first year: assignment seven

Assembly of a	part A
Issued	Friday, September 28, 2007 @ 4.00 p.m.
Objective	With this assignment you will develop your ability to record the assembly of a three-dimensional object using paraline drawing techniques. Through the use of the paraline drawing you are to tell the story of folding a box or carton.
Method / Process	Chose a cardboard box or paper-board carton which satisfies the criteria listed below. Carefully unfold the box or container so you are able to understand the object as an unfolded pattern (plan). Then determine the scale that best represents your box or carton which will allow you to draw it accurately. Should it to be drawn at actual size, or $-4 x,-2 x,+2 x,+3 x$, etc? Develop a series of freehand paraline drawings showing each step of how the container transforms through folding into the box or carton. Arrange these freehand drawings to best show the process of the assembly as part of the composition.
	On a sheet or sheets of vellum, construct (drafted) the same series of paraline drawings showing the transformation from the plan pattern (completely unfolded) to final box or carton (completely folded).
Cardboard Box or	1. Do not select a box or carton which has a separate lid.
Paper Carton	2. Boxes, paper-board milk or juice cartons are acceptable as well as paper-board chinese take-out containers
Suggestions	3. You are to select a carton or box which, when folded, creates a total enclosure
	4. In the unfolded pattern, use the dashed line convention to represent the folded parts of the pattern
	5. For examples of paraline drawings used in model making, visit:http://www.revell.com/Instruction-Plans.instructions.0.html
	6. Read all the included hand-outs on paraline drawing before starting this assignment
	7. Test each type of paraline drawing type to find the one that best suits the act of folding your item
Project \&	Wood pencils
Presentation	Tracing paper ($12^{\prime \prime} \times 12^{\prime \prime}$ sheets)
Requirements	
	Vellum sheet(s) $23^{\prime \prime} \times 29$ "
	Lead holder and leads to create construction lines and lines which represent the contour (light) and edges (dark) of your container or box
Due	Monday, October 1, 2007 @ 1.30 p.m. (sketches and constructed drawing on vellum)

There are a number of paraline drawings, which are named after the method of projection that is used to develop them. Two of the most common in architectural drawing are discussed in this section: isometric and oblique (in terms of both plan and elevation).

in the above drawings: (1) all vertical lines r=main vertical
(2) all parallel lines remain parallel
(3) all lines parallel to $X \cdot Y \cdot z$ axes can be drawn to scale

For more information see: Visual Notes for Architect and Designers by Norman Crowe and Paul Laseau

 the plan oblique are at the same scale mak
 tal. Vertical lines are then drawn from plan on an angle, generally somewhere
around 30 or 60 degrees from the horizon-

 A plan oblique projection is essentially a
plan view from which walls or other isometric.

 parallel in the drawing. There are three
basic types of paraline projections: the space or objects. In paraline projections, all
lines which are parallel in space are shown tion for representing three-dimensional
space or objects. In paraline projections These are drawings which are the basic
alternate convention to perspective proje sbuimeag eulfered $0 \mathrm{~B}-\mathrm{s}$

realistic impression of perspective draw
ings. isometric most closely approaches the

 plan and elevation lines.

 and өul meap ol S! sict өwojaro of Kem
 Kıno! oodsiad 6uimesp of pasn ere oum өidoed

