first year: wood fabrication project

Issue

Objective

Working Process

Method / Process

Materials

Upcoming Steps

Due

Friday, October 5, 2007

This semester's project will be directly linked to the studio concepts learned throughout the semester. Ideas such as volume, implied spatial definition, hierarchy, cartesian axes, primary/ secondary spaces, composition, proportion, consistency and articulation will be explored in the development of a cubic volume of space.* This cube of space should apply the ideas and spatial techniques already learned as well as the ones you will be learning in the coming weeks. *excerpt from step one issued on September 12

For this part of the shop project you are to design and compose five (5) $3 / 4$ " thick extensions which originate from the $18^{\prime \prime} \mathrm{x}$ 18 " x 6 " frame. These extensions, along with the aid of a series of planes made of the remains of your 2×4 (in $1 / 4^{\prime \prime} \& 1 / 2^{\prime \prime}$ thick nesses) as well as one (1) 18 " x $18^{\prime \prime} \times 1 / 2^{\prime \prime}$ sheet of plywood, one (1) $18^{\prime \prime} \times 18^{\prime \prime} \times 1 / 4$ " sheet of plywood, and the original frame, are to define a $18 " \times 18^{\prime \prime} \times 18^{\prime \prime}$ cubic volume. These planes as well as defining the cubic volume, should also create one major, and three minor spaces within the cube. See the included diagrams and drawings for more information.

- Planes must be simple rectangles with all edges parallel and perpendicular to the sides of the cube. - Planes cannot extend beyond the surface of the cube. In fact they should help to define it

Wood pencils
Tracing paper ($12^{\prime \prime} \times 12^{\prime \prime}$ sheets)
Chipboard \& corrugated cardboard (1/2 X models) modeled to approximate thicknesses
Elmer's glue
Corrugated cardboard (1X mock-up) modeled to approximate thicknesses
Tape \& hot glue

Later you will be asked to consider notches and reliefs within the $18^{\prime \prime} \times 18^{\prime \prime} \times 6^{\prime \prime}$ frame to define the spatiality of the internal volumes defined by the planes. In addition to this, circular holes will be introduced through subtraction to create spherical and cylindrical volumes within the composition.

Monday, October 8, 2007 @ 1.30 p.m.(study model \#1) @ 1/2 X
Friday, October 12, 2007 @ 1.30 p.m.(study model \#2) @ $1 / 2$ X \& sketches
Wednesday, October 17, 2007 @ 1.30 p.m. (a cardboard mock-up of design taped in place within wood frame)

EXAMPLE: 1
3/4" CUBIC EXTENSIONS WITHIN 18 " $\times 18$ " BOX (3) SIDES ALLOW ONLY ONE 3/4" EXTENSION \& (1) SIDE ALLOWED TWO 3/4" EXTENSIONS

EXAMPLE 3A: SHOWING 3/4" CUBIC
EXTENSIONS WHICH ARE TO DEFINE THE
CUBIC CONTAINER
"SHOWN WITHIN PARTIAL DADOS

EXAMPLE 3B: INTERNAL PARTITIONS
MAKING UP AMINIMUM OF FOUR INTERNALLY DEFINED SPACES. IN ADDITION, THESE PLANES ARE TO HELP DEFINE THE CUBIC CONTAINER.

PARTITIONS ARE TO BE MADE FROM:

1. REMAINING $2 \times 4 \mathrm{~s}$ (AS $1 / 4^{\prime \prime}$ AND $1 / 2^{\prime \prime}$ THICKNESSES
2. FROM 1 SHEET OF 18 " X 18 " $\mathrm{X} 1 / 4^{\prime \prime}$ TK. PLYWOOD
3. FROM 1 SHEET OF 18 " $\times 18$ " $\times 1 / 2^{\prime \prime}$ TK. PLYWOOD

EXAMPLE 3C: SHOWING INTERNAL PARTITIONS WITHIN THE 3/4" CUBIC EXTENSIONS

UPCOMING FINAL OPERATIONS

1. CONTINUING TO DEFINE EACH SPACE THROUGH NOTCHING AND RELIEF OF THE 18" X 18" X 6" BOX
2. INTRODUCING SPHERICAL AND CYLINDRICAL SPACES WITHIN THE COMPOSITION
3. FINISHES
