons, in the Edit Toolbar Button dialog box, under Tooltips, in the Left edit box, type Change Last Object to Layer. In the Right edit box, type Change All Curves to Layer.
3 In the Left mouse button command box, type! SelLast ChangeLayer.
4 In the Right mouse button command box, type! SelCrv ChangeLayer.

5 Click Edit Bitmap.
6 In the Edit Bitmap dialog box, make a picture for the button face image, and click OK.
7 In the Edit Toolbar Button dialog box, click OK.

To copy a button from one toolbar to another:

1 From the Standard toolbar, flyout the Layer toolbar, and tear it off.
2 While holding down the Ctrl key, drag the button you just created to the layer toolbar and drop it.

To add a button to a toolbar:

1 From the Tools menu, click Toolbar Layout.
2 In the Toolbar dialog box, check the Test toolbar in the list to show the toolbar.
3 Right click on the Test toolbar in the list, and select Add Button.
A blank button is added to the Test toolbar.
4 Close the dialog box.
Many toolbar functions are available by right-clicking a toolbar's title bar.

[^0]: Loft

[^1]: 4 Show the Curve Tools toolbar again, and then click Close.

